1
|
Bitter EE, Townsend MH, Erickson R, Allen C, O'Neill KL. Thymidine kinase 1 through the ages: a comprehensive review. Cell Biosci 2020; 10:138. [PMID: 33292474 PMCID: PMC7694900 DOI: 10.1186/s13578-020-00493-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022] Open
Abstract
Proliferation markers, such as proliferating cell nuclear antigen (PCNA), Ki-67, and thymidine kinase 1 (TK1), have potential as diagnostic tools and as prognostic factors in assessing cancer treatment and disease progression. TK1 is involved in cellular proliferation through the recovery of the nucleotide thymidine in the DNA salvage pathway. TK1 upregulation has been found to be an early event in cancer development. In addition, serum levels of TK1 have been shown to be tied to cancer stage, so that higher levels of TK1 indicate a more serious prognosis. As a result of these findings and others, TK1 is not only a potentially viable biomarker for cancer recurrence, treatment monitoring, and survival, but is potentially more advantageous than current biomarkers. Compared to other proliferation markers, TK1 levels during S phase more accurately determine the rate of DNA synthesis in actively dividing tumors. Several reviews of TK1 elaborate on various assays that have been developed to measure levels in the serum of cancer patients in clinical settings. In this review, we include a brief history of important TK1 discoveries and findings, a comprehensive overview of TK1 regulation at DNA to protein levels, and recent findings that indicate TK1’s potential role in cancer pathogenesis and its growing potential as a tumor biomarker and therapeutic target.
Collapse
Affiliation(s)
- Eliza E Bitter
- Department of Microbiology and Molecular Biology, Brigham Young University, 701 E University Pkwy, LSB room 4007, Provo, UT, 84602, USA.
| | - Michelle H Townsend
- Department of Microbiology and Molecular Biology, Brigham Young University, 701 E University Pkwy, LSB room 4007, Provo, UT, 84602, USA
| | - Rachel Erickson
- Department of Microbiology and Molecular Biology, Brigham Young University, 701 E University Pkwy, LSB room 4007, Provo, UT, 84602, USA
| | - Carolyn Allen
- Department of Microbiology and Molecular Biology, Brigham Young University, 701 E University Pkwy, LSB room 4007, Provo, UT, 84602, USA
| | - Kim L O'Neill
- Department of Microbiology and Molecular Biology, Brigham Young University, 701 E University Pkwy, LSB room 4007, Provo, UT, 84602, USA.
| |
Collapse
|
2
|
Maiuthed A, Ninsontia C, Erlenbach-Wuensch K, Ndreshkjana B, Muenzner JK, Caliskan A, Husayn AP, Chaotham C, Hartmann A, Vial Roehe A, Mahadevan V, Chanvorachote P, Schneider-Stock R. Cytoplasmic p21 Mediates 5-Fluorouracil Resistance by Inhibiting Pro-Apoptotic Chk2. Cancers (Basel) 2018; 10:cancers10100373. [PMID: 30304835 PMCID: PMC6210175 DOI: 10.3390/cancers10100373] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022] Open
Abstract
The oncogenic cytoplasmic p21 contributes to cancer aggressiveness and chemotherapeutic failure. However, the molecular mechanisms remain obscure. Here, we show for the first time that cytoplasmic p21 mediates 5-Fluorouracil (5FU) resistance by shuttling p-Chk2 out of the nucleus to protect the tumor cells from its pro-apoptotic functions. We observed that cytoplasmic p21 levels were up-regulated in 5FU-resistant colorectal cancer cells in vitro and the in vivo Chorioallantoic membrane (CAM) model. Kinase array analysis revealed that p-Chk2 is a key target of cytoplasmic p21. Importantly, cytoplasmic form of p21 mediated by p21T145D transfection diminished p-Chk2-mediated activation of E2F1 and apoptosis induction. Co-immunoprecipitation, immunofluorescence, and proximity ligation assay showed that p21 forms a complex with p-Chk2 under 5FU exposure. Using in silico computer modeling, we suggest that the p21/p-Chk2 interaction hindered the nuclear localization signal of p-Chk2, and therefore, the complex is exported out of the nucleus. These findings unravel a novel mechanism regarding an oncogenic role of p21 in regulation of resistance to 5FU-based chemotherapy. We suggest a possible value of cytoplasmic p21 as a prognosis marker and a therapeutic target in colorectal cancer patients.
Collapse
Affiliation(s)
- Arnatchai Maiuthed
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
- Experimental Tumor Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
- Institute of Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Chuanpit Ninsontia
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
- Experimental Tumor Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
- Institute of Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Katharina Erlenbach-Wuensch
- Institute of Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Benardina Ndreshkjana
- Experimental Tumor Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
- Institute of Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Julienne K Muenzner
- Experimental Tumor Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
- Institute of Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Aylin Caliskan
- Experimental Tumor Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
- Institute of Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Ahmed P Husayn
- Institute of Bioinformatics & Applied Biotechnology (IBAB), Bangalore 560100, India.
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Arndt Hartmann
- Institute of Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Adriana Vial Roehe
- Department of Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil.
| | | | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Regine Schneider-Stock
- Experimental Tumor Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
- Institute of Pathology, University Hospital of Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| |
Collapse
|
3
|
Zhu X, Shi C, Peng Y, Yin L, Tu M, Chen Q, Hou C, Li Q, Miao Y. Thymidine kinase 1 silencing retards proliferative activity of pancreatic cancer cell via E2F1-TK1-P21 axis. Cell Prolif 2018; 51:e12428. [PMID: 29266545 PMCID: PMC6528927 DOI: 10.1111/cpr.12428] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/28/2017] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES Thymidine kinase 1 (TK1) is one of the salvage enzymes engaged in the synthesis of DNA. Although a pro-carcinogenetic role of TK1 has been reported in various types of cancers, its role in pancreatic ductal adenocarcinoma (PDAC) is still unknown. The study is aimed to elaborate the function of TK1 in PDAC and the potential mechanisms in the following study. MATERIALS AND METHODS TK1 expression was analysed by immunohistochemistry, real-time PCR and Western blot, and its relationship with clinicopathological characteristics of PDAC patients was further investigated. To verify the function of TK1 and potential mechanism, TK1 siRNA was used to transfect PDAC cells and performed a series of assays in cell and animal models. RESULTS The level of TK1 expression was higher in cancerous tissues compared with matched adjacent tissues. TK1 overexpression was associated with progression of PDAC and poor prognosis. Knockdown of TK1 could suppress cell proliferation via inducing S phase arrest mediated by upregulation of P21. Further mechanism investigation suggested that transcription factor E2F-1 could directly regulate the TK1 and promote tumour proliferation. CONCLUSIONS The results suggested that TK1 might be involved in the development and progression of PDAC by regulating cell proliferation and show that TK1 may work as a promising therapeutic target in patients with PDAC.
Collapse
Affiliation(s)
- Xiaole Zhu
- Pancreas CenterFirst Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
- Pancreas InstituteNanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Chenyuan Shi
- Pancreas CenterFirst Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
- Pancreas InstituteNanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Yunpeng Peng
- Pancreas CenterFirst Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
- Pancreas InstituteNanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Lingdi Yin
- Pancreas CenterFirst Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
- Pancreas InstituteNanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Min Tu
- Pancreas CenterFirst Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
- Pancreas InstituteNanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Qiuyang Chen
- Pancreas CenterFirst Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
- Pancreas InstituteNanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Chaoqun Hou
- Pancreas CenterFirst Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
- Pancreas InstituteNanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Qiang Li
- Pancreas CenterFirst Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
- Pancreas InstituteNanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Yi Miao
- Pancreas CenterFirst Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
- Pancreas InstituteNanjing Medical UniversityNanjingJiangsu ProvinceChina
| |
Collapse
|
4
|
Gene expression deregulation in postnatal skeletal muscle of TK2 deficient mice reveals a lower pool of proliferating myogenic progenitor cells. PLoS One 2013; 8:e53698. [PMID: 23341978 PMCID: PMC3544874 DOI: 10.1371/journal.pone.0053698] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/03/2012] [Indexed: 01/07/2023] Open
Abstract
Loss of thymidine kinase 2 (TK2) causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA) depletion syndrome (MDS) in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue.
Collapse
|
5
|
Ke PY, Chang ZF. Mitotic degradation of human thymidine kinase 1 is dependent on the anaphase-promoting complex/cyclosome-CDH1-mediated pathway. Mol Cell Biol 2004; 24:514-26. [PMID: 14701726 PMCID: PMC343798 DOI: 10.1128/mcb.24.2.514-526.2004] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of human thymidine kinase 1 (hTK1) is highly dependent on the growth states and cell cycle stages in mammalian cells. The amount of hTK1 is significantly increased in the cells during progression to the S and M phases, and becomes barely detectable in the early G(1) phase by a proteolytic control during mitotic exit. This tight regulation is important for providing the correct pool of dTTP for DNA synthesis at the right time in the cell cycle. Here, we investigated the mechanism responsible for mitotic degradation of hTK1. We show that hTK1 is degraded via a ubiquitin-proteasome pathway in mammalian cells and that anaphase-promoting complex/cyclosome (APC/C) activator Cdh1 is not only a necessary but also a rate-limiting factor for mitotic degradation of hTK1. Furthermore, a KEN box sequence located in the C-terminal region of hTK1 is required for its mitotic degradation and interaction capability with Cdh1. By in vitro ubiquitinylation assays, we demonstrated that hTK1 is targeted for degradation by the APC/C-Cdh1 ubiquitin ligase dependent on this KEN box motif. Taken together, we concluded that activation of the APC/C-Cdh1 complex during mitotic exit controls timing of hTK1 destruction, thus effectively minimizing dTTP formation from the salvage pathway in the early G(1) phase of the cell cycle in mammalian cells.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, No. 1, Section 1 Jen-Ai Road, Taipei 100, Taiwan, Republic of China
| | | |
Collapse
|