1
|
Marquez JD, Gitter SR, Gilchrist GC, Hughes RW, Sumerlin BS, Evans AM. Electrochemical Postpolymerization Modification and Deconstruction of Macromolecules. ACS Macro Lett 2024; 13:1345-1354. [PMID: 39319830 DOI: 10.1021/acsmacrolett.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Electrolysis is an emerging approach to polymer postpolymerization modification, deconstruction, and depolymerization. Electrochemical reactions are particularly appealing for macromolecular transformations because of their high selectivity, ability to be externally monitored, and intrinsic scalability. Despite these desirable features and the recent resurgent use of small-molecule electrochemical reactions, the development of macromolecular electrolysis has been limited. Herein, we highlight recent examples of polymer transformations driven by heterogeneous redox chemistry. Throughout our exploration of macromolecular electrolysis, we provide our perspective on opportunities for continued investigation in this nascent field. Specifically, we highlight how targeted reaction development through deeper mechanistic insight will expand the scope of materials that can be (de)constructed with electrochemical methods. As this insight is developed, we expect macromolecular electrolysis to emerge as a high-functioning and complementary tool for macromolecular functionalization and deconstruction.
Collapse
Affiliation(s)
- Joshua D Marquez
- George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Sean R Gitter
- George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Graham C Gilchrist
- George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Rhys W Hughes
- George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S Sumerlin
- George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Austin M Evans
- George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
2
|
Bhatt K, Adili A, Tran AH, Elmallah KM, Ghiviriga I, Seidel D. Photocatalytic Decarboxylative Alkylation of Cyclic Imine-BF 3 Complexes: A Modular Route to Functionalized Azacycles. J Am Chem Soc 2024; 146:26331-26339. [PMID: 39263993 PMCID: PMC11558692 DOI: 10.1021/jacs.4c08754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Alkyl radicals generated via an acridine photocatalyzed decarboxylation reaction of feedstock carboxylic acids engage with a range of cyclic imine-BF3 complexes to provide α-functionalized azacycles in an operationally simple process. A three-component variant of this transformation incorporating [1.1.1]propellane as an additional reaction partner enables the synthesis of valuable bicyclopentane (BCP)-containing azacycles. Reactions exhibit good functional group compatibility, enabling late-stage modification of complex bioactive molecules.
Collapse
Affiliation(s)
- Kamal Bhatt
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Alafate Adili
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Andrew H. Tran
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Kamal M. Elmallah
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Center for NMR Spectroscopy, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
3
|
Ishikawa A, Ouchi M. Alternating Graft Copolymer Carrying PLA Graft Chains at Every Other Unit: Sequence Impacts on Crystallization Behaviors. ACS Macro Lett 2024; 13:1072-1078. [PMID: 39095698 DOI: 10.1021/acsmacrolett.4c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Alternating graft copolymers were precisely synthesized via selective cyclopolymerization of pendant-transformable divinyl monomer (1), post-polymerization modification via aminolysis with alkylamine, and ring-opening polymerization of l-lactide (LLA) from the hydroxy pendant group in alternating sequence. The poly(LLA) (PLLA) graft chain on the alternating copolymer gave a higher crystallization degree on the isothermal treatment than that on the random counterpart likely because of the periodic sequence. The comonomer pendant group from alkylamine in the aminolysis reaction in the alternating sequence affected the crystallization behaviors, and the oligoethylene glycol (OEG) group promoted the crystallization thanks to the larger free volume effect. As for the stereocomplex formation of the racemic mixture of enantiomeric PLLA and poly(d-lactide) (PDLA) chains, the alternating graft copolymer gave a higher degree of stereocomplex crystallization in the mixture with the enantiomer homopolymer than the random analogue.
Collapse
Affiliation(s)
- Aoto Ishikawa
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
4
|
Trachsel L, Stewart KA, Konar D, Hillman JD, Moerschel JA, Sumerlin BS. β-Triketones as Reactive Handles for Polymer Diversification via Dynamic Catalyst-Free Diketoenamine Click Chemistry. J Am Chem Soc 2024; 146:16257-16267. [PMID: 38832509 DOI: 10.1021/jacs.4c04664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The spontaneous condensation of amines with β-triketones (TK), forming β,β'-diketoenamines (DKE) and releasing water as the sole byproduct, exhibits many of the hallmarks of "click" reactions. Such characteristics render TKs as a highly advantageous platform for efficient polymer diversification, even in biological contexts. Leveraging reversible addition-fragmentation chain transfer (RAFT) and photoiniferter polymerization of novel TK-containing vinylic monomers, we synthesized polymers containing pendent TKs with excellent control of molecular weights, even in excess of 106 g mol-1. Under mild, catalyst-free conditions, poly(β-triketone methacrylate) could be modified with a diverse scope of amines containing a plethora of functional groups. The high efficiency of this functionalization approach was further emphasized when grafting-to with poly(ethylene glycol)-amine resulting in bottlebrushes with molecular weights reaching 2.0 × 107 g mol-1. Critically, while the formed DKE linkages are stable under ambient conditions, they undergo catalyst-free, dynamic transamination at elevated temperatures, paving the way for associative covalent adaptable networks. Overall, we introduce pendent triketone moieties into methacrylate and acrylamide polymers, establishing a novel postpolymerization modification technique that facilitates catalyst-free ligation of amines under highly permissible conditions.
Collapse
Affiliation(s)
- Lucca Trachsel
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200 Gainesville , Florida 32611-7200, United States
| | - Kevin A Stewart
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200 Gainesville , Florida 32611-7200, United States
| | - Debabrata Konar
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200 Gainesville , Florida 32611-7200, United States
| | - Jason D Hillman
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200 Gainesville , Florida 32611-7200, United States
| | - Jack A Moerschel
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200 Gainesville , Florida 32611-7200, United States
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200 Gainesville , Florida 32611-7200, United States
| |
Collapse
|
5
|
Trachsel L, Konar D, Hillman JD, Davidson CLG, Sumerlin BS. Diversification of Acrylamide Polymers via Direct Transamidation of Unactivated Tertiary Amides. J Am Chem Soc 2024; 146:1627-1634. [PMID: 38189246 DOI: 10.1021/jacs.3c12174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Postpolymerization modification offers a versatile strategy for synthesizing complex macromolecules, yet modifying acrylamide polymers like poly(N,N-dimethylacrylamide) (PDMA) is notoriously challenging due to the inherent stability and low reactivity of amide bonds. In this study, we unveil a novel approach for the direct transamidation of PDMA, leveraging recent advances in the transamidation of unactivated tertiary amide substrates. By exploiting photoiniferter polymerization, we extended this direct transamidation approach to ultrahigh-molecular-weight (UHMW) PDMA, showcasing the unprecedented postpolymerization modification of synthetic polymers exceeding 106 g/mol. We also designed acrylamide copolymers comprising both the moderately reactive N-methyl-N-phenyl tertiary amides, along with the less reactive, fully alkyl-substituted N,N-dimethyl amides inherent to PDMA. This disparate reactivity enabled a sequential, chemoselective transamidation by initially targeting the more reactive pendant aryl amides with less nucleophilic aromatic amines, and second, transamidating the untouched N,N-dimethyl amide moieties with more nucleophilic aliphatic amines, yielding a uniquely diversified acrylamide copolymer. This work not only broadens the scope of postpolymerization modification strategies by pioneering direct transamidation of unactivated amides but also provides a robust platform for the design of intricate macromolecules, particularly in the realm of UHMW polymers.
Collapse
Affiliation(s)
- Lucca Trachsel
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, United States
| | - Debabrata Konar
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, United States
| | - Jason D Hillman
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, United States
| | - Cullen L G Davidson
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, United States
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
6
|
Gitter SR, Li R, Boydston AJ. Access to Functionalized Materials by Metal-Free Ring-Opening Metathesis Polymerization of Active Esters and Divergent Postpolymerization Modification. ACS Macro Lett 2024:144-150. [PMID: 38226917 DOI: 10.1021/acsmacrolett.3c00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Metal-free ring-opening metathesis polymerization (MF-ROMP) is an emerging polymerization strategy that provides access to ROMP materials by using organic initiators and photoredox catalysts. Unlike metal-mediated ROMP, MF-ROMP is not highly tolerant toward functionalized monomers. Herein, we report that pentafluorophenyl esters are polymerizable under MF-ROMP conditions to produce homopolymers, statistical copolymers, and block copolymers. Amine coupling agents were then used to install a range of functional groups via acyl substitution including alkynes, amino acid derivatives, fluorophores, and redox active moieties. Overall, these findings provide a framework to prepare functionalized ROMP polymers without the risk of metal contamination.
Collapse
Affiliation(s)
- Sean R Gitter
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Ruojia Li
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Andrew J Boydston
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
- Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|