1
|
Li Y, Shi R, Xia L, Zhang X, Zhang P, Liu S, Liu K, Sik A, Stoika R, Jin M. Identification of Key Active Constituents in Eucommia ulmoides Oliv. Leaves Against Parkinson's Disease and the Alleviative Effects via 4E-BP1 Up-Regulation. Int J Mol Sci 2025; 26:2762. [PMID: 40141407 PMCID: PMC11943294 DOI: 10.3390/ijms26062762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder, affecting an increasing number of older adults. Despite extensive research, a definitive cure remains elusive. Eucommia ulmoides Oliv. leaves (EUOL) have been reported to exhibit protective effects on neurodegenerative diseases, however, their efficacy, key active constituents, and pharmacological mechanisms are not yet understood. This study aims to explore the optimal constituents of EUOL regarding anti-PD activity and its underlying mechanisms. Using a zebrafish PD model, we found that the 30% ethanol fraction extract (EF) of EUOL significantly relieved MPTP-induced locomotor impairments, increased the length of dopaminergic neurons, inhibited the loss of neuronal vasculature, and regulated the misexpression of autophagy-related genes (α-syn, lc3b, p62, and atg7). Assays of key regulators involved in PD further verified the potential of the 30% EF against PD in the cellular PD model. Reverse phase protein array (RPPA) analysis revealed that 30% EF exerted anti-PD activity by activating 4E-BP1, which was confirmed by Western blotting. Phytochemical analysis indicated that cryptochlorogenic acid, chlorogenic acid, asperuloside, caffeic acid, and asperulosidic acid are the main components of the 30% EF. Molecular docking and surface plasmon resonance (SPR) indicated that the main components of the 30% EF exhibited favorable binding interactions with 4E-BP1, further highlighting the roles of 4E-BP1 in this process. Accordingly, these components were observed to ameliorate PD-like behaviors in the zebrafish model. Overall, this study revealed that the 30% EF is the key active constituent of EUOL, which had considerable ameliorative effects on PD by up-regulating 4E-BP1. This suggests that EUOL could serve as a promising candidate for the development of novel functional foods aimed at supporting PD treatment.
Collapse
Affiliation(s)
- Yuqing Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| | - Ruidie Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| | - Lijie Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| | - Xuanming Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| | - Pengyu Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| | - Siyuan Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| | - Attila Sik
- University Research and Innovation Center, Obuda University, Bécsi út 96B, H-1034 Budapest, Hungary
- Institute of Physiology, Medical School, University of Pecs, H-7624 Pecs, Hungary
- Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| |
Collapse
|
2
|
Song H, Ren W, Liu T, Zou S, Yin D, Yu J. Effects of Eucommia ulmoides leaf extract on xanthine oxidase and chronic kidney disease induced by adenine in rats. Nat Prod Res 2024:1-6. [PMID: 39049541 DOI: 10.1080/14786419.2024.2383993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/11/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
The aim of this study was to explore the uric acid-lowering effect and renal protective effect of Eucommia ulmoides leaf extract (EULE). The results of xanthine oxidase inhibition assay showed EULE exhibited a high inhibition rate similar to that of allopurinol, with an IC50 value of 1.53 mg/mL. A chronic kidney disease (CKD) model was established in adenine-induced rats to investigate the therapeutic effect of EULE on CKD. The results demonstrated EULE could reduce blood pressure and improve renal index. Additionally, EULE could regulate serum and urine indicators of renal function injury, and restore renal tissue morphology. Mechanistically, EULE was found to downregulate levels of malondialdehyde (MDA), tumour necrosis factor-α (TNF-α), and interleukin-1β (IL-1β), while upregulating total antioxidant capacity (T-AOC), thereby alleviating inflammatory response in rats, leading to a reduction in renal damage. the Our findings provide potential applications of EULE as a natural product for the improvement of renal injury.
Collapse
Affiliation(s)
- Haochong Song
- College of Special Education, Beijing Union University, Beijing, China
| | - Wenping Ren
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Tingting Liu
- Qingdao Chenlan Pharmaceutical Co., Ltd, Qingdao, China
| | - Shengcan Zou
- Qingdao Chenlan Pharmaceutical Co., Ltd, Qingdao, China
| | - Dongli Yin
- Qingdao Chenlan Pharmaceutical Co., Ltd, Qingdao, China
| | - Jia Yu
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Liao Y, Chen F, Tang H, Dessie W, Qin Z. Combination of a Deep Eutectic Solvent and Macroporous Resin for Green Recovery of Iridoids, Chlorogenic Acid, and Flavonoids from Eucommia ulmoides Leaves. Molecules 2024; 29:737. [PMID: 38338480 PMCID: PMC10856201 DOI: 10.3390/molecules29030737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
To increase the effectiveness of using typical biomass waste as a resource, iridoids, chlorogenic acid, and flavonoids from the waste biomass of Eucommia ulmoides leaves (EULs) were extracted by deep eutectic solvents (DESs) in conjunction with macroporous resin. To optimize the extract conditions, the experiment of response surface was employed with the single-factor of DES composition molar ratio, liquid-solid ratio, water percentage, extraction temperature, and extraction time. The findings demonstrated that the theoretical simulated extraction yield of chlorogenic acid (CGA), geniposidic acid (GPA), aucubin (AU), geniposide (GP), rutin (RU), and isoquercetin (IQU) were 42.8, 137.2, 156.7, 5.4, 13.5, and 12.8 mg/g, respectively, under optimal conditions (hydrogen bond donor-hydrogen bond acceptor molar ratio of 1.96, liquid-solid ratio of 28.89 mL/g, water percentage of 38.44%, temperature of 317.36 K, and time of 55.59 min). Then, 12 resins were evaluated for their adsorption and desorption capabilities for the target components, and the HPD950 resin was found to operate at its optimum. Additionally, the HPD950 resin demonstrated significant sustainability and considerable potential in the recyclability test. Finally, the hypoglycemic in vitro, hypolipidemic in vitro, immunomodulatory, and anti-inflammatory effects of EUL extract were evaluated, and the correlation analysis of six active components with biological activity and physicochemical characteristics of DESs by heatmap were discussed. The findings of this study can offer a theoretical foundation for the extraction of valuable components by DESs from waste biomass, as well as specific utility benefits for the creation and development of natural products.
Collapse
Affiliation(s)
- Yunhui Liao
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China; (Y.L.); (F.C.); (H.T.); (W.D.)
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Feng Chen
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China; (Y.L.); (F.C.); (H.T.); (W.D.)
| | - Haishan Tang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China; (Y.L.); (F.C.); (H.T.); (W.D.)
- Hunan Provincial Key Laboratory for Comprehensive Utilization of Dominant Plant Resources in Southern Hunan, Yongzhou 425199, China
| | - Wubliker Dessie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China; (Y.L.); (F.C.); (H.T.); (W.D.)
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Zuodong Qin
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China; (Y.L.); (F.C.); (H.T.); (W.D.)
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| |
Collapse
|
4
|
Zhu J, Chen A, Ma H, Cheng YY, Song K. Optimization of Flavonoid Extraction from Eucommia ulmoides pollen using Respond Surface Methodology and its biological activities. Chem Biodivers 2024; 21:e202301308. [PMID: 38163260 DOI: 10.1002/cbdv.202301308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Flavonoids, known for their abundance in Eucommia ulmoides pollen, possess diverse biological functions, including antioxidants, antibacterial agents, and anti-tumor properties. This study aims to establish effective parameters for flavonoid extraction from Eucommia ulmoides pollen using a microwave-assisted method, characterize the flavonoid composition of the extracted material, and explore its biological activities. Building upon the initial results from single-factor experiments, response surface methodology was employed to optimize the extraction parameters. The inhibitory effect of human breast cancer cells (MCF-7) was evaluated by CCK assay and Live/dead staining. Simultaneously, the extract's scavenging ability against DPPH free radicals and its antibacterial properties against Escherichia coli and Staphylococcus aureus were investigated. The results demonstrated that the flavonoid yield reached 3.28 g per 100 g of pollen, closely aligning with the predicted value. The IC50 for flavonoid-mediated DPPH radical scavenging was 0.04 mg/mL. The extract exhibited a robust inhibitory effect on both Escherichia coli and Staphylococcus aureus. Concurrently, the extract displayed a significant inhibitory effect on the growth and proliferation of MCF-7 cells in a dose-dependent and time-dependent manner. In addition, six kinds of flavonoids have been identified by UPLC-TOF-MS/MS technology, providing further support to the study on the anti-oxidation and anti-tumor mechanism of Eucommia ulmoides pollen extracts.
Collapse
Affiliation(s)
- Jingjing Zhu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Ang Chen
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, China
| | - Hailin Ma
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology, Sydney, NSW 2007, Australia
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|