1
|
Nozdriukhin D, Cattaneo M, Klingler N, Lyu S, Li W, de Espinosa FM, Bonvin J, Supponen O, Razansky D, Deán-Ben XL. Nanoporous Submicron Gold Particles Enable Nanoparticle-Based Localization Optoacoustic Tomography (nanoLOT). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404904. [PMID: 39394978 DOI: 10.1002/smll.202404904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/11/2024] [Indexed: 10/14/2024]
Abstract
Localization optoacoustic tomography (LOT) has recently emerged as a transformative super-resolution technique breaking through the acoustic diffraction limit in deep-tissue optoacoustic (OA) imaging via individual localization and tracking of particles in the bloodstream. However, strong light absorption in red blood cells has previously restricted per-particle OA detection to relatively large microparticles, ≈5 µm in diameter. Herein, it is demonstrated that submicron-sized porous gold nanoparticles, ≈600 nm in diameter, can be individually detected for noninvasive super-resolution imaging with LOT. Ultra-high-speed bright-field microscopy revealed that these nanoparticles generate microscopic plasmonic vapor bubbles, significantly enhancing opto-acoustic energy conversion through a nano-to-micro size transformation. Comprehensive in vitro and in vivo tests further demonstrated the biocompatibility and biosafety of the particles. By reducing the detectable particle size by an order of magnitude, nanoLOT enables microangiographic imaging with a significantly reduced risk of embolisms from particle aggregation and opens new avenues to visualize how nanoparticles reach vascular and potentially extravascular targets. The performance of nanoLOT for non-invasive imaging of microvascular networks in the murine brain anticipates new insights into neurovascular coupling mechanisms and longitudinal microcirculatory changes associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniil Nozdriukhin
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, Rämistrasse 101, Zurich, 8093, Switzerland
| | - Marco Cattaneo
- Institute of Fluid Dynamics, Department of Mechanical and Process Engineering, ETH Zürich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Norman Klingler
- Institute of Fluid Dynamics, Department of Mechanical and Process Engineering, ETH Zürich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Shuxin Lyu
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, Rämistrasse 101, Zurich, 8093, Switzerland
- Department of Medical Imaging, Shanxi Medical University, Xinjiannan Road 56, Shanxi, 030001, China
| | - Weiye Li
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, Rämistrasse 101, Zurich, 8093, Switzerland
| | | | - Jerome Bonvin
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, Rämistrasse 101, Zurich, 8093, Switzerland
| | - Outi Supponen
- Institute of Fluid Dynamics, Department of Mechanical and Process Engineering, ETH Zürich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, Rämistrasse 101, Zurich, 8093, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, Rämistrasse 101, Zurich, 8093, Switzerland
| |
Collapse
|
2
|
Kim J, Choi S, Kim C, Kim J, Park B. Review on Photoacoustic Monitoring after Drug Delivery: From Label-Free Biomarkers to Pharmacokinetics Agents. Pharmaceutics 2024; 16:1240. [PMID: 39458572 PMCID: PMC11510789 DOI: 10.3390/pharmaceutics16101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Photoacoustic imaging (PAI) is an emerging noninvasive and label-free method for capturing the vasculature, hemodynamics, and physiological responses following drug delivery. PAI combines the advantages of optical and acoustic imaging to provide high-resolution images with multiparametric information. In recent decades, PAI's abilities have been used to determine reactivity after the administration of various drugs. This study investigates photoacoustic imaging as a label-free method of monitoring drug delivery responses by observing changes in the vascular system and oxygen saturation levels across various biological tissues. In addition, we discuss photoacoustic studies that monitor the biodistribution and pharmacokinetics of exogenous contrast agents, offering contrast-enhanced imaging of diseased regions. Finally, we demonstrate the crucial role of photoacoustic imaging in understanding drug delivery mechanisms and treatment processes.
Collapse
Affiliation(s)
- Jiwoong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Medical Science and Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Cheongam-ro 77, Nam-gu, Pohang 37673, Republic of Korea; (J.K.); (S.C.); (C.K.)
| | - Seongwook Choi
- Departments of Electrical Engineering, Convergence IT Engineering, Medical Science and Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Cheongam-ro 77, Nam-gu, Pohang 37673, Republic of Korea; (J.K.); (S.C.); (C.K.)
| | - Chulhong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Medical Science and Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Cheongam-ro 77, Nam-gu, Pohang 37673, Republic of Korea; (J.K.); (S.C.); (C.K.)
| | - Jeesu Kim
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Byullee Park
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
Choi S, Park S, Kim J, Kim H, Cho S, Kim S, Park J, Kim C. X-ray free-electron laser induced acoustic microscopy (XFELAM). PHOTOACOUSTICS 2024; 35:100587. [PMID: 38312809 PMCID: PMC10835452 DOI: 10.1016/j.pacs.2024.100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/06/2024]
Abstract
The X-ray free-electron laser (XFEL) has remarkably advanced X-ray imaging technology and enabled important scientific achievements. The XFEL's extremely high power, short pulse width, low emittance, and high coherence make possible such diverse imaging techniques as absorption/emission spectroscopy, diffraction imaging, and scattering imaging. Here, we demonstrate a novel XFEL-based imaging modality that uses the X-ray induced acoustic (XA) effect, which we call X-ray free-electron laser induced acoustic microscopy (XFELAM). Initially, we verified the XA effect by detecting XA signals from various materials, then we validated the experimental results with simulation outcomes. Next, in resolution experiments, we successfully imaged a patterned tungsten target with drilled various-sized circles at a spatial resolution of 7.8 ± 5.1 µm, which is the first micron-scale resolution achieved by XA imaging. Our results suggest that the novel XFELAM can expand the usability of XFEL in various areas of fundamental scientific research.
Collapse
Affiliation(s)
- Seongwook Choi
- Pohang University of Science and Technology (POSTECH), Medical Device Innovation Center, Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| | - Sinyoung Park
- Pohang University of Science and Technology (POSTECH), Medical Device Innovation Center, Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| | - Jiwoong Kim
- Pohang University of Science and Technology (POSTECH), Medical Device Innovation Center, Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| | - Hyunhee Kim
- Pohang University of Science and Technology (POSTECH), Medical Device Innovation Center, Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| | - Seonghee Cho
- Pohang University of Science and Technology (POSTECH), Medical Device Innovation Center, Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| | - Sunam Kim
- Pohang Accelerator Laboratory, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| | - Jaeku Park
- Pohang Accelerator Laboratory, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| | - Chulhong Kim
- Pohang University of Science and Technology (POSTECH), Medical Device Innovation Center, Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| |
Collapse
|