1
|
Li W, Liu L, Li X, Ren H, Zhang L, Parvez MK, Al-Dosari MS, Fan L, Liu J. A Ni(II)MOF-based hypersensitive dual-function luminescent sensor towards the 3-nitrotyrosine biomarker and 6-propyl-2-thiouracil antithyroid drug in urine. J Mater Chem B 2024. [PMID: 39432095 DOI: 10.1039/d4tb01618a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Trace detection of bioactive small molecules (BSMs) in body fluids is of great importance for disease diagnosis, drug discovery, and health monitoring. Based on the chiral ligand of 4,4'-(1,2-dihydroxyethane-1,2-diyl)dibenzoic acid (H2L), an achiral 3D porous Ni(II)-MOF, with a trinuclear cluster based (3,9)-c {42·6}3{46·621·89}-xmz net, was constructed under solvothermal conditions. Benefiting from its robust framework and excellent luminescent performance, NiMOF was endowed with remarkable capabilities in efficiently, rapidly, and sensitively detecting the 3-nitrotyrosine (3-NT) biomarker and 6-propyl-2-thiouracil (6-PTU) thyroid drug based on the spectral overlap and photo-induced electron transfer (PET) caused luminescence quenching response. Notably, NiMOF exhibited exceptional performance in quantifying 3-NT and 6-PTU in urine samples, yielding highly satisfactory results. Additionally, an intelligent detection system was crafted to enhance the reliability and practicability of 3-NT/6-PTU detection in urine, based on tandem combinational logic gates. This work not only heralds a promising trajectory in the development of MOF-based luminescent sensors, but also paves the way for the intelligent monitoring of BSMs in real bodily fluids.
Collapse
Affiliation(s)
- Wencui Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, P. R. China.
| | - Liying Liu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, P. R. China.
| | - Xiaoting Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, P. R. China.
| | - Hu Ren
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, P. R. China.
| | - Lu Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, P. R. China.
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed S Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, P. R. China.
| | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523000, P. R. China.
| |
Collapse
|
2
|
Xue Z, Chen Y, Xu K, Miao Y, Zhao X. Crown Ether Electrolyte Additive Enables High-Rate and Stable Polyviologen Cathode Material for Chloride Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311700. [PMID: 38287730 DOI: 10.1002/smll.202311700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Indexed: 01/31/2024]
Abstract
A variety of inorganic and inorganic cathode materials for chloride ion storage are reported. However, their application in chloride ion batteries (CIB) is hindered by poor rate capability and cycling stability. Herein, an organic poly(butyl viologen dichloride) (PBVCl2) cathode material with significantly enhanced rate and cycling performance in the CIB is achieved using a crown ether (18-Crown-6) additive in the tributylmethylammonium chloride-based electrolyte. The as-prepared PBVCl2 cathodes exhibit impressive capacity increases from 149.4 to 179.1 mAh g-1 at 0.1 C and from 57.8 to 111.9 mAh g-1 at 10 C, demonstrating the best rate performance with the highest energy density among those of various reported cathodes for CIBs. This impressive performance improvement is a result of the great boosts in charge transfer, ion transport, and interface stability of the battery by the use of 18-Crown-6, which also contributes to a more than twofold increase in capacity retention after 120 cycles. The electrode reaction mechanism of the CIB based on highly reversible chloride ion transfer is revealed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
- Zhiyang Xue
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Functional Composites, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yun Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Functional Composites, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Kangjie Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Functional Composites, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yingchun Miao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Functional Composites, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiangyu Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Functional Composites, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
3
|
Wang GD, Li YZ, Krishna R, Zhang WY, Hou L, Wang YY, Zhu Z. Scalable Synthesis of Robust MOF for Challenging Ethylene Purification and Propylene Recovery with Record Productivity. Angew Chem Int Ed Engl 2024; 63:e202319978. [PMID: 38369652 DOI: 10.1002/anie.202319978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Ethylene (C2H4) purification and propylene (C3H6) recovery are highly relevant in polymer synthesis, yet developing physisorbents for these industrial separation faces the challenges of merging easy scalability, economic feasibility, high moisture stability with great separation efficiency. Herein, we reported a robust and scalable MOF (MAC-4) for simultaneous recovery of C3H6 and C2H4. Through creating nonpolar pores decorated by accessible N/O sites, MAC-4 displays top-tier uptakes and selectivities for C2H6 and C3H6 over C2H4 at ambient conditions. Molecular modelling combined with infrared spectroscopy revealed that C2H6 and C3H6 molecules were trapped in the framework with stronger contacts relative to C2H4. Breakthrough experiments demonstrated exceptional separation performance for binary C2H6/C2H4 and C3H6/C2H4 as well as ternary C3H6/C2H6/C2H4 mixtures, simultaneously affording record productivities of 27.4 and 36.2 L kg-1 for high-purity C2H4 (≥99.9 %) and C3H6 (≥99.5 %). MAC-4 was facilely prepared at deckgram-scale under reflux condition within 3 hours, making it as a smart MOF to address challenging gas separations.
Collapse
Affiliation(s)
- Gang-Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Yong-Zhi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
- School of Materials and Physics, China University of Mining and Technology, Xuzhou, 221116, P. R. China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Wen-Yan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
4
|
Wang GD, Li YZ, Shi WJ, Hou L, Wang YY, Zhu Z. Active Sites Decorated Nonpolar Pore-Based MOF for One-step Acquisition of C 2 H 4 and Recovery of C 3 H 6. Angew Chem Int Ed Engl 2023; 62:e202311654. [PMID: 37679304 DOI: 10.1002/anie.202311654] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023]
Abstract
Herein, a 2-fold interpenetrated metal-organic framework (MOF) Zn-BPZ-TATB with accessible N/O active sites in nonpolar pore surfaces was reported for one-step C2 H4 purification from C2 H6 or C3 H6 mixtures as well as recovery of C3 H6 from C2 H6 /C3 H6 /C2 H4 mixtures. The MOF exhibits the favorable C2 H6 and C3 H6 uptakes (>100 cm3 g-1 at 298 K under 100 kPa) as well as selective adsorption of C2 H6 and C3 H6 over C2 H4 . The C3 H6 - and C2 H6 -selective feature were investigated detailedly by experimental tests as well as sorption kinetic studyies. Molecular modelling revealed the multiple interactions between C3 H6 or C2 H6 molecules and methyl groups as well as triazine rings in pores. Zn-BPZ-TATB not only can directly generate 323.4 L kg-1 and 15.4 L kg-1 of high-purity (≥99.9 %) C2 H4 from C3 H6 /C2 H4 and C2 H6 /C2 H4 mixtures, but also provide a large high-purity (≥99.5 %) C3 H6 recovery capacity of 60.1 L kg-1 from C3 H6 /C2 H4 mixtures. More importantly, the high-purity C3 H6 (≥99.5 %) and C2 H4 (≥99.9 %) with the productivities of 38.2 and 12.7 L kg-1 can be simultaneously obtained from C2 H6 /C3 H6 /C2 H4 mixtures through a single adsorption/desorption cycle.
Collapse
Affiliation(s)
- Gang-Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Yong-Zhi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Wen-Juan Shi
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|