1
|
Reinhardt CR, Manetsch MT, Li WL, Román-Leshkov Y, Head-Gordon T, Kulik HJ. Computational Screening of Putative Catalyst Transition Metal Complexes as Guests in a Ga 4L 612- Nanocage. Inorg Chem 2024; 63:14609-14622. [PMID: 39049593 DOI: 10.1021/acs.inorgchem.4c02113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Metal-organic cages form well-defined microenvironments that can enhance the catalytic proficiency of encapsulated transition metal complexes (TMCs). We introduce a screening protocol to efficiently identify TMCs that are promising candidates for encapsulation in the Ga4L612- nanocage. We obtain TMCs from the Cambridge Structural Database with geometric and electronic characteristics amenable to encapsulation and mine the text of associated manuscripts to curate TMCs with documented catalytic functionality. By docking candidate TMCs inside the nanocage cavity and carrying out electronic structure calculations, we identify a subset of successfully optimized candidates (TMC-34) and observe that encapsulated guests occupy an average of 60% of the cavity volume, in line with previous observations. Notably, some guests occupy as much as 72% of the cavity as a result of linker rotation. Encapsulation has a universal effect on the electrostatic potential (ESP), systematically decreasing the ESP at the metal center of each TMC in the TMC-34 data set, while minimally altering TMC metal partial charges. Collectively these observations support geometry-based screening of potential guests and suggest that encapsulation in Ga4L612- cages could electrostatically stabilize diverse cationic or electropositive intermediates. We highlight candidate guests with associated known reactivity and solubility most amenable for encapsulation in experimental follow-up studies.
Collapse
Affiliation(s)
- Clorice R Reinhardt
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Melissa T Manetsch
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wan-Lu Li
- Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Zhai H, Wei Z, Jing X, Duan C. A Porphyrin-Faced Zn 8L 6 Cage for Selective Oxidation of C(sp 3)-H Bonds and Sulfides. Inorg Chem 2024; 63:14375-14382. [PMID: 39038208 DOI: 10.1021/acs.inorgchem.4c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Catalytic oxidation of benzyl C-H bonds and sulfides from fuel oils stands as an attractive proposition in the quest for clean energy, yet their simultaneous oxidation with a singular, economically friendly catalyst is not well established. In this work, the combination of a cobalt(II) porphyrin ligand with 2-pyridinecarboxaldehyde and ZnII yielded a Zn8L6 cage (Co cube). The three-dimensional conjugated structure effectively enhances energy transfer efficiency, enabling the Co cube to show a good ability to activate oxygen under light conditions for photooxidation. Moreover, this catalytic system demonstrates high selectivity for the photocatalytic oxidation of C(sp3)-H bonds and sulfides, employing the Co cube as a single component catalyst, molecular oxygen as the oxidant, and activating oxygen into 1O2 under mild reaction conditions. This provides significant insights for organic synthesis and future design of photocatalysts with complex molecular components.
Collapse
Affiliation(s)
- Haoyu Zhai
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Zhong Wei
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Xu Jing
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| | - Chunying Duan
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
3
|
Siddiqui SA, Stuyver T, Shaik S, Dubey KD. Designed Local Electric Fields-Promising Tools for Enzyme Engineering. JACS AU 2023; 3:3259-3269. [PMID: 38155642 PMCID: PMC10752214 DOI: 10.1021/jacsau.3c00536] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 12/30/2023]
Abstract
Designing efficient catalysts is one of the ultimate goals of chemists. In this Perspective, we discuss how local electric fields (LEFs) can be exploited to improve the catalytic performance of supramolecular catalysts, such as enzymes. More specifically, this Perspective starts by laying out the fundamentals of how local electric fields affect chemical reactivity and review the computational tools available to study electric fields in various settings. Subsequently, the advances made so far in optimizing enzymatic electric fields through targeted mutations are discussed critically and concisely. The Perspective ends with an outlook on some anticipated evolutions of the field in the near future. Among others, we offer some pointers on how the recent data science/machine learning revolution, engulfing all science disciplines, could potentially provide robust and principled tools to facilitate rapid inference of electric field effects, as well as the translation between optimal electrostatic environments and corresponding chemical modifications.
Collapse
Affiliation(s)
- Shakir Ali Siddiqui
- Molecular Simulation Lab, Department of Chemistry,
School of Natural Sciences, Shiv Nadar Institution of Eminence,
Delhi NCR, India 201314
| | - Thijs Stuyver
- Ecole Nationale Supérieure de
Chimie de Paris, Université PSL, CNRS, Institute of Chemistry for Life and Health
Sciences, 75 005 Paris, France
| | - Sason Shaik
- Institute of Chemistry, Edmond J Safra Campus,
The Hebrew University of Jerusalem, Givat Ram, Jerusalem,
9190400, Israel
| | - Kshatresh Dutta Dubey
- Molecular Simulation Lab, Department of Chemistry,
School of Natural Sciences, Shiv Nadar Institution of Eminence,
Delhi NCR, India 201314
| |
Collapse
|