1
|
Petit P, Chamot S, Al-Salameh A, Cancé C, Desailloud R, Bonneterre V. Farming activity and risk of treated thyroid disorders: Insights from the TRACTOR project, a nationwide cohort study. ENVIRONMENTAL RESEARCH 2024; 249:118458. [PMID: 38365059 DOI: 10.1016/j.envres.2024.118458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Epidemiological data regarding thyroid diseases are lacking, in particular for occupationally exposed populations. OBJECTIVES To compare the risk of hypothyroidism and hyperthyroidism between farming activities within the complete population of French farm managers (FMs). METHODS Digital health data from retrospective administrative databases, including insurance claims and electronic health/medical records, was employed. This cohort data spanned the entirety of French farm managers (FMs) who had undertaken work at least once from 2002 to 2016. Survival analysis with the time to initial medication reimbursement as timescale was used to examine the association (hazard ratio, HR) between 26 specific farming activities and both treated hypothyroidism and hyperthyroidism. A distinct model was developed for each farming activity, comparing FMs who had never engaged in the specific farming activity between 2002 and 2016 with those who had. All analyses were adjusted for potential confounders (e.g., age), and sensitivity analyses were conducted. RESULTS Among 1088561 FMs (mean age 46.6 [SD 14.1]; 31% females), there were 31834 hypothyroidism cases (75% females) and 620 hyperthyroidism cases (67% females), respectively. The highest risks were observed for cattle activities for both hyperthyroidism (HR ranging from 1.75 to 2.42) and hypothyroidism (HR ranging from 1.41 to 1.44). For hypothyroidism, higher risks were also observed for several animal farming activities (pig, poultry, and rabbit), as well as fruit arboriculture (HR = 1.22 [1.14-1.31]). The lowest risks were observed for activities involving horses. Sex differences in the risk of hypothyroidism were observed for eight activities, with the risk being higher for males (HR = 1.09 [1.01-1.20]) than females in viticulture (HR = 0.97 [0.93-1.00]). The risk of hyperthyroidism was two times higher for male dairy farmers than females. DISCUSSION Our findings offer a comprehensive overview of thyroid disease risks within the FM community. Thyroid ailments might not stem from a single cause but likely arise from the combined effects of various causal agents and triggering factors (agricultural exposome). Further investigation into distinct farming activities-especially those involving cattle-is essential to pinpoint potential risk factors that could enhance thyroid disease monitoring in agriculture.
Collapse
Affiliation(s)
- Pascal Petit
- CHU Grenoble Alpes, Centre Régional de Pathologies Professionnelles et Environnementales, 38000, Grenoble, France; Univ. Grenoble Alpes, AGEIS, 38000, Grenoble, France.
| | - Sylvain Chamot
- Regional Center for Occupational and Environmental Diseases of Hauts-de-France, Amiens University Hospital, 1 rond point du Pr Christian Cabrol, 80000, Amiens, France; Péritox (UMR_I 01), UPJV/INERIS, University of Picardy Jules Verne, Chemin du Thil, 80025, Amiens, France
| | - Abdallah Al-Salameh
- Péritox (UMR_I 01), UPJV/INERIS, University of Picardy Jules Verne, Chemin du Thil, 80025, Amiens, France; Department of Endocrinology, Diabetes Mellitus and Nutrition, Amiens University Hospital, 1 rond point du Pr Christian Cabrol, 80054, Amiens, France
| | - Christophe Cancé
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000, Grenoble, France
| | - Rachel Desailloud
- Péritox (UMR_I 01), UPJV/INERIS, University of Picardy Jules Verne, Chemin du Thil, 80025, Amiens, France; Department of Endocrinology, Diabetes Mellitus and Nutrition, Amiens University Hospital, 1 rond point du Pr Christian Cabrol, 80054, Amiens, France
| | - Vincent Bonneterre
- CHU Grenoble Alpes, Centre Régional de Pathologies Professionnelles et Environnementales, 38000, Grenoble, France; Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000, Grenoble, France
| |
Collapse
|
2
|
Baskaran S, Sahoo AK, Chivukula N, Kumar K, Samal A. Cheminformatics Analysis of the Multitarget Structure-Activity Landscape of Environmental Chemicals Binding to Human Endocrine Receptors. ACS OMEGA 2023; 8:49383-49395. [PMID: 38162763 PMCID: PMC10753715 DOI: 10.1021/acsomega.3c07920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
In human exposome, environmental chemicals can target and disrupt different endocrine axes, ultimately leading to several endocrine disorders. Such chemicals, termed endocrine disrupting chemicals, can promiscuously bind to different endocrine receptors and lead to varying biological end points. Thus, understanding the complexity of molecule-receptor binding of environmental chemicals can aid in the development of robust toxicity predictors. Toward this, the ToxCast project has generated the largest resource on the chemical-receptor activity data for environmental chemicals that were screened across various endocrine receptors. However, the heterogeneity in the multitarget structure-activity landscape of such chemicals is not yet explored. In this study, we systematically curated the chemicals targeting eight human endocrine receptors, their activity values, and biological end points from the ToxCast chemical library. We employed dual-activity difference and triple-activity difference maps to identify single-, dual-, and triple-target cliffs across different target combinations. We annotated the identified activity cliffs through the matched molecular pair (MMP)-based approach and observed that a small fraction of activity cliffs form MMPs. Further, we structurally classified the activity cliffs and observed that R-group cliffs form the highest fraction among the cliffs identified in various target combinations. Finally, we leveraged the mechanism of action (MOA) annotations to analyze structure-mechanism relationships and identified strong MOA-cliffs and weak MOA-cliffs, for each of the eight endocrine receptors. Overall, insights from this first study analyzing the structure-activity landscape of environmental chemicals targeting multiple human endocrine receptors will likely contribute toward the development of better toxicity prediction models for characterizing the human chemical exposome.
Collapse
Affiliation(s)
- Shanmuga
Priya Baskaran
- The
Institute of Mathematical Sciences (IMSc), Chennai 600113, India
- Homi
Bhabha National Institute (HBNI), Mumbai 400094, India
| | - Ajaya Kumar Sahoo
- The
Institute of Mathematical Sciences (IMSc), Chennai 600113, India
- Homi
Bhabha National Institute (HBNI), Mumbai 400094, India
| | - Nikhil Chivukula
- The
Institute of Mathematical Sciences (IMSc), Chennai 600113, India
- Homi
Bhabha National Institute (HBNI), Mumbai 400094, India
| | - Kishan Kumar
- The
Institute of Mathematical Sciences (IMSc), Chennai 600113, India
| | - Areejit Samal
- The
Institute of Mathematical Sciences (IMSc), Chennai 600113, India
- Homi
Bhabha National Institute (HBNI), Mumbai 400094, India
| |
Collapse
|