1
|
Gerringer ME, Yancey PH, Tikhonova OV, Vavilov NE, Zgoda VG, Davydov DR. Pressure tolerance of deep-sea enzymes can be evolved through increasing volume changes in protein transitions: a study with lactate dehydrogenases from abyssal and hadal fishes. FEBS J 2020; 287:5394-5410. [PMID: 32250538 PMCID: PMC7818408 DOI: 10.1111/febs.15317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 03/15/2020] [Accepted: 03/27/2020] [Indexed: 11/28/2022]
Abstract
We explore the principles of pressure tolerance in enzymes of deep-sea fishes using lactate dehydrogenases (LDH) as a case study. We compared the effects of pressure on the activities of LDH from hadal snailfishes Notoliparis kermadecensis and Pseudoliparis swirei with those from a shallow-adapted Liparis florae and an abyssal grenadier Coryphaenoides armatus. We then quantified the LDH content in muscle homogenates using mass-spectrometric determination of the LDH-specific conserved peptide LNLVQR. Existing theory suggests that adaptation to high pressure requires a decrease in volume changes in enzymatic catalysis. Accordingly, evolved pressure tolerance must be accompanied with an important reduction in the volume change associated with pressure-promoted alteration of enzymatic activity ( Δ V PP ∘ ). Our results suggest an important revision to this paradigm. Here, we describe an opposite effect of pressure adaptation-a substantial increase in the absolute value of Δ V PP ∘ in deep-living species compared to shallow-water counterparts. With this change, the enzyme activities in abyssal and hadal species do not substantially decrease their activity with pressure increasing up to 1-2 kbar, well beyond full-ocean depth pressures. In contrast, the activity of the enzyme from the tidepool snailfish, L. florae, decreases nearly linearly from 1 to 2500 bar. The increased tolerance of LDH activity to pressure comes at the expense of decreased catalytic efficiency, which is compensated with increased enzyme contents in high-pressure-adapted species. The newly discovered strategy is presumably used when the enzyme mechanism involves the formation of potentially unstable excited transient states associated with substantial changes in enzyme-solvent interactions.
Collapse
|
2
|
Bamdad F, Shin SH, Suh JW, Nimalaratne C, Sunwoo H. Anti-Inflammatory and Antioxidant Properties of Casein Hydrolysate Produced Using High Hydrostatic Pressure Combined with Proteolytic Enzymes. Molecules 2017; 22:E609. [PMID: 28394279 PMCID: PMC6154324 DOI: 10.3390/molecules22040609] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 11/24/2022] Open
Abstract
Casein-derived peptides are shown to possess radical scavenging and metal chelating properties. The objective of this study was to evaluate novel anti-inflammatory properties of casein hydrolysates (CH) produced by an eco-friendly process that combines high hydrostatic pressure with enzymatic hydrolysis (HHP-EH). Casein was hydrolysed by different proteases, including flavourzyme (Fla), savinase (Sav), thermolysin (Ther), trypsin (Try), and elastase (Ela) at 0.1, 50, 100, and 200 MPa pressure levels under various enzyme-to-substrate ratios and incubation times. Casein hydrolysates were evaluated for the degree of hydrolysis (DH), molecular weight distribution patterns, and anti-inflammatory properties in chemical and cellular models. Hydrolysates produced using HHP-EH exhibited higher DH values and proportions of smaller peptides compared to atmospheric pressure-enzymatic hydrolysis (AP-EH). Among five enzymes, Fla-digested HHP-EH-CH (HHP-Fla-CH) showed significantly higher antioxidant properties than AP-Fla-CH. The anti-inflammatory properties of HHP-Fla-CH were also observed by significantly reduced nitric oxide and by the suppression of the synthesis of pro-inflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) revealed that 59% of the amino acids of the peptides in HHP-Fla-CH were composed of proline, valine, and leucine, indicating the potential anti-inflammatory properties. In conclusion, the HHP-EH method provides a promising technology to produce bioactive peptides from casein in an eco-friendly process.
Collapse
Affiliation(s)
- Fatemeh Bamdad
- Centre for Pharmacy & Health Research, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 11361-87 Ave, Edmonton, AB T6G 2E1, Canada.
| | - Seulki Hazel Shin
- Centre for Pharmacy & Health Research, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 11361-87 Ave, Edmonton, AB T6G 2E1, Canada.
| | - Joo-Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Gyeonggi 449-728, Korea.
| | - Chamila Nimalaratne
- Centre for Pharmacy & Health Research, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 11361-87 Ave, Edmonton, AB T6G 2E1, Canada.
| | - Hoon Sunwoo
- Centre for Pharmacy & Health Research, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 11361-87 Ave, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
3
|
Masson P. Time-dependent kinetic complexities in cholinesterase-catalyzed reactions. BIOCHEMISTRY (MOSCOW) 2013; 77:1147-61. [PMID: 23157295 DOI: 10.1134/s0006297912100070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cholinesterases (ChEs) display a hysteretic behavior with certain substrates and inhibitors. Kinetic cooperativity in hysteresis of ChE-catalyzed reactions is characterized by a lag or burst phase in the approach to steady state. With some substrates damped oscillations are shown to superimpose on hysteretic lags. These time dependent peculiarities are observed for both butyrylcholinesterase and acetylcholinesterase from different sources. Hysteresis in ChE-catalyzed reactions can be interpreted in terms of slow transitions between two enzyme conformers E and E'. Substrate can bind to E and/or E', both Michaelian complexes ES and Ε'S can be catalytically competent, or only one of them can make products. The formal reaction pathway depends on both the chemical structure of the substrate and the type of enzyme. In particular, damped oscillations develop when substrate exists in different, slowly interconvertible, conformational, and/or micellar forms, of which only the minor form is capable of binding and reacting with the enzyme. Biphasic pseudo-first-order progressive inhibition of ChEs by certain carbamates and organophosphates also fits with a slow equilibrium between two reactive enzyme forms. Hysteresis can be modulated by medium parameters (pH, chaotropic and kosmotropic salts, organic solvents, temperature, osmotic pressure, and hydrostatic pressure). These studies showed that water structure plays a role in hysteretic behavior of ChEs. Attempts to provide a molecular mechanism for ChE hysteresis from mutagenesis studies or crystallographic studies failed so far. In fact, several lines of evidence suggest that hysteresis is controlled by the conformation of His438, a key residue in the catalytic triad of cholinesterases. Induction time may depend on the probability of His438 to adopt the operative conformation in the catalytic triad. The functional significance of ChE hysteresis is puzzling. However, the accepted view that proteins are in equilibrium between preexisting functional and non-functional conformers, and that binding of a ligand to the functional form shifts equilibrium towards the functional conformation, suggests that slow equilibrium between two conformational states of these enzymes may have a regulatory function in damping out the response to certain ligands and irreversible inhibitors. This is particularly true for immobilized (membrane bound) enzymes where the local substrate and/or inhibitor concentrations depend on influx in crowded organellar systems, e.g. cholinergic synaptic clefts. Therefore, physiological or toxicological relevance of the hysteretic behavior and damped oscillations in ChE-catalyzed reactions and inhibition cannot be ruled out.
Collapse
Affiliation(s)
- P Masson
- Institut de Recherches Biomédicales des Armées-CRSSA, La Tronche, Cedex 38702, France.
| |
Collapse
|
4
|
Perrin B, Rowland M, Wolfe M, Tsigelny I, Pezzementi L. Thermal denaturation of wild type and mutant recombinant acetylcholinesterase from amphioxus: effects of the temperature of in vitro expression and of reversible inhibitors. INVERTEBRATE NEUROSCIENCE 2008; 8:147-55. [PMID: 18677525 DOI: 10.1007/s10158-008-0075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 07/21/2008] [Indexed: 10/21/2022]
Abstract
We have studied the thermal inactivation at 37 degrees C of wild type and mutant ChE2 (C310A, F312I, C466A, C310A/F312I, and C310A/C466A) from amphioxus (Branchiostoma floridae) expressed in vitro in COS-7 monkey cells under three sets of conditions: 30 degrees C for 48 h, 30 degrees C for 24 h and 37 degrees C for 24 h, and 37 degrees C for 48 h. We found biphasic denaturation curves for all enzymes and conditions, except wild type and C310A ChE2 expressed at 30 degrees C for 48 h. Generally, single mutants are more unstable than wild type, and the double mutants are even more unstable. We propose a model involving stable and unstable conformations of the enzymes to explain these results, and we discuss the implications of the model. We also found a correlation between the melting temperature of the ChEs and the rates at which they denature at 37 degrees C, with the denaturation of the unstable conformation dominating the relationship. Reversible cholinergic inhibitors protect the ChEs from thermal denaturation, and in some cases produce monophasic denaturation curves; we also propose a model to explain this stabilization.
Collapse
Affiliation(s)
- Brian Perrin
- Department of Biology, Birmingham-Southern College, Birmingham, AL 35254, USA
| | | | | | | | | |
Collapse
|
5
|
Gabel F, Weik M, Masson P, Renault F, Fournier D, Brochier L, Doctor BP, Saxena A, Silman I, Zaccai G. Effects of soman inhibition and of structural differences on cholinesterase molecular dynamics: a neutron scattering study. Biophys J 2005; 89:3303-11. [PMID: 16100272 PMCID: PMC1366826 DOI: 10.1529/biophysj.105.061028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Incoherent elastic neutron scattering experiments on members of the cholinesterase family were carried out to investigate how molecular dynamics is affected by covalent inhibitor binding and by differences in primary and quaternary structure. Tetrameric native and soman-inhibited human butyrylcholinesterase (HuBChE) as well as native dimeric Drosophila melanogaster acetylcholinesterase (DmAChE) hydrated protein powders were examined. Atomic mean-square displacements (MSDs) were found to be identical for native HuBChE and for DmAChE in the whole temperature range examined, leading to the conclusion that differences in activity and substrate specificity are not reflected by a global modification of subnanosecond molecular dynamics. MSDs of native and soman-inhibited HuBChE were identical below the thermal denaturation temperature of the native enzyme, indicating a common mean free-energy surface. Denaturation of the native enzyme is reflected by a relative increase of MSDs consistent with entropic stabilization of the unfolded state. The results suggest that the stabilization of HuBChE phosphorylated by soman is due to an increase in free energy of the unfolded state due to a decrease in entropy.
Collapse
Affiliation(s)
- F Gabel
- Laboratoire de Biophysique Moléculaire, Institut de Biologie Structurale, 41 rue Jules Horowitz, F-38027 Grenoble Cedex 1, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Masson P, Balny C. Linear and non-linear pressure dependence of enzyme catalytic parameters. Biochim Biophys Acta Gen Subj 2005; 1724:440-50. [PMID: 15951113 DOI: 10.1016/j.bbagen.2005.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 05/03/2005] [Accepted: 05/04/2005] [Indexed: 11/21/2022]
Abstract
The pressure dependence of enzyme catalytic parameters allows volume changes associated with substrate binding and activation volumes for the chemical steps to be determined. Because catalytic constants are composite parameters, elementary volume change contributions can be calculated from the pressure differentiation of kinetic constants. Linear and non-linear pressure-dependence of single-step enzyme reactions and steady-state catalytic parameters can be observed. Non-linearity can be interpreted either in terms of interdependence between the pressure and other environmental parameters (i.e., temperature, solvent composition, pH), pressure-induced enzyme unfolding, compressibility changes and pressure-induced rate limiting changes. These different situations are illustrated with several examples.
Collapse
Affiliation(s)
- Patrick Masson
- Centre de Recherches du Service de Santé des Armées, Département de Toxicologie, Unité d'Enzymologie, BP. 87, 38702 La Tronche cédex, France.
| | | |
Collapse
|
7
|
Rochu D, Viguié N, Renault F, Crouzier D, Froment MT, Masson P. Contribution of the active-site metal cation to the catalytic activity and to the conformational stability of phosphotriesterase: temperature- and pH-dependence. Biochem J 2004; 380:627-33. [PMID: 15018612 PMCID: PMC1224221 DOI: 10.1042/bj20031861] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 03/11/2004] [Accepted: 03/12/2004] [Indexed: 11/17/2022]
Abstract
Phosphotriesterase (PTE) detoxifies nerve agents and organophosphate pesticides. The two zinc cations of the PTE active centre can be substituted by other transition metal cations without loss of activity. Furthermore, metal-substituted PTEs display differences in catalytic properties. A prerequisite for engineering highly efficient mutants of PTE is to improve their thermostability. Isoelectric focusing, capillary electrophoresis and steady-state kinetics analysis were used to determine the contribution of the active-site cations Zn2+, Co2+ or Cd2+ to both the catalytic activity and the conformational stability of the corresponding PTE isoforms. The three isoforms have different pI values (7.2, 7.5 and 7.1) and showed non-superimposable electrophoretic titration curves. The overall structural alterations, causing changes in functional properties, were found to be related to the nature of the bound cation: ionic radius and ion electronegativity correlate with Km and kcat respectively. In addition, the pH-dependent activity profiles of isoforms were different. The temperature-dependent profiles of activity showed maximum activity at T < or =35 degrees C, followed by an activation phase near 45-48 degrees C and then inactivation which was completed at 60 degrees C. Analysis of thermal denaturation of the PTEs provided evidence that the activation phase resulted from a transient intermediate. Finally, at the optimum activity between pH 8 and 9.4, the thermostability of the different PTEs increased as the pH decreased, and the metal cation modulated stability (Zn2+-, Co2+- and Cd2+-PTE showed different T (m) values of 60.5-67 degrees C, 58-64 degrees C and 53-64 degrees C respectively). Requirements for optimum activity of PTE (displayed by Co2+-PTE) and maximum stability (displayed by Zn2+-PTE) were demonstrated.
Collapse
Affiliation(s)
- Daniel Rochu
- Unité d'Enzymologie, Centre de Recherches du Service de Santé des Armées, BP 87, 38702 La Tronche cedex, France.
| | | | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- Antonio D Molina-García
- Department of Engineering, Instituto del Frío, C.S.I.C., José Antonio Novais, 10, Ciudad Universitaria, 28040 Madrid, Spain.
| |
Collapse
|
9
|
Rochu D, Beaufet N, Renault F, Viguié N, Masson P. The wild type bacterial Co(2+)/Co(2+)-phosphotriesterase shows a middle-range thermostability. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1594:207-18. [PMID: 11904217 DOI: 10.1016/s0005-2728(01)00224-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The phosphotriesterase (PTE) from Pseudomonas diminuta, a metalloenzyme that catalyses the hydrolysis of organophosphorus pesticides and nerve agents, has been described as a remarkably heat-stable protein [Grimsley et al., Biochemistry 36 (1997), 14366-14374]. Because substitution of the naturally occurring zinc ions by cobalt ions was found to enhance the enzyme catalytic activity, we investigated the thermal stability of the Co(2+)/Co(2+)-PTE. This study, carried out using capillary electrophoresis under optimised conditions in the pH range 9-10 compatible with optimal enzyme activity, provided evidence for irreversible denaturation according to the Lumry-Eyring model. A temperature-induced conformational transition (T(m) approximately equal to 58 degrees C) and an early growing of aggregates were observed. Comparison of UV spectra with heat-induced inactivation data clearly demonstrated that the PTE state populated above T(m) was neither native nor active. Differential scanning calorimetry showed only an exothermic trace due to aggregation of the denatured protein at T=76 degrees C. Accordingly, the temperature-induced denaturation process of the PTE could be described by a consecutive reaction model, including formation of an intermediate with enhanced activity at T approximately equal to 45 degrees C and an inactive unfolded state populated at T approximately equal to 58 degrees C, which leads to denatured aggregates. Thus, the wild type Co(2+)/Co(2+)-PTE displays a middle-range thermostability. Hence, for decontamination purposes under extreme Earth temperatures, wild type and engineered mutants of PTE substituted with other metal cations should be evaluated.
Collapse
Affiliation(s)
- Daniel Rochu
- Unité d'Enzymologie, Centre de Recherches du Service de Santé des Armées, P.O. Box 87, 38702 La Tronche Cedex, France.
| | | | | | | | | |
Collapse
|