1
|
Ikeda T, Huang YB, Wu SQ, Zheng W, Xu WH, Zhang X, Ji T, Uematsu M, Kanegawa S, Su SQ, Sato O. Four-step electron transfer coupled spin transition in a cyano-bridged [Fe 2Co 2] square complex. Dalton Trans 2024; 53:15465-15470. [PMID: 39239808 DOI: 10.1039/d4dt01581a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The design of molecular functional materials with multi-step magnetic transitions has attracted considerable attention. However, the development of such materials is still infrequent and challenging. Here, a cyano-bridged square Prussian blue complex that exhibits a thermally induced four-step electron transfer coupled spin transition (ETCST) is reported. The magnetic and spectroscopic analyses confirm this multi-step transition. Variable-temperature infrared spectrum suggested the electronic structures in each phase and a four-step transition model is proposed.
Collapse
Affiliation(s)
- Taisuke Ikeda
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yu-Bo Huang
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Wenwei Zheng
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Wen-Huang Xu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Xiaopeng Zhang
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Tianchi Ji
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Mikoto Uematsu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Shinji Kanegawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Sheng-Qun Su
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
2
|
Kanegawa S, Wu SQ, Zhou Z, Shiota Y, Nakanishi T, Yoshizawa K, Sato O. Polar Crystals Using Molecular Chirality: Pseudosymmetric Crystallization toward Polarization Switching Materials. J Am Chem Soc 2024. [PMID: 38604977 DOI: 10.1021/jacs.4c02882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Polar compounds with switchable polarization properties are applicable in various devices such as ferroelectric memory and pyroelectric sensors. However, a strategy to prepare polar compounds has not been established. We report a rational synthesis of a polar CoGa crystal using chiral cth ligands (SS-cth and RR-cth, cth = 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane). Both the original homo metal Co crystal and Ga crystal exhibit a centrosymmetric isostructure, where the dipole moment of metal complexes with the SS-cth ligand and those with the RR-cth ligand are canceled out. To obtain a polar compound, the Co valence tautomeric complex with SS-cth in the homo metal Co crystal is replaced with the Ga complex with SS-cth by mixing Co valence tautomeric complexes with RR-cth and Ga complexes with SS-cth. The CoGa crystal exhibits polarization switching between the pseudononpolar state at a low temperature and the polar state at a high temperature because only Co complexes exhibit changes in electric dipole moment due to metal-to-ligand charge transfer. Following the same strategy, the polarization-switchable CoZn complex was synthesized. The CoZn crystal exhibits polarization switching between the polar state at a low temperature and the pseudononpolar state at a high temperature, which is the opposite temperature dependence to that of the CoGa crystal. These results revealed that the polar crystal can be synthesized by design, using a chiral ligand. Moreover, our method allows for the control of temperature-dependent polarization changes, which contrasts with typical ferroelectric compounds, in which the polar ferroelectric phase typically occurs at low temperatures.
Collapse
Affiliation(s)
- Shinji Kanegawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
- Integrated Research Consortium on Chemical Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
- Integrated Research Consortium on Chemical Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ziqi Zhou
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
- Integrated Research Consortium on Chemical Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takumi Nakanishi
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
- Integrated Research Consortium on Chemical Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
- Integrated Research Consortium on Chemical Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
3
|
Xu WH, Huang YB, Zheng WW, Su SQ, Kanegawa S, Wu SQ, Sato O. Photo-induced valence tautomerism and polarization switching in mononuclear cobalt complexes with an enantiopure chiral ligand. Dalton Trans 2024; 53:2512-2516. [PMID: 38224229 DOI: 10.1039/d3dt03915c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Light-induced polarization switchable molecular materials have attracted attention for decades owing to their potential remote manipulation and ultrafast responsiveness. Here we report a valence tautomeric (VT) complex with an enantiopure chiral ligand. By a suitable choice of counter anions, a significant improvement in photoconversion has been demonstrated, leading to novel photo-responsive polarization switching materials.
Collapse
Affiliation(s)
- Wen-Huang Xu
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yu-Bo Huang
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Wen-Wei Zheng
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Sheng-Qun Su
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Shinji Kanegawa
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
4
|
Huang YB, Li JQ, Xu WH, Zheng W, Zhang X, Gao KG, Ji T, Ikeda T, Nakanishi T, Kanegawa S, Wu SQ, Su SQ, Sato O. Electrically Detectable Photoinduced Polarization Switching in a Molecular Prussian Blue Analogue. J Am Chem Soc 2024; 146:201-209. [PMID: 38134356 DOI: 10.1021/jacs.3c07545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Light, a nondestructive and remotely controllable external stimulus, effectively triggers a variety of electron-transfer phenomena in metal complexes. One prime example includes using light in molecular cyanide-bridged [FeCo] bimetallic Prussian blue analogues, where it switches the system between the electron-transferred metastable state and the system's ground state. If this process is coupled to a ferroelectric-type phase transition, the generation and disappearance of macroscopic polarization, entirely under light control, become possible. In this research, we successfully executed a nonpolar-to-polar phase transition in a trinuclear cyanide-bridged [Fe2Co] complex crystal via directional electron transfer. Intriguingly, by exposing the crystal to the wavelength of light─785 nm─without any electric field─we can drive this ferroelectric phase transition to completely depolarize the crystal, during which a measurable electric current response can be detected. These discoveries signify an important step toward the realization of fully light-controlled ferroelectric memory devices.
Collapse
Affiliation(s)
- Yu-Bo Huang
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jun-Qiu Li
- Chaozhou Three-circle (Group) Co., Ltd., Sanhuan Industrial District, Fengtang, Chaozhou 515646, Guangdong, China
| | - Wen-Huang Xu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Wenwei Zheng
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Xiaopeng Zhang
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kai-Ge Gao
- College of Physical Science and Technology, Yangzhou University, Jiangsu 225009, PR China
| | - Tianchi Ji
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Taisuke Ikeda
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takumi Nakanishi
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shinji Kanegawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Sheng-Qun Su
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|