1
|
Li X, Wang X, Chen G, Tian B. Application trends of hydrogen-generating nanomaterials for the treatment of ROS-related diseases. Biomater Sci 2025. [PMID: 39807026 DOI: 10.1039/d4bm01450b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Reactive oxygen species (ROS) play essential roles in both physiological and pathological processes. Under physiological conditions, appropriate amounts of ROS play an important role in signaling and regulation in cells. However, too much ROS can lead to many health problems, including inflammation, cancer, delayed wound healing, neurodegenerative diseases (such as Parkinson's disease and Alzheimer's disease), and autoimmune diseases, and oxidative stress from excess ROS is also one of the most critical factors in the pathogenesis of cardiovascular and metabolic diseases such as atherosclerosis. Hydrogen gas effectively removes ROS from the body due to its good antioxidant properties, and hydrogen therapy has become a promising gas therapy strategy due to its inherent safety and stability. The combination of nanomaterials can achieve targeted delivery and effective accumulation of hydrogen, and has some ameliorating effects on diseases. Herein, we summarize the use of hydrogen-producing nanomaterials for the treatment of ROS-related diseases and talk about the prospects for the treatment of other ROS-induced disease models, such as acute kidney injury.
Collapse
Affiliation(s)
- Xiaobing Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Xuezhu Wang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Bo Tian
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
曾 佳, 黄 颂, 杜 方, 曹 素, 高 杨, 邱 逦, 唐 远. [Advances in the Application of Nanozymes in Joint Disease Therapy]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:800-806. [PMID: 39170029 PMCID: PMC11334270 DOI: 10.12182/20240760105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Indexed: 08/23/2024]
Abstract
Nanozymes are nanoscale materials with enzyme-mimicking catalytic properties. Nanozymes can mimic the mechanism of natural enzyme molecules. By means of advanced chemical synthesis technology, the size, shape, and surface characteristics of nanozymes can be accurately regulated, and their catalytic properties can be customized according to the specific need. Nanozymes can mimic the function of natural enzymes, including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx), to scavenge reactive oxygen species (ROS). Reported findings have shown that nanozymes have the advantages of excellent stability, low cost, and adjustable catalytic activity, thereby showing great potential and broad prospects in the application of disease treatment. Herein, we reviewed the advances in the application of nanozymes in the treatment of joint diseases. The common clinical manifestations of joint diseases include joint pain, swelling, stiffness, and limited mobility. In severe cases, joint diseases may lead to joint destruction, deformity, and functional damage, entailing crippling socioeconomic burdens. ROS is a product of oxidative stress. Increased ROS in the joints can induce macrophage M1 type polarization, which in turn induces and aggravates arthritis. Therefore, the key to the treatment of joint diseases lies in ROS scavenging and increasing oxygen (O2) content. Nanozymes have demonstrated promising application potential in the treatment of joint diseases, including rheumatoid arthritis, osteoarthritis, and gouty arthritis. However, how to ensure their biosafety, reduce the toxicity, and increase enzyme activity remains the main challenge in current research. Precise control of the chemical composition, size, shape, and surface modification of nanomaterials is the main development direction for the future.
Collapse
Affiliation(s)
- 佳 曾
- 成都市双流区第一人民医院-四川大学华西空港医院 超声医学科 (成都 610200)Department of Ultrasound, The First People's Hospital of Shuangliu District, Chengdu & West China (Airport) Hospital, Sichuan University, Chengdu 610200, China
| | - 颂雅 黄
- 成都市双流区第一人民医院-四川大学华西空港医院 超声医学科 (成都 610200)Department of Ultrasound, The First People's Hospital of Shuangliu District, Chengdu & West China (Airport) Hospital, Sichuan University, Chengdu 610200, China
| | - 方雪 杜
- 成都市双流区第一人民医院-四川大学华西空港医院 超声医学科 (成都 610200)Department of Ultrasound, The First People's Hospital of Shuangliu District, Chengdu & West China (Airport) Hospital, Sichuan University, Chengdu 610200, China
| | - 素娇 曹
- 成都市双流区第一人民医院-四川大学华西空港医院 超声医学科 (成都 610200)Department of Ultrasound, The First People's Hospital of Shuangliu District, Chengdu & West China (Airport) Hospital, Sichuan University, Chengdu 610200, China
| | - 杨 高
- 成都市双流区第一人民医院-四川大学华西空港医院 超声医学科 (成都 610200)Department of Ultrasound, The First People's Hospital of Shuangliu District, Chengdu & West China (Airport) Hospital, Sichuan University, Chengdu 610200, China
| | - 逦 邱
- 成都市双流区第一人民医院-四川大学华西空港医院 超声医学科 (成都 610200)Department of Ultrasound, The First People's Hospital of Shuangliu District, Chengdu & West China (Airport) Hospital, Sichuan University, Chengdu 610200, China
| | - 远姣 唐
- 成都市双流区第一人民医院-四川大学华西空港医院 超声医学科 (成都 610200)Department of Ultrasound, The First People's Hospital of Shuangliu District, Chengdu & West China (Airport) Hospital, Sichuan University, Chengdu 610200, China
| |
Collapse
|
3
|
Pandey V, Pandey T. Understanding the bio-crystallization: An insight to therapeutic relevance. Biophys Chem 2024; 308:107216. [PMID: 38479205 DOI: 10.1016/j.bpc.2024.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/25/2024]
Abstract
In the realm of biomedical engineering and materials science, the synthesis of biomaterials plays a pivotal role in advancing therapeutic strategies for regeneration of tissues. The deliberate control of crystallization processes in biomaterial synthesis has emerged as a key avenue for tailoring the properties of these materials, enabling the design of innovative solutions for a wide array of medical applications. This review delves into the interplay between controlled crystallization and biomaterial synthesis, exploring its multifaceted applications in the therapeutic domains. The investigation encompasses a wide spectrum of matrices, ranging from small molecules to large biomolecules, highlighting their unique contributions in modulating crystallization processes. Furthermore, the review critically assesses the analytical techniques and methodologies employed to probe and characterize the depths of crystallization dynamics. Advanced imaging, spectroscopic, and computational tools are discussed in the context of unraveling the intricate mechanisms governing nucleation and crystallization processes within the organic matrix. Finally we delve in the applications of such advance material in therapeutics of hard and soft tissues.
Collapse
Affiliation(s)
- Vivek Pandey
- Department of Chemistry, School for Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Tejasvi Pandey
- Department of Forensic Sciences, School for Bioengineering and Biosciences Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
4
|
Zhang DG, Pan YJ, Chen BQ, Lu XC, Xu QX, Wang P, Kankala RK, Jiang NN, Wang SB, Chen AZ. Protein-guided biomimetic nanomaterials: a versatile theranostic nanoplatform for biomedical applications. NANOSCALE 2024; 16:1633-1649. [PMID: 38168813 DOI: 10.1039/d3nr05495k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Over the years, bioinspired mineralization-based approaches have been applied to synthesize multifunctional organic-inorganic nanocomposites. These nanocomposites can address the growing demands of modern biomedical applications. Proteins, serving as vital biological templates, play a pivotal role in the nucleation and growth processes of various organic-inorganic nanocomposites. Protein-mineralized nanomaterials (PMNMs) have attracted significant interest from researchers due to their facile and convenient preparation, strong physiological activity, stability, impressive biocompatibility, and biodegradability. Nevertheless, few comprehensive reviews have expounded on the progress of these nanomaterials in biomedicine. This article systematically reviews the principles and strategies for constructing nanomaterials using protein-directed biomineralization and biomimetic mineralization techniques. Subsequently, we focus on their recent applications in the biomedical field, encompassing areas such as bioimaging, as well as anti-tumor, anti-bacterial, and anti-inflammatory therapies. Furthermore, we discuss the challenges encountered in practical applications of these materials and explore their potential in future applications. This review aspired to catalyze the continued development of these bioinspired nanomaterials in drug development and clinical diagnosis, ultimately contributing to the fields of precision medicine and translational medicine.
Collapse
Affiliation(s)
- Da-Gui Zhang
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Yu-Jing Pan
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Biao-Qi Chen
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Xiao-Chang Lu
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Qin-Xi Xu
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Pei Wang
- Jiangxi Provincial Key Laboratory of Oral Biomedicine, Jiangxi Province Clinical Research Center for Oral Diseases, School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Ranjith Kumar Kankala
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Ni-Na Jiang
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Shi-Bin Wang
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Ai-Zheng Chen
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|