1
|
In-depth PtdIns(3,4,5)P 3 signalosome analysis identifies DAPP1 as a negative regulator of GPVI-driven platelet function. Blood Adv 2017; 1:918-932. [PMID: 29242851 DOI: 10.1182/bloodadvances.2017005173] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The class I phosphoinositide 3-kinase (PI3K) isoforms play important roles in platelet priming, activation, and stable thrombus formation. Class I PI3Ks predominantly regulate cell function through their catalytic product, the signaling phospholipid phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3], which coordinates the localization and/or activity of a diverse range of binding proteins. Notably, the complete repertoire of these class I PI3K effectors in platelets remains unknown, limiting mechanistic understanding of class I PI3K-mediated control of platelet function. We measured robust agonist-driven PtdIns (3,4,5)P3 generation in human platelets by lipidomic mass spectrometry (MS), and then used affinity-capture coupled to high-resolution proteomic MS to identify the targets of PtdIns (3,4,5)P3 in these cells. We reveal for the first time a diverse platelet PtdIns(3,4,5)P3 interactome, including kinases, signaling adaptors, and regulators of small GTPases, many of which are previously uncharacterized in this cell type. Of these, we show dual adaptor for phosphotyrosine and 3-phosphoinositides (DAPP1) to be regulated by Src-family kinases and PI3K, while platelets from DAPP1-deficient mice display enhanced thrombus formation on collagen in vitro. This was associated with enhanced platelet α/δ granule secretion and αIIbβ3 integrin activation downstream of the collagen receptor glycoprotein VI. Thus, we present the first comprehensive analysis of the PtdIns(3,4,5)P3 signalosome of human platelets and identify DAPP1 as a novel negative regulator of platelet function. This work provides important new insights into how class I PI3Ks shape platelet function.
Collapse
|
2
|
Frej AD, Clark J, Le Roy CI, Lilla S, Thomason PA, Otto GP, Churchill G, Insall RH, Claus SP, Hawkins P, Stephens L, Williams RSB. The Inositol-3-Phosphate Synthase Biosynthetic Enzyme Has Distinct Catalytic and Metabolic Roles. Mol Cell Biol 2016; 36:1464-79. [PMID: 26951199 PMCID: PMC4859692 DOI: 10.1128/mcb.00039-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/19/2016] [Accepted: 03/03/2016] [Indexed: 12/24/2022] Open
Abstract
Inositol levels, maintained by the biosynthetic enzyme inositol-3-phosphate synthase (Ino1), are altered in a range of disorders, including bipolar disorder and Alzheimer's disease. To date, most inositol studies have focused on the molecular and cellular effects of inositol depletion without considering Ino1 levels. Here we employ a simple eukaryote, Dictyostelium discoideum, to demonstrate distinct effects of loss of Ino1 and inositol depletion. We show that loss of Ino1 results in an inositol auxotrophy that can be rescued only partially by exogenous inositol. Removal of inositol supplementation from the ino1(-) mutant resulted in a rapid 56% reduction in inositol levels, triggering the induction of autophagy, reduced cytokinesis, and substrate adhesion. Inositol depletion also caused a dramatic generalized decrease in phosphoinositide levels that was rescued by inositol supplementation. However, loss of Ino1 triggered broad metabolic changes consistent with the induction of a catabolic state that was not rescued by inositol supplementation. These data suggest a metabolic role for Ino1 that is independent of inositol biosynthesis. To characterize this role, an Ino1 binding partner containing SEL1L1 domains (Q54IX5) and having homology to mammalian macromolecular complex adaptor proteins was identified. Our findings therefore identify a new role for Ino1, independent of inositol biosynthesis, with broad effects on cell metabolism.
Collapse
Affiliation(s)
- Anna D Frej
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Jonathan Clark
- The Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Caroline I Le Roy
- Department of Food and Nutritional Sciences, The University of Reading, Reading, Berkshire, United Kingdom
| | - Sergio Lilla
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Peter A Thomason
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Grant P Otto
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Grant Churchill
- Department of Pharmacology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Robert H Insall
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Sandrine P Claus
- Department of Food and Nutritional Sciences, The University of Reading, Reading, Berkshire, United Kingdom
| | - Phillip Hawkins
- The Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Len Stephens
- The Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Robin S B Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| |
Collapse
|
3
|
Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily. MEMBRANES 2015; 5:646-63. [PMID: 26512702 PMCID: PMC4704004 DOI: 10.3390/membranes5040646] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/23/2022]
Abstract
The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.
Collapse
|
4
|
Hu J, Neiswinger J, Zhang J, Zhu H, Qian J. Systematic Prediction of Scaffold Proteins Reveals New Design Principles in Scaffold-Mediated Signal Transduction. PLoS Comput Biol 2015; 11:e1004508. [PMID: 26393507 PMCID: PMC4578958 DOI: 10.1371/journal.pcbi.1004508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/03/2015] [Indexed: 12/03/2022] Open
Abstract
Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process. Despite their importance in the signaling transduction, there is no systematic effort in identifying and characterizing the scaffold proteins in humans. In this work, we predicted scaffold proteins by integrating the available protein-protein interactions and kinase-substrate relationships. The predicted scaffold proteins showed characteristics for known scaffold proteins, suggesting the fidelity of our prediction. More importantly, the systematic prediction of scaffold proteins provides biological insights in the scaffold-mediated signal transduction. We found that scaffold proteins are likely to form complexes, suggesting that scaffold proteins could participate in diverse signaling pathways through the combinatorial interactions among scaffold proteins. Furthermore, the regulation of scaffold proteins’ activities has not been extensively studied. Our bioinformatics analysis proposed that scaffold proteins themselves might be regulated through phosphorylation process.
Collapse
Affiliation(s)
- Jianfei Hu
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Johnathan Neiswinger
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Center for High-Throughput Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
5
|
Hou S, Pauls SD, Liu P, Marshall AJ. The PH domain adaptor protein Bam32/DAPP1 functions in mast cells to restrain FcɛRI-induced calcium flux and granule release. Mol Immunol 2010; 48:89-97. [PMID: 20956018 DOI: 10.1016/j.molimm.2010.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/07/2010] [Accepted: 09/14/2010] [Indexed: 12/12/2022]
Abstract
Mast cell activation triggered by IgE binding to its high affinity receptor FcɛRI is highly dependent on signaling via phosphoinositde 3-kinases (PI3K). The phosphoinositide phosphatase SHIP controls mast cell activation by regulating accumulation of D3 phosphoinositide second messengers generated by PI3K. The PH domain adaptor protein Bam32/DAPP1 binds specifically to the D3 phosphoinositides PI(3,4,5)P3 and PI(3,4)P2 (the substrate and product of SHIP respectively). In B cells, Bam32 is phosphorylated by Src family kinases including Lyn, and is required for antigen receptor-induced activation; however the function of Bam32 in mast cells is unknown. Here we report that Bam32 is expressed in mast cells, is recruited to the plasma membrane upon stimulation and functions in FcɛRI signaling. Examination of bone marrow-derived mast cells (BMMC) isolated from Bam32-deficient mice revealed enhanced FcɛRI-induced degranulation and IL-6 production, indicating that Bam32 may function to restrain signaling via FcɛRI. These enhanced degranulation responses were PI3K-dependent, as indicated by blockade with PI3K inhibitors wortmannin or IC87114. While Bam32-deficient BMMC showed reduced FcɛRI-induced activation of mitogen-activated protein kinases ERK and JNK, FcɛRI-induced calcium flux and phosphorylation of PLCγ1 and Akt were increased. Bam32-deficient BMMC showed significantly reduced phosphorylation of Lyn and SHIP, indicating reduced activity of inhibitory signaling pathways. Together our results identify Bam32 as a novel regulator of mast cell activation, potentially functioning in membrane-proximal integration of positive and negative signaling pathways.
Collapse
Affiliation(s)
- Sen Hou
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0W3, Canada
| | | | | | | |
Collapse
|
6
|
Al-Alwan M, Hou S, Zhang TT, Makondo K, Marshall AJ. Bam32/DAPP1 promotes B cell adhesion and formation of polarized conjugates with T cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:6961-9. [PMID: 20495066 DOI: 10.4049/jimmunol.0904176] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B cell Ag receptors function in both signaling activation of Ag-specific cells and in collecting specific Ag for presentation to T lymphocytes. Signaling via PI3K is required for BCR-mediated activation and Ag presentation functions; however, the relevant downstream targets of PI3K in B cells are incompletely defined. In this study, we have investigated the roles of the PI3K effector molecule Bam32/DAPP1 in BCR signaling and BCR-mediated Ag presentation functions. In mouse primary B cells, Bam32 was required for efficient activation of the GTPase Rac1 and downstream signaling to JNK, but not activation of BLNK, phospholipase C gamma2, or calcium responses. Consistent with a role of this adaptor in Rac-mediated cytoskeletal rearrangement, Bam32 was required for BCR-induced cell adhesion and spreading responses on ICAM-1 or fibronectin-coated surfaces. The function of Bam32 in promoting Rac activation and adhesion required tyrosine 139, a known site of phosphorylation by Lyn kinase. After BCR crosslinking by Ag, Bam32-deficient B cells are able to carry out the initial steps of Ag endocytosis and processing, but show diminished ability to form Ag-specific conjugates with T cells and polarize F-actin at the B-T interface. As a result, Bam32-deficient B cells were unable to efficiently activate Ag-specific T cells. Together, these results indicate that Bam32 serves to integrate PI3K and Src kinase signaling to promote Rac-dependent B cell adhesive interactions important for Ag presentation function.
Collapse
Affiliation(s)
- Monther Al-Alwan
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | |
Collapse
|
7
|
Zhang TT, Al-Alwan M, Marshall AJ. The pleckstrin homology domain adaptor protein Bam32/DAPP1 is required for germinal center progression. THE JOURNAL OF IMMUNOLOGY 2009; 184:164-72. [PMID: 19949096 DOI: 10.4049/jimmunol.0902505] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ab affinity maturation within germinal centers (GCs) requires weeks to complete. Several signaling pathways in B cells have been shown to be required for initiation of the GC response; however, the signaling checkpoints controlling progression and eventual dissolution of the GC reaction are poorly understood. The adaptor protein Bam32/DAPP1 was originally isolated from human GCs and functions downstream of phosphoinositide 3-kinase enzymes, which are known to have critical roles in B cell activation and GC responses. In this study we identify a unique role of Bam32/DAPP1 in promoting GC progression. Bam32-deficient mice show normal GC initiation, but premature GC dissolution after immunization with protein Ag in alum or low doses of sheep red blood cells. Adoptive transfer studies confirmed that Bam32-deficient B cells have an intrinsic impairment in the ability to mount sustained GC responses. Bam32 deficiency was also associated with impaired Ab affinity maturation. Proliferation of Bam32-deficient GC B cells was not compromised; however, these cells show impaired switch to IgG1 and increased apoptosis in situ. GCs formed by Bam32-deficient B cells contain fewer T cells, indicating that Bam32 is required for B cell-dependent T cell accumulation within established GCs. Exogenous CD40 ligand restored GC B cell numbers and switch to IgG1, indicating that Bam32-deficient B cells are competent to respond to CD40 stimulation when ligand is available. These data demonstrate that Bam32 is not required for GC initiation, but rather functions in a late checkpoint of GC progression associated with T cell recruitment and GC B cell survival.
Collapse
Affiliation(s)
- Ting-ting Zhang
- Department of Immunology, University of Manitoba, Manitoba, Canada
| | | | | |
Collapse
|
8
|
Zhou Y, Jiang D, Thomason DB, Jarrett HW. Laminin-induced activation of Rac1 and JNKp46 is initiated by Src family kinases and mimics the effects of skeletal muscle contraction. Biochemistry 2007; 46:14907-16. [PMID: 18044967 DOI: 10.1021/bi701384k] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Binding of laminin to dystroglycan in the dystrophin glycoprotein complex causes signaling through dystroglycan-syntrophin-grb2-SOS1-Rac1-PAK1-JNK. Laminin binding also causes syntrophin tyrosine phosphorylation to initiate signaling. The kinase responsible was investigated here. PP2 and SU6656, specific inhibitors of Src family kinases, decreased the amount of phosphotyrosine syntrophin and decreased the level of active Rac1 in laminin-treated myoblasts, myotubes, or skeletal muscle microsomes. c-Src and c-Fyn both phosphorylate syntrophin, and inhibition of either with specific siRNAs diminishes the level of syntrophin phosphorylation. When the rat gastrocnemius was contracted, the level of Rac1 activation increased compared to that of the relaxed control muscle and Rac1 colocalized with beta-dystroglycan. Similar results were obtained when the muscle was stretched. Contracted muscle also contained more activated c-Jun N-terminal kinase, JNKp46. E3, an expressed protein containing only laminin domains LG4 and LG5, increased the rate of proliferation of myoblasts, and PP2 prevented cell proliferation. In addition, Src family kinases colocalized with activated Rac1 and with laminin-Sepharose in solid-phase binding assays. Thus, contraction, stretching, or laminin binding causes recruitment of Src family kinase to the dystrophin glycoprotein complex, activating Rac1 and inducing downstream signaling. The DGC likely represents a mechanoreceptor in skeletal muscle-regulating muscle growth in response to muscle activity. Src family kinases play an initiating and critical role.
Collapse
Affiliation(s)
- YanWen Zhou
- Department of Chemistry, University of Texas, San Antonio, Texas 78249, USA
| | | | | | | |
Collapse
|
9
|
Allam A, Marshall AJ. Role of the adaptor proteins Bam32, TAPP1 and TAPP2 in lymphocyte activation. Immunol Lett 2005; 97:7-17. [PMID: 15626471 DOI: 10.1016/j.imlet.2004.09.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 09/28/2004] [Accepted: 09/29/2004] [Indexed: 01/13/2023]
Abstract
Adaptor proteins play critical roles in lymphocyte activation by mediating intermolecular interactions and assembling signaling complexes at the activated plasma membrane. Bam32/DAPP1 and the related adaptor proteins TAPP1 and TAPP2 were identified by multiple groups about 5 years ago and considerable progress has been made in elucidating the structure, interaction partners and function of these molecules. These cytoplasmic adaptor proteins are recruited to the plasma membrane through interaction of their PH domains with the lipid products of phosphatidylinositol 3-kinases. They share a unique mode of regulation in that they bind with high affinity to phosphatidylinositol-3,4-bisphosphate and their recruitment is enhanced rather than inhibited by the lipid phosphatase SHIP. Two knockout mouse studies and several gain-and-loss of function studies in cell lines have recently been published, demonstrating multiple functions of Bam32 in B cell activation. Bam32 is required for biological responses including B cell antigen receptor (BCR)-induced proliferation and antibody responses to type II T-independent antigens. Bam32 regulates multiple BCR signaling events including activation of the mitogen activated protein kinases ERK and JNK, remodeling of the actin cytoskeleton through the GTPase Rac1 and BCR internalization. Several studies have emerged suggesting that TAPP1 and TAPP2 may play roles in B and T cell activation; however, the biological functions regulated by these molecules remain to be defined. Here we will comprehensively review the available data on the structure and function of Bam32, TAPP1 and TAPP2 and present an integrated working model for Bam32 function in B cell activation and a general model for distinct effector pathways of PI 3-kinases.
Collapse
Affiliation(s)
- Atef Allam
- Department of Immunology, University of Manitoba, 611 Basic Medical Sciences Building, 730 William Avenue, Winnipeg, Man., R3E-0W3, Canada
| | | |
Collapse
|
10
|
Niiro H, Allam A, Stoddart A, Brodsky FM, Marshall AJ, Clark EA. The B lymphocyte adaptor molecule of 32 kilodaltons (Bam32) regulates B cell antigen receptor internalization. THE JOURNAL OF IMMUNOLOGY 2004; 173:5601-9. [PMID: 15494510 DOI: 10.4049/jimmunol.173.9.5601] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The B lymphocyte adaptor molecule of 32 kDa (Bam32) is an adaptor that plays an indispensable role in BCR signaling. In this study, we found that upon BCR ligation, Bam32 is recruited to the plasma membrane where it associates with BCR complexes and redistributes and internalizes with BCRs. BCR ligation induced colocalization of Bam32 with lipid rafts, clathrin, and actin filaments. An inhibitor of Src family protein tyrosine kinases (PTKs) blocked both BCR-induced tyrosine phosphorylation of Bam32 and BCR internalization. Moreover, BCR internalization is impaired in Bam32-/- and Lyn-/- cells, and expression of Bam32 with a mutation of its tyrosine phosphorylation site (Y139F) inhibited BCR internalization. These data suggest that Bam32 functions downstream of Src family PTKs to regulate BCR internalization. Bam32 deficiency does not affect tyrosine phosphorylation of clathrin or the association of clathrin with lipid rafts upon BCR cross-linking. However, BCR-induced actin polymerization is impaired in Bam32-/- cells. Collectively, these findings indicate a novel role of Bam32 in connecting Src family PTKs to BCR internalization by an actin-dependent mechanism.
Collapse
Affiliation(s)
- Hiroaki Niiro
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
11
|
Komander D, Fairservice A, Deak M, Kular GS, Prescott AR, Peter Downes C, Safrany ST, Alessi DR, van Aalten DMF. Structural insights into the regulation of PDK1 by phosphoinositides and inositol phosphates. EMBO J 2004; 23:3918-28. [PMID: 15457207 PMCID: PMC524332 DOI: 10.1038/sj.emboj.7600379] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Accepted: 07/29/2004] [Indexed: 11/08/2022] Open
Abstract
3-phosphoinositide-dependent protein kinase-1 (PDK1) phosphorylates and activates many kinases belonging to the AGC subfamily. PDK1 possesses a C-terminal pleckstrin homology (PH) domain that interacts with PtdIns(3,4,5)P3/PtdIns(3,4)P2 and with lower affinity to PtdIns(4,5)P2. We describe the crystal structure of the PDK1 PH domain, in the absence and presence of PtdIns(3,4,5)P3 and Ins(1,3,4,5)P4. The structures reveal a 'budded' PH domain fold, possessing an N-terminal extension forming an integral part of the overall fold, and display an unusually spacious ligand-binding site. Mutagenesis and lipid-binding studies were used to define the contribution of residues involved in phosphoinositide binding. Using a novel quantitative binding assay, we found that Ins(1,3,4,5,6)P5 and InsP6, which are present at micromolar levels in the cytosol, interact with full-length PDK1 with nanomolar affinities. Utilising the isolated PDK1 PH domain, which has reduced affinity for Ins(1,3,4,5,6)P5/InsP6, we perform localisation studies that suggest that these inositol phosphates serve to anchor a portion of cellular PDK1 in the cytosol, where it could activate its substrates such as p70 S6-kinase and p90 ribosomal S6 kinase that do not interact with phosphoinositides.
Collapse
Affiliation(s)
- David Komander
- Division of Biological Chemistry & Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Alison Fairservice
- Division of Cell Signalling, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Maria Deak
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Gursant S Kular
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Alan R Prescott
- Division of Cell Biology and Immunology, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - C Peter Downes
- Division of Cell Signalling, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Stephen T Safrany
- Division of Cell Signalling, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Dario R Alessi
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Daan M F van Aalten
- Division of Biological Chemistry & Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
- Wellcome Trust Biocentre, School of Life Sciences, University of Dundee, MSI/WTB Complex, Dundee DD1 5EH, UK. Tel.: +44 1382 344 979; Fax: +44 1382 345 764; E-mail:
| |
Collapse
|
12
|
Cole A, Frame S, Cohen P. Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event. Biochem J 2004; 377:249-55. [PMID: 14570592 PMCID: PMC1223856 DOI: 10.1042/bj20031259] [Citation(s) in RCA: 238] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Revised: 10/09/2003] [Accepted: 10/22/2003] [Indexed: 11/17/2022]
Abstract
Phosphorylation of the endogenous GSK3alpha (glycogen synthase kinase-3alpha) at Tyr279 and GSK3beta at Tyr216 was suppressed in HEK-293 or SH-SY5Y cells by incubation with pharmacological inhibitors of GSK3, but not by an Src-family inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4- d ]pyrimidine (PP2), or a general protein tyrosine kinase inhibitor (genistein). GSK3beta transfected into HEK-293 cells or Escherichia coli became phosphorylated at Tyr216, but catalytically inactive mutants did not. GSK3beta expressed in insect Sf 21 cells or E. coli was extensively phosphorylated at Tyr216, but the few molecules lacking phosphate at this position could autophosphorylate at Tyr216 in vitro after incubation with MgATP. The rate of autophosphorylation was unaffected by dilution and was suppressed by the GSK3 inhibitor kenpaullone. Wild-type GSK3beta was unable to catalyse the tyrosine phosphorylation of catalytically inactive GSK3beta lacking phosphate at Tyr216. Our results indicate that the tyrosine phosphorylation of GSK3 is an intramolecular autophosphorylation event in the cells that we have studied and that this modification enhances the stability of the enzyme.
Collapse
Affiliation(s)
- Adam Cole
- MRC Protein Phosphorylation Unit, School of Life Sciences, MSI/WTB Complex, Dow Street, Dundee DD1 5EH, Scotland, UK
| | | | | |
Collapse
|
13
|
Boudeau J, Deak M, Lawlor MA, Morrice NA, Alessi DR. Heat-shock protein 90 and Cdc37 interact with LKB1 and regulate its stability. Biochem J 2003; 370:849-57. [PMID: 12489981 PMCID: PMC1223241 DOI: 10.1042/bj20021813] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2002] [Revised: 12/18/2002] [Accepted: 12/19/2002] [Indexed: 12/21/2022]
Abstract
LKB1 is a widely expressed serine/threonine protein kinase that is mutated in the inherited Peutz-Jeghers cancer syndrome. Recent findings indicate that LKB1 functions as a tumour suppressor, but little is known regarding the detailed mechanism by which LKB1 regulates cell growth. In this study we have purified LKB1 from cells and establish that it is associated with the heat-shock protein 90 (Hsp90) chaperone and the Cdc37 kinase-specific targetting subunit for Hsp90. We demonstrate that Cdc37 and Hsp90 bind specifically to the kinase domain of LKB1. We also perform experiments using Hsp90 inhibitors, which indicate that the association of Hsp90 and Cdc37 with LKB1 regulates LKB1 stability and prevents its degradation by the proteasome. Hsp90 inhibitors are being considered as potential anti-cancer agents. However, our observations indicate that prolonged usage of these drugs could possibly lead to tumour development by decreasing cellular levels of LKB1.
Collapse
Affiliation(s)
- Jérôme Boudeau
- MRC Protein Phosphorylation Unit, MSI/WTB Complex, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK.
| | | | | | | | | |
Collapse
|
14
|
Tarn C, Zou L, Hullinger RL, Andrisani OM. Hepatitis B virus X protein activates the p38 mitogen-activated protein kinase pathway in dedifferentiated hepatocytes. J Virol 2002; 76:9763-72. [PMID: 12208955 PMCID: PMC136494 DOI: 10.1128/jvi.76.19.9763-9772.2002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2002] [Accepted: 06/15/2002] [Indexed: 12/22/2022] Open
Abstract
Hepatitis B virus X protein (pX) is implicated in hepatocarcinogenesis by an unknown mechanism. Employing a cellular model linked to pX-mediated transformation, we investigated the role of the previously reported Stat3 activation by pX in hepatocyte transformation. Our model is composed of a differentiated hepatocyte (AML12) 3pX-1 cell line that undergoes pX-dependent transformation and a dedifferentiated hepatocyte (AML12) 4pX-1 cell line that does not exhibit transformation by pX. We report that pX-dependent Stat3 activation occurs only in non-pX-transforming 4pX-1 cells and conclude that Stat3 activation is not linked to pX-mediated transformation. Maximum Stat3 transactivation requires Ser727 phosphorylation, mediated by mitogenic pathway activation. Employing dominant negative mutants and inhibitors of mitogenic pathways, we demonstrate that maximum, pX-dependent Stat3 transactivation is inhibited by the p38 mitogen-activated protein kinase (MAPK)-specific inhibitor SB 203580. Using transient-transreporter and in vitro kinase assays, we demonstrate for the first time that pX activates the p38 MAPK pathway only in 4pX-1 cells. pX-mediated Stat3 and p38 MAPK activation is Ca(2+) and c-Src dependent, in agreement with the established cellular action of pX. Importantly, pX-dependent activation of p38 MAPK inactivates Cdc25C by phosphorylation of Ser216, thus initiating activation of the G(2)/M checkpoint, resulting in 4pX-1 cell growth retardation. Interestingly, pX expression in the less differentiated hepatocyte 4pX-1 cells activates signaling pathways known to be active in regenerating hepatocytes. These results suggest that pX expression in the infected liver effects distinct mitogenic pathway activation in less differentiated versus differentiated hepatocytes.
Collapse
Affiliation(s)
- Chi Tarn
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana 47904-1246, USA
| | | | | | | |
Collapse
|
15
|
Kimber WA, Trinkle-Mulcahy L, Cheung PCF, Deak M, Marsden LJ, Kieloch A, Watt S, Javier RT, Gray A, Downes CP, Lucocq JM, Alessi DR. Evidence that the tandem-pleckstrin-homology-domain-containing protein TAPP1 interacts with Ptd(3,4)P2 and the multi-PDZ-domain-containing protein MUPP1 in vivo. Biochem J 2002; 361:525-36. [PMID: 11802782 PMCID: PMC1222335 DOI: 10.1042/0264-6021:3610525] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PtdIns(3,4,5)P3 is an established second messenger of growth-factor and insulin-induced signalling pathways. There is increasing evidence that one of the immediate breakdown products of PtdIns(3,4,5)P3, namely PtdIns(3,4)P2, whose levels are elevated by numerous extracellular agonists, might also function as a signalling molecule. Recently, we identified two related pleckstrin-homology (PH)-domain-containing proteins, termed 'tandem-PH-domain-containing protein-1' (TAPP1) and TAPP2, which interacted in vitro with high affinity with PtdIns(3,4)P2, but did not bind PtdIns(3,4,5)P3 or other phosphoinositides. In the present study we demonstrate that stimulation of Swiss 3T3 or 293 cells with agonists that stimulate PtdIns(3,4)P2 production results in the marked translocation of TAPP1 to the plasma membrane. This recruitment is dependent on a functional PtdIns(3,4)P2-binding PH domain and is inhibited by wortmannin, a phosphoinositide 3-kinase inhibitor that prevents PtdIns(3,4)P2 generation. A search for proteins that interact with TAPP1 identified the multi-PDZ-containing protein termed 'MUPP1', a protein possessing 13 PDZ domains and no other known modular or catalytic domains [PDZ is postsynaptic density protein (PSD-95)/Drosophila disc large tumour suppressor (dlg)/tight junction protein (ZO1)]. We demonstrate that immunoprecipitation of endogenously expressed TAPP1 from 293-cell lysates results in the co-immunoprecipitation of endogenous MUPP1, indicating that these proteins are likely to interact with each other physiologically. We show that TAPP1 and TAPP2 interact with the 10th and 13th PDZ domain of MUPP1 through their C-terminal amino acids. The results of the present study suggest that TAPP1 and TAPP2 could function in cells as adapter proteins to recruit MUPP1, or other proteins that they may interact with, to the plasma membrane in response to signals that elevate PtdIns(3,4)P2.
Collapse
Affiliation(s)
- Wendy A Kimber
- MRC Protein Phosphorylation Unit, MSI/WTB Complex, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dowler S, Currie RA, Campbell DG, Deak M, Kular G, Downes CP, Alessi DR. Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem J 2000; 351:19-31. [PMID: 11001876 PMCID: PMC1221362 DOI: 10.1042/0264-6021:3510019] [Citation(s) in RCA: 296] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The second messenger phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] is generated by the action of phosphoinositide 3-kinase (PI 3-kinase), and regulates a plethora of cellular processes. An approach for dissecting the mechanisms by which these processes are regulated is to identify proteins that interact specifically with PtdIns(3,4,5)P(3). The pleckstrin homology (PH) domain has become recognized as the specialized module used by many proteins to interact with PtdIns(3,4,5)P(3). Recent work has led to the identification of a putative phosphatidylinositol 3,4,5-trisphosphate-binding motif (PPBM) at the N-terminal regions of PH domains that interact with this lipid. We have searched expressed sequence tag databases for novel proteins containing PH domains possessing a PPBM. Surprisingly, many of the PH domains that we identified do not bind PtdIns(3,4,5)P(3), but instead possess unexpected and novel phosphoinositide-binding specificities in vitro. These include proteins possessing PH domains that interact specifically with PtdIns(3,4)P(2) [TAPP1 (tandem PH-domain-containing protein-1) and TAPP2], PtdIns4P [FAPP1 (phosphatidylinositol-four-phosphate adaptor protein-1)], PtdIns3P [PEPP1 (phosphatidylinositol-three-phosphate-binding PH-domain protein-1) and AtPH1] and PtdIns(3,5)P(2) (centaurin-beta2). We have also identified two related homologues of PEPP1, termed PEPP2 and PEPP3, that may also interact with PtdIns3P. This study lays the foundation for future work to establish the phospholipid-binding specificities of these proteins in vivo, and their physiological role(s).
Collapse
Affiliation(s)
- S Dowler
- MRC Protein Phosphorylation Unit, MSI/WTB Complex, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK.
| | | | | | | | | | | | | |
Collapse
|