1
|
Pirzada BM, AlMarzooqi F, Qurashi A. Ultrasonic treatment-assisted reductive deposition of Cu and Pd nanoparticles on ultrathin 2D Bi 2S 3 nanosheets for selective electrochemical reduction of CO 2 into C 2 compounds. ULTRASONICS SONOCHEMISTRY 2024; 112:107189. [PMID: 39700885 DOI: 10.1016/j.ultsonch.2024.107189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
In this work, we have ultrasonically deposited Cu and Pd nanoparticles on Bi2S3 nanoparticles, prepared using an ultrasonication assisted hydrothermal method. We implemented intense ultrasonic waves bearing frequency of 20 kHz and power of 750 W at the acoustic wavelength of 100 mm to reduce Cu and Pd nanoparticles on the Bi2S3 surface. The XRD confirmed the formation of highly crystalline Bi2S3 nanoparticles with a pure orthorhombic phase and the deposition of copper (Cuo) and palladium (Pdo) nanoparticles was indicated by the strengthening and broadening of the peaks. XPS also confirmed the formation of Cuo and Pdo nanoparticles on Bi2S3. The Transmission Electron Microscopy (TEM) also exhibited the deposition of Cu and Pd nanoparticles on the Bi2S3 nanosheets which was further confirmed using high resolution TEM analysis. The electrochemical CO2 reduction by Cu-Pd/Bi2S3 electrocatalyst using Cu foam as the conducting support led to the formation of acetaldehyde and ethylene as the major products. The rate of formation of ethylene was found to be 488.5 μ mol g-1h-1 at an applied potential of -0.6 V (vs. RHE), with the best Faradaic efficiency of 57.09 % at -0.4 V (vs. RHE). Among the liquid phase products, acetaldehyde was the major product showing the maximum Faradaic efficiency of 6.473 % at -0.2 V (vs. RHE), with a total formation rate of 64.27 μ mol g-1h-1. The results revealed that the Cu-Pd/Bi2S3 electrocatalyst was more selective to C2 products while the pure Bi2S3 nanoparticles majorly produced C1 compounds.
Collapse
Affiliation(s)
- Bilal Masood Pirzada
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates 127788; Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Faisal AlMarzooqi
- Department of Chemical & Petroleum Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates 127788.
| | - Ahsanulhaq Qurashi
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates 127788; Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
| |
Collapse
|
2
|
Zou H, Cheng D, Tang C, Luo W, Xiong H, Dong H, Li F, Song T, Shu S, Dai H, Cui Z, Lu Z, Duan L. Electronic perturbation of Cu nanowire surfaces with functionalized graphdiyne for enhanced CO 2 reduction reaction. Natl Sci Rev 2024; 11:nwae253. [PMID: 39554235 PMCID: PMC11562832 DOI: 10.1093/nsr/nwae253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/21/2024] [Accepted: 07/09/2024] [Indexed: 11/19/2024] Open
Abstract
Electronic perturbation of the surfaces of Cu catalysts is crucial for optimizing electrochemical CO2 reduction activity, yet still poses great challenges. Herein, nanostructured Cu nanowires (NW) with fine-tuned surface electronic structure are achieved via surface encapsulation with electron-withdrawing (-F) and -donating (-Me) group-functionalized graphdiynes (R-GDY, R = -F and -Me) and the resulting catalysts, denoted as R-GDY/Cu NW, display distinct CO2 reduction performances. In situ electrochemical spectroscopy revealed that the *CO (a key intermediate of the CO2 reduction reaction) binding affinity and consequent *CO coverage positively correlate with the Cu surface oxidation state, leading to favorable C-C coupling on F-GDY/Cu NW over Me-GDY/Cu NW. Electrochemical measurements corroborate the favorable C2H4 production with an optimum C2+ selectivity of 73.15% ± 2.5% observed for F-GDY/Cu NW, while the predominant CH4 production is favored by Me-GDY/Cu NW. Furthermore, by leveraging the *Cu-hydroxyl (OH)/*CO ratio as a descriptor, mechanistic investigation reveals that the protonation of distinct adsorbed *CO facilitated by *Cu-OH is crucial for the selective generation of C2H4 and CH4 on F-GDY/Cu NW and Me-GDY/Cu NW, respectively.
Collapse
Affiliation(s)
- Haiyuan Zou
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles 90095, USA
| | - Dongfang Cheng
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles 90095, USA
| | - Chao Tang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wen Luo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huatian Xiong
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
| | - Hongliang Dong
- Center for High-Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Fan Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tao Song
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siyan Shu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hao Dai
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ziang Cui
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhouguang Lu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lele Duan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd, Hangzhou 310000, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
3
|
Kong Y, Yang H, Jia X, Wan D, Zhang Y, Hu Q, He C. Constructing Favorable Microenvironment on Copper Grain Boundaries for CO 2 Electro-conversion to Multicarbon Products. NANO LETTERS 2024. [PMID: 39011983 DOI: 10.1021/acs.nanolett.4c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The electrochemical CO2 reduction reaction (eCO2RR) to multicarbon chemicals provides a promising avenue for storing renewable energy. Herein, we synthesized small Cu nanoparticles featuring enriched tiny grain boundaries (RGBs-Cu) through spatial confinement and in situ electroreduction. In-situ spectroscopy and theoretical calculations demonstrate that small-sized Cu grain boundaries significantly enhance the adsorption of the *CO intermediate, owing to the presence of abundant low-coordinated and disordered atoms. Furthermore, these grain boundaries, generated in situ under high current conditions, exhibit excellent stability during the eCO2RR process, thereby creating a stable *CO-rich microenvironment. This high local *CO concentration around the catalyst surface can reduce the energy barrier for C-C coupling and significantly increase the Faradaic efficiency (FE) for multicarbon products across both neutral and alkaline electrolytes. Specifically, the developed RGBs-Cu electrocatalyst achieved a peak FE of 77.3% for multicarbon products and maintained more than 134 h stability at a constant current density of -500 mA cm-2.
Collapse
Affiliation(s)
- Yan Kong
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xinmei Jia
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Da Wan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Yilei Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| |
Collapse
|
4
|
Lu H, Wang J, Li G, Liao B, Zhang X, Hu X, Yu N, Chen L. Tailoring Cu-Based Electrocatalysts for Enhanced Electrochemical CO 2 Reduction to Alcohols: Structure-Selectivity Relationship. Inorg Chem 2024; 63:11935-11943. [PMID: 38869984 DOI: 10.1021/acs.inorgchem.3c04239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The use of CO2 as a feedstock for the production of carbon-based fuels and value-added chemicals offers a promising route toward carbon neutrality. In this study, two Cu-based electrocatalysts, namely, Cu24/N-C and Cu2/N-C, are successfully prepared by thermal treatment of Cu24 metal-organic polyhedron-loaded zeolitic imidazolate framework-8 (ZIF-8) nanocrystals (Cu24/ZIF-8) and Cu2 dinuclear compound-loaded ZIF-8 nanocrystals (Cu2/ZIF-8), respectively. Extensive structural and compositional analyses were conducted to confirm the formation of Cu nanocluster-loaded N-doped porous carbon supports in both Cu24/N-C and Cu2/N-C and Cu nanoparticles encapsulated by graphitic carbons in Cu2/N-C as well. These two Cu-based electrocatalysts exhibited different behaviors in the electrochemical CO2 reduction reaction (CO2RR). The Cu24/N-C electrocatalyst showed high selectivity for CO production, while Cu2/N-C showed a preference for alcohol generation. The excellent stability of Cu2/N-C over a 30 h continuous electrochemical reduction further highlights its potential for practical applications. The difference in electrocatalytic performance observed in the two catalysts for CO2RR was attributed to distinct catalytic sites associated with Cu nanoclusters and nanoparticles. This research reveals the significance of their structures and compositions for the development of highly selective electrocatalysts for CO2 reduction.
Collapse
Affiliation(s)
- Haiyue Lu
- Department of Pharmaceutical Engineering, Bengbu Medical University, Bengbu 233030, China
| | - Jinfeng Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Gen Li
- Department of Pharmaceutical Engineering, Bengbu Medical University, Bengbu 233030, China
| | - Baicheng Liao
- Department of Pharmaceutical Engineering, Bengbu Medical University, Bengbu 233030, China
| | - Xiuli Zhang
- Department of Pharmaceutical Engineering, Bengbu Medical University, Bengbu 233030, China
| | - Xuefu Hu
- Department of Pharmaceutical Engineering, Bengbu Medical University, Bengbu 233030, China
| | - Nan Yu
- College of Chemistry and Materials Science, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu 241002, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Liyong Chen
- Department of Pharmaceutical Engineering, Bengbu Medical University, Bengbu 233030, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Bengbu 233030, China
| |
Collapse
|
5
|
Liang Q, Liu S, Sun W, Sun H, Wei L, Li Z, Chen L, Tian Z, Chen Q, Su J. Enhancing Electrocatalytic CO 2-to-CO Conversion by Weakening CO Binding through Nitrogen Integration in the Metallic Fe Catalyst. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28473-28481. [PMID: 38785067 DOI: 10.1021/acsami.4c02915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Metallic iron (Fe) typically demonstrates the unfavorable catalytic activity for the CO2 reduction reaction (CO2RR), mainly attributed to the excessively strong binding of CO products on Fe sites. Toward this end, we employed an effective approach involving electronic structure modulation through nitrogen (N) integration to enhance the performance of the CO2RR. Here, an efficient catalyst has been developed, composed of N-doped metallic iron (Fe) nanoparticles encapsulated in a porous N-doped carbon framework. Notably, this N-integrated Fe catalyst displays significantly enhanced performance in the electrocatalytic reduction of CO2, yielding the highest CO Faradaic efficiency of 97.5% with a current density of 6.68 mA cm-2 at -0.7 V versus the reversible hydrogen electrode. The theoretical calculations, combined with the in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy study, reveal that N integration modulates the electron density around Fe, resulting in the weakening of the binding strength between the Fe active sites and *CO intermediates, consequently promoting the desorption of CO and the overall CO2RR process.
Collapse
Affiliation(s)
- Qiyang Liang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, China
| | - Shilong Liu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, China
| | - Wenli Sun
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, China
| | - Hongfei Sun
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, China
| | - Lingzhi Wei
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, China
| | - Zonglin Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, China
| | - Liang Chen
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Ziqi Tian
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Qianwang Chen
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science & Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jianwei Su
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, China
| |
Collapse
|
6
|
Fu Z, Ouyang Y, Wu M, Ling C, Wang J. Mechanism of surface oxygen-containing species promoted electrocatalytic CO 2 reduction. Sci Bull (Beijing) 2024; 69:1410-1417. [PMID: 38480022 DOI: 10.1016/j.scib.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/13/2024] [Accepted: 02/29/2024] [Indexed: 05/28/2024]
Abstract
Oxygen-containing species have been demonstrated to play a key role in facilitating electrocatalytic CO2 reduction (CO2RR), particularly in enhancing the selectivity towards multi-carbon (C2+) products. However, the underlying promotion mechanism is still under debate, which greatly limits the rational optimization of the catalytic performance of CO2RR. Herein, taking CO2 and O2 co-electrolysis over Cu as the prototype, we successfully clarified how O2 boosts CO2RR from a new perspective by employing comprehensive theoretical simulations. Our results demonstrated that O2 in feed gas can be rapidly reduced into *OH, leading to the partial oxidation of Cu surface under reduction conditions. Surface *OH accelerates the formation of quasi-specifically adsorbed K+ due to the electrostatic interaction between *OH and K+ ions, which significantly increases the concentration of K+ near the Cu surface. These quasi-specifically adsorbed K+ ions can not only lower the C-C coupling barriers but also promote the hydrogenation of CO2 to improve the CO yield rate, which are responsible for the remarkably enhanced efficiency of C2+ products. During the whole process, O2 co-electrolysis plays an indispensable role in stabilizing surface *OH. This mechanism can be also adopted to understand the effect of high pH of electrolyte and residual O in oxide-derived Cu (OD-Cu) on the catalytic efficiency towards C2+ products. Therefore, our work provides new insights into strategies for improving C2+ products on the Cu-based catalysts, i.e., maintaining partial oxidation of surface under reduction conditions.
Collapse
Affiliation(s)
- Zhanzhao Fu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 21189, China
| | - Yixin Ouyang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 21189, China
| | - Mingliang Wu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 21189, China
| | - Chongyi Ling
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 21189, China.
| | - Jinlan Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 21189, China.
| |
Collapse
|
7
|
Wu Y, Xu K, Tian J, Shang L, Tan KB, Sun H, Sun K, Rao X, Zhan G. Construction of Ni/In 2O 3 Integrated Nanocatalysts Based on MIL-68(In) Precursors for Efficient CO 2 Hydrogenation to Methanol. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16186-16202. [PMID: 38516696 DOI: 10.1021/acsami.3c19311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The efficient and economic conversion of CO2 and renewable H2 into methanol has received intensive attention due to growing concern for anthropogenic CO2 emissions, particularly from fossil fuel combustion. Herein, we have developed a novel method for preparing Ni/In2O3 nanocatalysts by using porous MIL-68(In) and nickel(II) acetylacetonate (Ni(acac)2) as the dual precursors of In2O3 and Ni components, respectively. Combined with in-depth characterization analysis, it was revealed that the utilization of MIL-68(In) as precursors favored the good distribution of Ni nanoparticles (∼6.2 nm) on the porous In2O3 support and inhibited the metal sintering at high temperatures. The varied catalyst fabrication parameters were explored, indicating that the designed Ni/In2O3 catalyst (Ni content of 5 wt %) exhibited better catalytic performance than the compared catalyst prepared using In(OH)3 as a precursor of In2O3. The obtained Ni/In2O3 catalyst also showed excellent durability in long-term tests (120 h). However, a high Ni loading (31 wt %) would result in the formation of the Ni-In alloy phase during the CO2 hydrogenation which favored CO formation with selectivity as high as 69%. This phenomenon is more obvious if Ni and In2O3 had a strong interaction, depending on the catalyst fabrication methods. In addition, with the aid of in situ diffuse reflectance infrared Fourier transform spectroscopy and density functional theory (DFT) calculations, the Ni/In2O3 catalyst predominantly follows the formate pathway in the CO2 hydrogenation to methanol, with HCOO* and *H3CO as the major intermediates, while the small size of Ni particles is beneficial to the formation of formate species based on DFT calculation. This study suggests that the Ni/In2O3 nanocatalyst fabricated using metal-organic frameworks as precursors can effectively promote CO2 thermal hydrogenation to methanol.
Collapse
Affiliation(s)
- Yiling Wu
- Academy of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
| | - Kaiji Xu
- Academy of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
| | - Jian Tian
- Academy of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
| | - Longmei Shang
- Academy of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
| | - Kok Bing Tan
- Academy of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
| | - Hao Sun
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin Five Village, Nanjing 210042, Jiangsu, P. R. China
| | - Kang Sun
- Academy of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin Five Village, Nanjing 210042, Jiangsu, P. R. China
| | - Xiaoping Rao
- Academy of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
| | - Guowu Zhan
- Academy of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
| |
Collapse
|
8
|
Sarkar M, Chakrabortty P, Sengupta M, Kothari AC, Islam MS, Islam SM. Light-Mediated Sustainable Conversion of Carbon Dioxide to Valuable Methanol by Highly Efficient Covalent Organic Framework g-C 3N 4 Composites as a Reusable Photocatalyst. Ind Eng Chem Res 2024; 63:5573-5590. [DOI: 10.1021/acs.iecr.3c03572] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Affiliation(s)
- Mainak Sarkar
- Department of Chemistry, University of Kalyani, Kalyani, Nadia 741235, W.B., India
| | - Pekham Chakrabortty
- Department of Chemistry, University of Kalyani, Kalyani, Nadia 741235, W.B., India
| | - Manideepa Sengupta
- Department of Chemistry, University of Kalyani, Kalyani, Nadia 741235, W.B., India
| | - Anil Chandra Kothari
- Light Stock Processing Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, Uttarakhand India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sk. Manirul Islam
- Department of Chemistry, University of Kalyani, Kalyani, Nadia 741235, W.B., India
| |
Collapse
|
9
|
Li C, Yamauchi Y. Surface Curvature Matters in Electrochemical Reactions. ACS CENTRAL SCIENCE 2024; 10:16-18. [PMID: 38292615 PMCID: PMC10823506 DOI: 10.1021/acscentsci.3c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Affiliation(s)
- Cuiling Li
- CAS Key Laboratory
of Bio-Inspired Materials and Interface Science, Technical Institute
of Physics and Chemistry, Chinese Academy
of Sciences, Beijing 100190, China
| | - Yusuke Yamauchi
- Australian
Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia
- Department of Materials Process
Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|