1
|
Ferrer S, Ruiz-Pernía JJ, Tuñón I, Moliner V, Garcia-Viloca M, González-Lafont A, Lluch JM. A QM/MM Exploration of the Potential Energy Surface of Pyruvate to Lactate Transformation Catalyzed by LDH. Improving the Accuracy of Semiempirical Descriptions. J Chem Theory Comput 2015; 1:750-61. [PMID: 26641696 DOI: 10.1021/ct050016l] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a QM/MM study of the potential energy surface of the pyruvate to lactate transformation catalyzed by L-lactate dehydrogenase. The transformation involves a hydride and a proton transfer which are followed by means of the corresponding antisymmetric combination of the distances from the hydrogen atom to the donor and the acceptor atoms. To discriminate among the possible reaction mechanisms we have considered different improvements of the AM1/MM description: reoptimization of the van der Waals parameters and inclusion of corrections to the QM energy associated with both transfer coordinates. The QM subsystem has been also enlarged to include charge-transfer effects from the substrate to some specific residues. In our best treatment, the transformation is described as a concerted process through a single transition structure in which the hydride transfer is more advanced than the proton transfer. From the methodological point of view, the correction schemes tested here improve the quality of the semiempirical potential energy surface although they also present deficiencies attributed to consideration of the proton and hydride transfer corrections as separable ones.
Collapse
Affiliation(s)
- Silvia Ferrer
- Departament de Química Física/IcMol, Universitat de València, València, Spain, Departament de Ciències Experimentals, Universitat Jaume I, Castelló, Spain, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Spain, and Departament de Química, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Javier Ruiz-Pernía
- Departament de Química Física/IcMol, Universitat de València, València, Spain, Departament de Ciències Experimentals, Universitat Jaume I, Castelló, Spain, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Spain, and Departament de Química, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Iñaki Tuñón
- Departament de Química Física/IcMol, Universitat de València, València, Spain, Departament de Ciències Experimentals, Universitat Jaume I, Castelló, Spain, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Spain, and Departament de Química, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicente Moliner
- Departament de Química Física/IcMol, Universitat de València, València, Spain, Departament de Ciències Experimentals, Universitat Jaume I, Castelló, Spain, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Spain, and Departament de Química, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mireia Garcia-Viloca
- Departament de Química Física/IcMol, Universitat de València, València, Spain, Departament de Ciències Experimentals, Universitat Jaume I, Castelló, Spain, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Spain, and Departament de Química, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Angels González-Lafont
- Departament de Química Física/IcMol, Universitat de València, València, Spain, Departament de Ciències Experimentals, Universitat Jaume I, Castelló, Spain, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Spain, and Departament de Química, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José M Lluch
- Departament de Química Física/IcMol, Universitat de València, València, Spain, Departament de Ciències Experimentals, Universitat Jaume I, Castelló, Spain, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Spain, and Departament de Química, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Wang W, Donini O, Reyes CM, Kollman PA. Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 30:211-43. [PMID: 11340059 DOI: 10.1146/annurev.biophys.30.1.211] [Citation(s) in RCA: 392] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Computer modeling has been developed and widely applied in studying molecules of biological interest. The force field is the cornerstone of computer simulations, and many force fields have been developed and successfully applied in these simulations. Two interesting areas are (a) studying enzyme catalytic mechanisms using a combination of quantum mechanics and molecular mechanics, and (b) studying macromolecular dynamics and interactions using molecular dynamics (MD) and free energy (FE) calculation methods. Enzyme catalysis involves forming and breaking of covalent bonds and requires the use of quantum mechanics. Noncovalent interactions appear ubiquitously in biology, but here we confine ourselves to review only noncovalent interactions between protein and protein, protein and ligand, and protein and nucleic acids.
Collapse
Affiliation(s)
- W Wang
- Graduate Group in Biophysics, University of California San Francisco, California 94143, USA.
| | | | | | | |
Collapse
|
6
|
Castillo R, Andrés J, Moliner V. Catalytic Mechanism of Dihydrofolate Reductase Enzyme. A Combined Quantum-Mechanical/Molecular-Mechanical Characterization of Transition State Structure for the Hydride Transfer Step. J Am Chem Soc 1999. [DOI: 10.1021/ja9843019] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R. Castillo
- Contribution from the Departament de Ciències Experimentals, Universitat Jaume I, Castelló, Spain
| | - J. Andrés
- Contribution from the Departament de Ciències Experimentals, Universitat Jaume I, Castelló, Spain
| | - V. Moliner
- Contribution from the Departament de Ciències Experimentals, Universitat Jaume I, Castelló, Spain
| |
Collapse
|
8
|
Ranganathan S, Gready JE. Hybrid Quantum and Molecular Mechanical (QM/MM) Studies on the Pyruvate to l-Lactate Interconversion in l-Lactate Dehydrogenase. J Phys Chem B 1997. [DOI: 10.1021/jp971051u] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Shoba Ranganathan
- Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, Australian National University, PO Box 334, Canberra ACT 2601, Australia
| | - Jill E. Gready
- Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, Australian National University, PO Box 334, Canberra ACT 2601, Australia
| |
Collapse
|
9
|
Hurley MM, Hammes-Schiffer S. Development of a Potential Surface for Simulation of Proton and Hydride Transfer Reactions in Solution: Application to NADH Hydride Transfer. J Phys Chem A 1997. [DOI: 10.1021/jp970269d] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. M. Hurley
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Sharon Hammes-Schiffer
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
10
|
Cunningham MA, Ho LL, Nguyen DT, Gillilan RE, Bash PA. Simulation of the enzyme reaction mechanism of malate dehydrogenase. Biochemistry 1997; 36:4800-16. [PMID: 9125501 DOI: 10.1021/bi962734n] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A hybrid numerical method, which employs molecular mechanics to describe the bulk of the solvent-protein matrix and a semiempirical quantum-mechanical treatment for atoms near the reactive site, was utilized to simulate the minimum energy surface and reaction pathway for the interconversion of malate and oxaloacetate catalyzed by the enzyme malate dehydrogenase (MDH). A reaction mechanism for proton and hydride transfers associated with MDH and cofactor nicotinamide adenine dinucleotide (NAD) is deduced from the topology of the calculated energy surface. The proposed mechanism consists of (1) a sequential reaction with proton transfer preceding hydride transfer (malate to oxaloacetate direction), (2) the existence of two transition states with energy barriers of approximately 7 and 15 kcal/mol for the proton and hydride transfers, respectively, and (3) reactant (malate) and product (oxaloacetate) states that are nearly isoenergetic. Simulation analysis of the calculated energy profile shows that solvent effects due to the protein matrix dramatically alter the intrinsic reactivity of the functional groups involved in the MDH reaction, resulting in energetics similar to that found in aqueous solution. An energy decomposition analysis indicates that specific MDH residues (Arg-81, Arg-87, Asn-119, Asp-150, and Arg-153) in the vicinity of the substrate make significant energetic contributions to the stabilization of proton transfer and destabilization of hydride transfer. This suggests that these amino acids play an important role in the catalytic properties of MDH.
Collapse
Affiliation(s)
- M A Cunningham
- Center for Mechanistic Biology and Biotechnology, Argonne National Laboratory, Illinois 60439, USA
| | | | | | | | | |
Collapse
|
12
|
Andrés J, Moliner V, Safont VS, Domingo LR, Picher MT. On Transition Structures for Hydride Transfer Step in Enzyme Catalysis. A Comparative Study on Models of Glutathione Reductase Derived from Semiempirical, HF, and DFT Methods. J Org Chem 1996; 61:7777-7783. [PMID: 11667733 DOI: 10.1021/jo960803y] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a model of the chemical reactions that take place in the active site of gluthatione reductase, the nature of the molecular mechanism for the hydride transfer step has been characterized by means of accurate quantum chemical characterizations of transition structures. The calculations have been carried out with analytical gradients at AM1 and PM3 semiempirical procedures, ab initio at HF level with 3-21G, 4-31G, 6-31G, and 6-31G basis sets and BP86 and BLYP as density functional methods. The results of this study suggest that the endo relative orientation on the substrate imposed by the active site is optimal in polarizing the C4-Ht bond and situating the system in the neighborhood of the quadratic region of the transition structure associated to the hydride transfer step on potential energy surface. The endo arrangement of the transition structure results in optimal frontier HOMO orbital interaction between NADH and FAD partners. The geometries of the transition structures and the corresponding transition vectors, that contain the fundamental information relating reactive fluctuation patterns, are model independent and weakly dependent on the level of theory used to determine them. A comparison between simple and complex molecular models shows that there is a minimal set of coordinates describing the essentials of hydride transfer step. The analysis of transition vector components suggests that the primary and secondary kinetic isotope effects can be strongly coupled, and this prompted the calculation of deuterium and tritium primary, secondary, and primary and secondary kinetic isotope effects. The results obtained agree well with experimental data and demonstrate this coupling.
Collapse
Affiliation(s)
- Juan Andrés
- Departament de Ciències Experimentals, Universitat Jaume I, Box 224, 12080 Castelló, Spain, and Departament de Química Orgànica, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | | | | | | | | |
Collapse
|