1
|
Czarnowski M, Słowińska M, Sawieljew M, Wnorowska U, Daniluk T, Król G, Karasiński M, Okła S, Savage PB, Piktel E, Bucki R. Efficacy of Ceragenins in Controlling the Growth of Oral Microorganisms: Implications for Oral Hygiene Management. Pharmaceuticals (Basel) 2024; 17:204. [PMID: 38399419 PMCID: PMC10893225 DOI: 10.3390/ph17020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Ensuring proper dental hygiene is of paramount importance for individuals' general well-being, particularly for patients receiving medical care. There is a prevailing utilization of conventional oral hygiene items, including toothbrushes and mouthwashes, which have gained widespread acceptance; nevertheless, their limitations encourage investigating novel options in this domain. Our study indicates that ceragenins (CSAs) being lipid analogs of host defense peptides, well-recognized for their wide-ranging antimicrobial properties, may be a potentially efficacious means to augment oral hygiene in hospitalized individuals. We demonstrate that ceragenins CSA-13, CSA-44, and CSA-131 as well as undescribed to date CSA-255 display potent antimicrobial activities against isolates of fungi, aerobic, and anaerobic bacteria from Candida, Streptococcus, Enterococcus, and Bacteroides species, which are well-recognized representatives of microbes found in the oral cavity. These effects were further confirmed against mono- and dual-species fungal and bacterial biofilms. While the ceragenins showed similar or slightly diminished efficacy compared to commercially available mouthwashes, they demonstrated a highly favorable toxicity profile toward host cells, that may translate into better maintenance of host mucosal membrane stability. This suggests that incorporating ceragenins into oral hygiene products could be a valuable strategy for reducing the risk of both oral cavity-localized and secondary systemic infections and for improving the overall health outcomes of individuals receiving medical treatment.
Collapse
Affiliation(s)
- Michał Czarnowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| | - Monika Słowińska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| | - Mariusz Sawieljew
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| | - Urszula Wnorowska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| | - Tamara Daniluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| | - Grzegorz Król
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland; (G.K.); (S.O.)
| | - Maciej Karasiński
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| | - Sławomir Okła
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland; (G.K.); (S.O.)
- Holy Cross Cancer Center, 25-734 Kielce, Poland
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA;
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Białystok, 15-222 Białystok, Poland;
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| |
Collapse
|