1
|
Niu Z, Zhao Y, Zhang Q, Zhao Z, Ge D, Zhou J, Xu Y. Suppression of cracking in drying colloidal suspensions with chain-like particles. J Chem Phys 2024; 160:164901. [PMID: 38656445 DOI: 10.1063/5.0203112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
The prevention of drying-induced cracking is crucial in maintaining the mechanical integrity and functionality of colloidal deposits and coatings. Despite exploring various approaches, controlling drying-induced cracking remains a subject of great scientific interest and practical importance. By introducing chain-like particles composed of the same material and with comparable size into commonly used colloidal suspensions of spherical silica nanoparticles, we can significantly reduce the cracks formed in dried particle deposits and achieve a fivefold increase in the critical cracking thickness of colloidal silica coatings. The mechanism underlying the crack suppression is attributed to the increased porosity and pore sizes in dried particle deposits containing chain-like particle, which essentially leads to reduction in internal stresses developed during the drying process. Meanwhile, the nanoindentation measurements reveal that colloidal deposits with chain-like particles exhibit a smaller reduction in hardness compared to those reported using other cracking suppression approaches. This work demonstrates a promising technique for preparing colloidal coatings with enhanced crack resistance while maintaining desirable mechanical properties.
Collapse
Affiliation(s)
- Zhaoxia Niu
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Yiping Zhao
- Institute for Engineering and Technology, Xinxing Cathay International Group, Shanghai 201403, China
| | - Qiuting Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Zhiyuan Zhao
- Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, Zhejiang 325000, China
| | - Dengteng Ge
- Institute for Engineering and Technology, Xinxing Cathay International Group, Shanghai 201403, China
| | - Jiajia Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Ye Xu
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| |
Collapse
|
2
|
Abe K, Atkinson PS, Cheung CS, Liang H, Goehring L, Inasawa S. Dynamics of drying colloidal suspensions, measured by optical coherence tomography. SOFT MATTER 2024; 20:2381-2393. [PMID: 38376422 DOI: 10.1039/d3sm01560b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Colloidal suspensions are the basis of a wide variety of coatings, prepared as liquids and then dried into solid films. The processes at play during film formation, however, are difficult to observe directly. Here, we demonstrate that optical coherence tomography (OCT) can provide fast, non-contact, precise profiling of the dynamics within a drying suspension. Using a scanning Michelson interferometer with a broadband laser source, OCT creates cross-sectional images of the optical stratigraphy of a sample. With this method, we observed the drying of colloidal silica in Hele-Shaw cells with 10 μm transverse and 1.8 μm depth resolution, over a 1 cm scan line and a 15 s sampling period. The resulting images were calibrated to show how the concentration of colloidal particles varied with position and drying time. This gives access to important transport properties, for example, of how collective diffusion depends on particle concentration. Looking at early-time behaviours, we also show how a drying front initially develops, and how the induction time before the appearance of a solid film depends on the balance of diffusion and evaporation-driven motion. Pairing these results with optical microscopy and particle tracking techniques, we find that film formation can be significantly delayed by any density-driven circulation occurring near the drying front.
Collapse
Affiliation(s)
- Kohei Abe
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo, 184-8588, Japan
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tan-cha, Onna, Kunigami, Okinawa, 904-0497, Japan
| | - Patrick Saul Atkinson
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Chi Shing Cheung
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Haida Liang
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Lucas Goehring
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Susumu Inasawa
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo, 184-8588, Japan
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, Japan.
| |
Collapse
|
3
|
Pingulkar H, Maréchal S, Salmon JB. Directional drying of a colloidal dispersion: quantitative description with water potential measurements using water clusters in a poly(dimethylsiloxane) microfluidic chip. SOFT MATTER 2024; 20:1079-1088. [PMID: 38214172 DOI: 10.1039/d3sm01512b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
We have developed a poly(dimethylsiloxane) (PDMS) microfluidic chip to study the directional drying of a colloidal dispersion confined in a channel. Our measurements on a dispersion of silica nanoparticles once again revealed the phenomenology commonly observed for such systems: the formation of a porous solid with linear growth in the channel at short times, slowing down at longer times as the evaporation rate decreases. The growth of the solid is also accompanied by mechanical stresses that are released by the delamination of the solid from the channel walls and the formation of cracks. In addition to these observations, we report original measurements using hydrophilic filler in the PDMS formulation used (Sylgard-184). When the PDMS matrix is in contact with water, water molecules pool around these hydrophilic sites, resulting in the formation of microscopic water clusters whose size depends on the water potential ψ. In our work, we have used these water clusters to estimate the water potential profile in the channel as the porous solid grows. Using a transport model that also takes into account solid delamination in the channel, we then linked these water potential measurements to the hydraulic permeability of the porous solid. These measurements finally enabled us to show that the slowdown in the evaporation rate is due to the invasion of the porous solid by air/water nanomenisci at a critical capillary pressure ψcap.
Collapse
Affiliation(s)
- Hrishikesh Pingulkar
- CNRS, Solvay, LOF, UMR 5258, Université de Bordeaux, 178 av. Schweitzer, Pessac, 33600, France.
| | - Sonia Maréchal
- CNRS, Solvay, LOF, UMR 5258, Université de Bordeaux, 178 av. Schweitzer, Pessac, 33600, France.
| | - Jean-Baptiste Salmon
- CNRS, Solvay, LOF, UMR 5258, Université de Bordeaux, 178 av. Schweitzer, Pessac, 33600, France.
| |
Collapse
|