1
|
Lee JK, Kamran H, Lee KY. L-asparaginase induces IP3R-mediated ER Ca 2+ release by targeting µ-OR1 and PAR2 and kills acute lymphoblastic leukemia cells. Cell Death Discov 2024; 10:366. [PMID: 39147734 PMCID: PMC11327372 DOI: 10.1038/s41420-024-02142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024] Open
Abstract
L-asparaginase is a standard therapeutic option for acute lymphoblastic leukemia (aLL), a hematologic cancer that claims the most lives of pediatric cancer patients. Previously, we demonstrated that L-asparaginase kills aLL cells via a lethal rise in [Ca2+]i due to IP3R-mediated ER Ca2+ release followed by calpain-1-Bid-caspase-3/12 activation (Blood, 133, 2222-2232). However, upstream targets of L-asparaginase that trigger IP3R-mediated ER Ca2+ release remain elusive. Here, we show that L-asparaginase targets µ-OR1 and PAR2 and induces IP3R-mediated ER Ca2+ release in aLL cells. In doing so, µ-OR1 plays a major role while PAR2 plays a minor role. Utilizing PAR2- and µ-OR1-knockdown cells, we demonstrate that L-asparaginase stimulation of µ-OR1 and PAR2 relays its signal via Gαi and Gαq, respectively. In PAR2-knockdown cells, stimulation of adenylate cyclase with forskolin or treatment with 8-CPT-cAMP reduces L-asparaginase-induced µ-OR1-mediated ER Ca2+ release, suggesting that activation of µ-OR1 negatively regulates AC and cAMP. In addition, the PKA inhibitor 14-22 amide (myr) alone evokes ER Ca2+ release, and subsequent L-asparaginase treatment does not induce further ER Ca2+ release, indicating the involvement of PKA inhibition in L-asparaginase-induced µ-OR1-mediated ER Ca2+ release, which can bypass the L-asparaginase-µ-OR1-AC-cAMP loop. This coincides with (a) the decreases in PKA-dependent inhibitory PLCβ3 Ser1105 phosphorylation, which prompts PLCβ3 activation and ER Ca2+ release, and (b) BAD Ser118 phosphorylation, which leads to caspase activation and apoptosis. Thus, our findings offer new insights into the Ca2+-mediated mechanisms behind L-asparaginase-induced aLL cell apoptosis and suggest that PKA may be targeted for therapeutic intervention for aLL.
Collapse
Affiliation(s)
- Jung Kwon Lee
- Department of Cell Biology & Anatomy, Arnie Charbonneau Cancer and Alberta Children's Hospital Research Institutes, University of Calgary, Calgary, AB, Canada
| | - Hamza Kamran
- Department of Cell Biology & Anatomy, Arnie Charbonneau Cancer and Alberta Children's Hospital Research Institutes, University of Calgary, Calgary, AB, Canada
| | - Ki-Young Lee
- Department of Cell Biology & Anatomy, Arnie Charbonneau Cancer and Alberta Children's Hospital Research Institutes, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
2
|
Alexandrova SS, Gladilina YA, Pokrovskaya MV, Sokolov NN, Zhdanov DD. [Mechanisms of development of side effects and drug resistance to asparaginase and ways to overcome them]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:104-116. [PMID: 35485484 DOI: 10.18097/pbmc20226802104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Asparaginase is one of the most important chemotherapeutic agents against acute lymphoblastic leukemia, the most common form of blood cancer. To date, both asparaginases from E. coli and Dickeya dadantii (formerly known as Erwinia chrysanthemi), used in hematology, induce chemoresistance in cancer cells and side effects in the form of hypersensitivity of immune reactions. Leukemic cells may be resistant to asparaginase due to the increased activity of asparagine synthetase and other mechanisms associated with resistance to asparaginase. Therefore, the search for new sources of L-asparaginases with improved pharmacological properties remains a promising and prospective study. This article discusses the mechanisms of development of resistance and drug resistance to L-asparaginase, as well as possible ways to overcome them.
Collapse
Affiliation(s)
| | | | | | - N N Sokolov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
3
|
Amino Acid Metabolism in Cancer Drug Resistance. Cells 2022; 11:cells11010140. [PMID: 35011702 PMCID: PMC8750102 DOI: 10.3390/cells11010140] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
Despite the numerous investigations on resistance mechanisms, drug resistance in cancer therapies still limits favorable outcomes in cancer patients. The complexities of the inherent characteristics of tumors, such as tumor heterogeneity and the complicated interaction within the tumor microenvironment, still hinder efforts to overcome drug resistance in cancer cells, requiring innovative approaches. In this review, we describe recent studies offering evidence for the essential roles of amino acid metabolism in driving drug resistance in cancer cells. Amino acids support cancer cells in counteracting therapies by maintaining redox homeostasis, sustaining biosynthetic processes, regulating epigenetic modification, and providing metabolic intermediates for energy generation. In addition, amino acid metabolism impacts anticancer immune responses, creating an immunosuppressive or immunoeffective microenvironment. A comprehensive understanding of amino acid metabolism as it relates to therapeutic resistance mechanisms will improve anticancer therapeutic strategies.
Collapse
|
4
|
Okuda K, Umemura A, Kataoka S, Yano K, Takahashi A, Okishio S, Taketani H, Seko Y, Nishikawa T, Yamaguchi K, Moriguchi M, Nakagawa H, Liu Y, Mitsumoto Y, Kanbara Y, Shima T, Okanoue T, Itoh Y. Enhanced Antitumor Effect in Liver Cancer by Amino Acid Depletion-Induced Oxidative Stress. Front Oncol 2021; 11:758549. [PMID: 34796113 PMCID: PMC8593418 DOI: 10.3389/fonc.2021.758549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. HCC cells consume large amounts of glutamine to survive, but can adapt to glutamine depletion in the presence of an exogenous asparagine. L-asparaginase (ASNase) converts glutamine and asparagine to glutamate and aspartate, respectively, and has been used to treat leukemia. Here we examined the effects of ASNase treatment on HCC cells and explored the potential impact of combining ASNase with the tyrosine kinase inhibitor lenvatinib (Len) for HCC treatment. Cell viability and death of HCC cell lines treated with either Len or ASNase alone or with Len and ASNase combined were determined. We assessed mRNA and protein expression levels of glutamine synthetase (GS) and asparagine synthetase (ASNS) by real-time quantitative PCR and immunoblotting. The antitumor effect of the combination therapy relative to Len or ASNase monotherapy was also evaluated in a xenograft tumor mouse model. ASNase treatment inhibited growth of SNU387 and SNU398 HCC cells, which have low GS and high ASNS expression levels, respectively, but did not clearly inhibit growth of the other cell lines. Len plus ASNase combination therapy synergistically inhibited proliferation and induced oxidative stress leading to cell death of some HCC cells lines. However, cell death of Huh7 cells, which express ASCT2, an important glutamine transporter for cancer cells, was not affected by the combination treatment. In a xenograft model, Len combined with ASNase significantly attenuated tumor development relative to mice treated with Len or ASNase alone. ASNase-mediated targeting of two amino acids, glutamine and asparagine, which are indispensable for HCC survival, induces oxidative stress and can be a novel cancer treatment option that exerts a synergistic effect when used in combination with Len.
Collapse
Affiliation(s)
- Keiichiro Okuda
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Umemura
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Seita Kataoka
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kota Yano
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Aya Takahashi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinya Okishio
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroyoshi Taketani
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuya Seko
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taichiro Nishikawa
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kanji Yamaguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihisa Moriguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Yu Liu
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuhide Mitsumoto
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Suita, Japan
| | - Yoshihiro Kanbara
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Suita, Japan
| | - Toshihide Shima
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Suita, Japan
| | - Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Suita, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
5
|
Mutant p53-reactivating compound APR-246 synergizes with asparaginase in inducing growth suppression in acute lymphoblastic leukemia cells. Cell Death Dis 2021; 12:709. [PMID: 34267184 PMCID: PMC8282662 DOI: 10.1038/s41419-021-03988-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Asparaginase depletes extracellular asparagine in the blood and is an important treatment for acute lymphoblastic leukemia (ALL) due to asparagine auxotrophy of ALL blasts. Unfortunately, resistance occurs and has been linked to expression of the enzyme asparagine synthetase (ASNS), which generates asparagine from intracellular sources. Although TP53 is the most frequently mutated gene in cancer overall, TP53 mutations are rare in ALL. However, TP53 mutation is associated with poor therapy response and occurs at higher frequency in relapsed ALL. The mutant p53-reactivating compound APR-246 (Eprenetapopt/PRIMA-1Met) is currently being tested in phase II and III clinical trials in several hematological malignancies with mutant TP53. Here we present CEllular Thermal Shift Assay (CETSA) data indicating that ASNS is a direct or indirect target of APR-246 via the active product methylene quinuclidinone (MQ). Furthermore, combination treatment with asparaginase and APR-246 resulted in synergistic growth suppression in ALL cell lines. Our results thus suggest a potential novel treatment strategy for ALL.
Collapse
|
6
|
Jiang J, Batra S, Zhang J. Asparagine: A Metabolite to Be Targeted in Cancers. Metabolites 2021; 11:metabo11060402. [PMID: 34205460 PMCID: PMC8234323 DOI: 10.3390/metabo11060402] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 01/18/2023] Open
Abstract
Amino acids play central roles in cancer progression beyond their function as building blocks for protein synthesis. Thus, targeting amino acid acquisition and utilization has been proved to be therapeutically beneficial in various pre-clinical models. In this regard, depletion of circulating asparagine, a nonessential amino acid, by L-asparaginase has been used in treating pediatric acute lymphoblastic leukemia (ALL) for decades. Of interest, unlike most solid tumor cells, ALL cells lack the ability to synthesize their own asparagine de novo effectively. However, only until recently, growing evidence suggests that solid tumor cells strive to acquire adequate amounts of asparagine to support tumor progression. This process is subjected to the regulation at various levels, including oncogenic signal, tumor-niche interaction, intratumor heterogeneity and dietary accessibility. We will review the literature on L-asparaginase-based therapy as well as recent understanding of asparagine metabolism in solid tumor progression, with the hope of shedding light into a broader cancer therapeutic strategy by perturbing its acquisition and utilization.
Collapse
Affiliation(s)
- Jie Jiang
- Herman B Wells Center for Pediatric Research, School of Medicine, Indiana University, Indianapolis, IN 46202, USA;
| | - Sandeep Batra
- Riley Hospital for Children at Indiana University Health; Indianapolis, IN 46202, USA
- Correspondence: (S.B.); (J.Z.)
| | - Ji Zhang
- Herman B Wells Center for Pediatric Research, School of Medicine, Indiana University, Indianapolis, IN 46202, USA;
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University; Indianapolis, IN 46202, USA
- Correspondence: (S.B.); (J.Z.)
| |
Collapse
|
7
|
Kuo MT, Chen HHW, Feun LG, Savaraj N. Targeting the Proline-Glutamine-Asparagine-Arginine Metabolic Axis in Amino Acid Starvation Cancer Therapy. Pharmaceuticals (Basel) 2021; 14:ph14010072. [PMID: 33477430 PMCID: PMC7830038 DOI: 10.3390/ph14010072] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Proline, glutamine, asparagine, and arginine are conditionally non-essential amino acids that can be produced in our body. However, they are essential for the growth of highly proliferative cells such as cancers. Many cancers express reduced levels of these amino acids and thus require import from the environment. Meanwhile, the biosynthesis of these amino acids is inter-connected but can be intervened individually through the inhibition of key enzymes of the biosynthesis of these amino acids, resulting in amino acid starvation and cell death. Amino acid starvation strategies have been in various stages of clinical applications. Targeting asparagine using asparaginase has been approved for treating acute lymphoblastic leukemia. Targeting glutamine and arginine starvations are in various stages of clinical trials, and targeting proline starvation is in preclinical development. The most important obstacle of these therapies is drug resistance, which is mostly due to reactivation of the key enzymes involved in biosynthesis of the targeted amino acids and reprogramming of compensatory survival pathways via transcriptional, epigenetic, and post-translational mechanisms. Here, we review the interactive regulatory mechanisms that control cellular levels of these amino acids for amino acid starvation therapy and how drug resistance is evolved underlying treatment failure.
Collapse
Affiliation(s)
- Macus Tien Kuo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence:
| | - Helen H. W. Chen
- Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan;
| | - Lynn G. Feun
- Department of Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Niramol Savaraj
- Division of Hematology and Oncology, Miami Veterans Affairs Heaithcare System, Miami, FL 33136, USA;
| |
Collapse
|
8
|
Guarecuco R, Williams RT, Baudrier L, La K, Passarelli MC, Ekizoglu N, Mestanoglu M, Alwaseem H, Rostandy B, Fidelin J, Garcia-Bermudez J, Molina H, Birsoy K. Dietary thiamine influences l-asparaginase sensitivity in a subset of leukemia cells. SCIENCE ADVANCES 2020; 6:6/41/eabc7120. [PMID: 33036978 PMCID: PMC7546708 DOI: 10.1126/sciadv.abc7120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Tumor environment influences anticancer therapy response but which extracellular nutrients affect drug sensitivity is largely unknown. Using functional genomics, we determine modifiers of l-asparaginase (ASNase) response and identify thiamine pyrophosphate kinase 1 as a metabolic dependency under ASNase treatment. While thiamine is generally not limiting for cell proliferation, a DNA-barcode competition assay identifies leukemia cell lines that grow suboptimally under low thiamine and are characterized by low expression of solute carrier family 19 member 2 (SLC19A2), a thiamine transporter. SLC19A2 is necessary for optimal growth and ASNase resistance, when standard medium thiamine is lowered ~100-fold to human plasma concentrations. In addition, humanizing blood thiamine content of mice through diet sensitizes SLC19A2-low leukemia cells to ASNase in vivo. Together, our work reveals that thiamine utilization is a determinant of ASNase response for some cancer cells and that oversupplying vitamins may affect therapeutic response in leukemia.
Collapse
Affiliation(s)
- Rohiverth Guarecuco
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Robert T Williams
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Lou Baudrier
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Konnor La
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY 10065, USA
- Tri-Institutional Program in Computational Biology and Medicine, New York, NY 10065, USA
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
| | - Maria C Passarelli
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Naz Ekizoglu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY 10065, USA
- Bahçeşehir University School of Medicine, Istanbul, Turkey
| | - Mert Mestanoglu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY 10065, USA
- Bahçeşehir University School of Medicine, Istanbul, Turkey
| | - Hanan Alwaseem
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Bety Rostandy
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Justine Fidelin
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Javier Garcia-Bermudez
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
9
|
Radadiya A, Zhu W, Coricello A, Alcaro S, Richards NGJ. Improving the Treatment of Acute Lymphoblastic Leukemia. Biochemistry 2020; 59:3193-3200. [PMID: 32786406 PMCID: PMC7497903 DOI: 10.1021/acs.biochem.0c00354] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
l-Asparaginase (EC 3.5.1.1) was first used as a component of combination drug therapies to treat acute lymphoblastic leukemia (ALL), a cancer of the blood and bone marrow, almost 50 years ago. Administering this enzyme to reduce asparagine levels in the blood is a cornerstone of modern clinical protocols for ALL; indeed, this remains the only successful example of a therapy targeted against a specific metabolic weakness in any form of cancer. Three problems, however, constrain the clinical use of l-asparaginase. First, a type II bacterial variant of l-asparaginase is administered to patients, the majority of whom are children, which produces an immune response thereby limiting the time over which the enzyme can be tolerated. Second, l-asparaginase is subject to proteolytic degradation in the blood. Third, toxic side effects are observed, which may be correlated with the l-glutaminase activity of the enzyme. This Perspective will outline how asparagine depletion negatively impacts the growth of leukemic blasts, discuss the structure and mechanism of l-asparaginase, and briefly describe the clinical use of chemically modified forms of clinically useful l-asparaginases, such as Asparlas, which was recently given FDA approval for use in children (babies to young adults) as part of multidrug treatments for ALL. Finally, we review ongoing efforts to engineer l-asparaginase variants with improved therapeutic properties and briefly detail emerging, alternate strategies for the treatment of forms of ALL that are resistant to asparagine depletion.
Collapse
Affiliation(s)
- Ashish Radadiya
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K
| | - Wen Zhu
- Department of Chemistry and California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
| | - Adriana Coricello
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K.,Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, 88100 Catanzaro, Italy.,Net4Science, Università "Magna Græcia" di Catanzaro, 88100 Catanzaro, Italy
| | - Nigel G J Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K.,Foundation for Applied Molecular Evolution, 13079 Progress Boulevard, Alachua, Florida 32615, United States
| |
Collapse
|
10
|
Williams RT, Guarecuco R, Gates LA, Barrows D, Passarelli MC, Carey B, Baudrier L, Jeewajee S, La K, Prizer B, Malik S, Garcia-Bermudez J, Zhu XG, Cantor J, Molina H, Carroll T, Roeder RG, Abdel-Wahab O, Allis CD, Birsoy K. ZBTB1 Regulates Asparagine Synthesis and Leukemia Cell Response to L-Asparaginase. Cell Metab 2020; 31:852-861.e6. [PMID: 32268116 PMCID: PMC7219601 DOI: 10.1016/j.cmet.2020.03.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/13/2020] [Accepted: 03/05/2020] [Indexed: 01/23/2023]
Abstract
Activating transcription factor 4 (ATF4) is a master transcriptional regulator of the integrated stress response (ISR) that enables cell survival under nutrient stress. The mechanisms by which ATF4 couples metabolic stresses to specific transcriptional outputs remain unknown. Using functional genomics, we identified transcription factors that regulate the responses to distinct amino acid deprivation conditions. While ATF4 is universally required under amino acid starvation, our screens yielded a transcription factor, Zinc Finger and BTB domain-containing protein 1 (ZBTB1), as uniquely essential under asparagine deprivation. ZBTB1 knockout cells are unable to synthesize asparagine due to reduced expression of asparagine synthetase (ASNS), the enzyme responsible for asparagine synthesis. Mechanistically, ZBTB1 binds to the ASNS promoter and promotes ASNS transcription. Finally, loss of ZBTB1 sensitizes therapy-resistant T cell leukemia cells to L-asparaginase, a chemotherapeutic that depletes serum asparagine. Our work reveals a critical regulator of the nutrient stress response that may be of therapeutic value.
Collapse
Affiliation(s)
- Robert T Williams
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Rohiverth Guarecuco
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Leah A Gates
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Douglas Barrows
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Maria C Passarelli
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Bryce Carey
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Lou Baudrier
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Swarna Jeewajee
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Konnor La
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Benjamin Prizer
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Sohail Malik
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Javier Garcia-Bermudez
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Xiphias Ge Zhu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Jason Cantor
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Robert G Roeder
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
11
|
Chiu M, Taurino G, Bianchi MG, Kilberg MS, Bussolati O. Asparagine Synthetase in Cancer: Beyond Acute Lymphoblastic Leukemia. Front Oncol 2020; 9:1480. [PMID: 31998641 PMCID: PMC6962308 DOI: 10.3389/fonc.2019.01480] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Asparagine Synthetase (ASNS) catalyzes the synthesis of the non-essential amino acid asparagine (Asn) from aspartate (Asp) and glutamine (Gln). ASNS expression is highly regulated at the transcriptional level, being induced by both the Amino Acid Response (AAR) and the Unfolded Protein Response (UPR) pathways. Lack of ASNS protein expression is a hallmark of Acute Lymphoblastic Leukemia (ALL) blasts, which, therefore, are auxotrophic for Asn. This peculiarity is the rationale for the use of bacterial L-Asparaginase (ASNase) for ALL therapy, the first example of anti-cancer treatment targeting a tumor-specific metabolic feature. Other hematological and solid cancers express low levels of ASNS and, therefore, should also be Asn auxotrophs and ASNase sensitive. Conversely, in the last few years, several reports indicate that in some cancer types ASNS is overexpressed, promoting cell proliferation, chemoresistance, and a metastatic behavior. However, enhanced ASNS activity may constitute a metabolic vulnerability in selected cancer models, suggesting a variable and tumor-specific role of the enzyme in cancer. Recent evidence indicates that, beyond its canonical role in protein synthesis, Asn may have additional regulatory functions. These observations prompt a re-appreciation of ASNS activity in the biology of normal and cancer tissues, with particular attention to the fueling of Asn exchange between cancer cells and the tumor microenvironment.
Collapse
Affiliation(s)
- Martina Chiu
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Massimiliano G. Bianchi
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Michael S. Kilberg
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Ovidio Bussolati
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
12
|
Wrona E, Jakubowska J, Pawlik B, Pastorczak A, Madzio J, Lejman M, Sędek Ł, Kowalczyk J, Szczepański T, Młynarski W. Gene expression of ASNS, LGMN and CTSB is elevated in a subgroup of childhood BCP-ALL with PAX5 deletion. Oncol Lett 2019; 18:6926-6932. [PMID: 31807194 DOI: 10.3892/ol.2019.11046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 08/30/2019] [Indexed: 12/31/2022] Open
Abstract
Resistance to L-asparaginase (L-asp) is a major contributor to poor treatment outcomes of several subtypes of childhood B cell precursor acute lymphoblastic leukemia (BCP-ALL). Asparagine synthetase (ASNS), legumain (LGMN) and cathepsin B (CTSB) serve a key role in L-asp resistance. The association between genetic subtypes of BCP-ALL and the expression of ASNS, LGMN and CTSB may elucidate the mechanisms of treatment failure. Bone marrow samples of 52 children newly diagnosed with BCP-ALL were screened for major genetic abnormalities and ASNS, LGMN and CTSB gene expression levels. The cohort was further divided into groups corresponding to the key genetic aberrations occurring in BCP-ALL: Breakpoint cluster region and Abelson murine leukemia viral oncogene homolog 1 fusion; hyperdiploidy, hypodiploidy, ETS variant 6 and runt-related transcription factor 1 fusion and other BCP-ALL with no primary genetic aberration identified. A subgroup analysis based on the differences in copy number variations demonstrated a significant increase of ASNS, LGMN and CTSB median expression in other BCP-ALL cases with paired box 5 (PAX5) deletion (P=0.0117; P=0.0036; P<0.0001, respectively) compared with those with wild-type PAX5. Patients with high ASNS expression exhibited longer relapse-free survival (RFS) compared with those with low ASNS levels (P=0.0315; HR, 0.19; 95% CI, 0.04-0.86); the 5-year RFS for patients in the high ASNS expression group was 90.15% (95% CI, 87.90-92.40%). Despite the impact on ASNS, LGMN and CTSB expression, PAX5 deletion did not influence RFS in the other BCP-ALL group (P=0.6839). Therefore, the results of the present study revealed high levels of ASNS, LGMN and CTSB expression in the other BCP-ALL group with concomitant PAX5 deletion and no subsequent deterioration in 5-year RFS. High ASNS expression level, as a single factor, was strongly associated with an improved outcome.
Collapse
Affiliation(s)
- Ewa Wrona
- Department of Chemotherapy, Medical University of Lodz, Lodz 91-738, Poland
| | - Justyna Jakubowska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz 91-738, Poland
| | - Bartłomiej Pawlik
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz 91-738, Poland
| | - Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz 91-738, Poland
| | - Joanna Madzio
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz 91-738, Poland
| | - Monika Lejman
- Department of Pediatric Hematology and Oncology, Medical University of Lublin, Lublin 20-093, Poland
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Zabrze, Katowice 40-752, Poland
| | - Jerzy Kowalczyk
- Department of Pediatric Hematology and Oncology, Medical University of Lublin, Lublin 20-093, Poland
| | - Tomasz Szczepański
- Department of Pediatric Hematology and Oncology, Medical University of Silesia in Katowice, Zabrze, Katowice 40-752, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz 91-738, Poland
| |
Collapse
|
13
|
Amino acid metabolism in hematologic malignancies and the era of targeted therapy. Blood 2019; 134:1014-1023. [PMID: 31416801 DOI: 10.1182/blood.2019001034] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023] Open
Abstract
Tumor cells rewire metabolic pathways to adapt to their increased nutritional demands for energy, reducing equivalents, and cellular biosynthesis. Alternations in amino acid metabolism are 1 modality for satisfying those demands. Amino acids are not only components of proteins but also intermediate metabolites fueling multiple biosynthetic pathways. Amino acid-depletion therapies target amino acid uptake and catabolism using heterologous enzymes or recombinant or engineered human enzymes. Notably, such therapies have minimal effect on normal cells due to their lower demand for amino acids compared with tumor cells and their ability to synthesize the targeted amino acids under conditions of nutrient stress. Here, we review novel aspects of amino acid metabolism in hematologic malignancies and deprivation strategies, focusing on 4 key amino acids: arginine, asparagine, glutamine, and cysteine. We also present the roles of amino acid metabolism in the immunosuppressive tumor microenvironment and in drug resistance. This summary also offers an argument for the reclassification of amino acid-depleting enzymes as targeted therapeutic agents.
Collapse
|
14
|
HAP1 loss confers l-asparaginase resistance in ALL by downregulating the calpain-1-Bid-caspase-3/12 pathway. Blood 2019; 133:2222-2232. [PMID: 30819925 DOI: 10.1182/blood-2018-12-890236] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
l-Asparaginase (l-ASNase) is a strategic component of treatment protocols for acute lymphoblastic leukemia (ALL). It causes asparagine deficit, resulting in protein synthesis inhibition and subsequent leukemic cell death and ALL remission. However, patients often relapse because of the development of resistance, but the underlying mechanism of ALL cell resistance to l-asparaginase remains unknown. Through unbiased genome-wide RNA interference screening, we identified huntingtin associated protein 1 (HAP1) as an ALL biomarker for l-asparaginase resistance. Knocking down HAP1 induces l-asparaginase resistance. HAP1 interacts with huntingtin and the intracellular Ca2+ channel, inositol 1,4,5-triphosphate receptor to form a ternary complex that mediates endoplasmic reticulum (ER) Ca2+ release upon stimulation with inositol 1,4,5-triphosphate3 Loss of HAP1 prevents the formation of the ternary complex and thus l-asparaginase-mediated ER Ca2+ release. HAP1 loss also inhibits external Ca2+ entry, blocking an excessive rise in [Ca2+]i, and reduces activation of the Ca2+-dependent calpain-1, Bid, and caspase-3 and caspase-12, leading to reduced number of apoptotic cells. These findings indicate that HAP1 loss prevents l-asparaginase-induced apoptosis through downregulation of the Ca2+-mediated calpain-1-Bid-caspase-3/12 apoptotic pathway. Treatment with BAPTA-AM [1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester)] reverses the l-asparaginase apoptotic effect in control cells, supporting a link between l-asparaginase-induced [Ca2+]i increase and apoptotic cell death. Consistent with these findings, ALL patient leukemic cells with lower HAP1 levels showed resistance to l-asparaginase, indicating the clinical relevance of HAP1 loss in the development of l-asparaginase resistance, and pointing to HAP1 as a functional l-asparaginase resistance biomarker that may be used for the design of effective treatment of l-asparaginase-resistant ALL.
Collapse
|
15
|
Meneguetti GP, Santos JHPM, Obreque KMT, Barbosa CMV, Monteiro G, Farsky SHP, Marim de Oliveira A, Angeli CB, Palmisano G, Ventura SPM, Pessoa-Junior A, de Oliveira Rangel-Yagui C. Novel site-specific PEGylated L-asparaginase. PLoS One 2019; 14:e0211951. [PMID: 30753228 PMCID: PMC6372183 DOI: 10.1371/journal.pone.0211951] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/24/2019] [Indexed: 12/20/2022] Open
Abstract
L-asparaginase (ASNase) from Escherichia coli is currently used in some countries in its PEGylated form (ONCASPAR, pegaspargase) to treat acute lymphoblastic leukemia (ALL). PEGylation refers to the covalent attachment of poly(ethylene) glycol to the protein drug and it not only reduces the immune system activation but also decreases degradation by plasmatic proteases. However, pegaspargase is randomly PEGylated and, consequently, with a high degree of polydispersity in its final formulation. In this work we developed a site-specific N-terminus PEGylation protocol for ASNase. The monoPEG-ASNase was purified by anionic followed by size exclusion chromatography to a final purity of 99%. The highest yield of monoPEG-ASNase of 42% was obtained by the protein reaction with methoxy polyethylene glycol-carboxymethyl N-hydroxysuccinimidyl ester (10kDa) in 100 mM PBS at pH 7.5 and PEG:ASNase ratio of 25:1. The monoPEG-ASNase was found to maintain enzymatic stability for more days than ASNase, also was resistant to the plasma proteases like asparaginyl endopeptidase and cathepsin B. Additionally, monoPEG-ASNase was found to be potent against leukemic cell lines (MOLT-4 and REH) in vitro like polyPEG-ASNase. monoPEG-ASNase demonstrates its potential as a novel option for ALL treatment, being an inventive novelty that maintains the benefits of the current enzyme and solves challenges.
Collapse
Affiliation(s)
| | - João Henrique Picado Madalena Santos
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | | | - Gisele Monteiro
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil
| | | | | | - Claudia Blanes Angeli
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Adalberto Pessoa-Junior
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
16
|
Assessment of l-Asparaginase Pharmacodynamics in Mouse Models of Cancer. Metabolites 2019; 9:metabo9010010. [PMID: 30634463 PMCID: PMC6359345 DOI: 10.3390/metabo9010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/24/2018] [Accepted: 01/04/2019] [Indexed: 11/21/2022] Open
Abstract
l-asparaginase (ASNase) is a metabolism-targeted anti-neoplastic agent used to treat acute lymphoblastic leukemia (ALL). ASNase’s anticancer activity results from the enzymatic depletion of asparagine (Asn) and glutamine (Gln), which are converted to aspartic acid (Asp) and glutamic acid (Glu), respectively, in the blood. Unfortunately, accurate assessment of the in vivo pharmacodynamics (PD) of ASNase is challenging because of the following reasons: (i) ASNase is resilient to deactivation; (ii) ASNase catalytic efficiency is very high; and (iii) the PD markers Asn and Gln are depleted ex vivo in blood samples containing ASNase. To address those issues and facilitate longitudinal studies in individual mice for ASNase PD studies, we present here a new LC-MS/MS bioanalytical method that incorporates rapid quenching of ASNase for measurement of Asn, Asp, Gln, and Glu in just 10 µL of whole blood, with limits of detection (s:n ≥ 10:1) estimated to be 2.3, 3.5, 0.8, and 0.5 µM, respectively. We tested the suitability of the method in a 5-day, longitudinal PD study in mice and found the method to be simple to perform with sufficient accuracy and precision for whole blood measurements. Overall, the method increases the density of data that can be acquired from a single animal and will facilitate optimization of novel ASNase treatment regimens and/or the development of new ASNase variants with desired kinetic properties.
Collapse
|
17
|
Liu WJ, Wang H, Peng XW, Wang WD, Liu NW, Wang Y, Lu Y. Asparagine synthetase expression is associated with the sensitivity to asparaginase in extranodal natural killer/T-cell lymphoma in vivo and in vitro. Onco Targets Ther 2018; 11:6605-6615. [PMID: 30349294 PMCID: PMC6188207 DOI: 10.2147/ott.s155930] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Although asparagine synthetase (AsnS) is associated with drug resistance in leukemia, its function in extranodal natural killer (NK)/T-cell lymphoma (ENKTL) remains unclear. Methods The present study investigated the relationship between baseline AsnS mRNA levels and response to asparaginase in ENKTL cell lines. It also determined whether upregulating or downregulating the AsnS mRNA level induces or reverses asparaginase-resistant phenotype. Results Interestingly, considerable differences were observed in the sensitivity to asparaginase of the five ENKTL cell lines. The AsnS expression levels were positively correlated with the IC50 values. In addition, the asparaginase resistance was induced or reversed by upregulating or downregulating the AsnS mRNA level in vivo and in vitro. Functional analyses indicated that AsnS did not affect the proliferation and apoptosis of ENKTL cells in the absence of asparaginase. Conclusion Together, the data stress the importance of AsnS in the sensitivity to asparaginase in ENKTL and suggest a different therapeutic strategy for patients with a different level of AsnS expression.
Collapse
Affiliation(s)
- Wen-Jian Liu
- Laboratory of Hematology Oncologytate, Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China, .,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China,
| | - Hua Wang
- Laboratory of Hematology Oncologytate, Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China, .,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China,
| | - Xiong-Wen Peng
- Laboratory of Hematology Oncologytate, Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China, .,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China,
| | - Wei-da Wang
- Laboratory of Hematology Oncologytate, Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China, .,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China,
| | - Na-Wei Liu
- Laboratory of Hematology Oncologytate, Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China, .,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China,
| | - Yang Wang
- Laboratory of Hematology Oncologytate, Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China, .,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China,
| | - Yue Lu
- Laboratory of Hematology Oncologytate, Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China, .,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China,
| |
Collapse
|
18
|
Schleinitz D, Seidel A, Stassart R, Klammt J, Hirrlinger PG, Winkler U, Köhler S, Heiker JT, Schönauer R, Bialek J, Krohn K, Hoffmann K, Kovacs P, Hirrlinger J. Novel Mutations in the Asparagine Synthetase Gene ( ASNS) Associated With Microcephaly. Front Genet 2018; 9:245. [PMID: 30057589 PMCID: PMC6053511 DOI: 10.3389/fgene.2018.00245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/22/2018] [Indexed: 12/30/2022] Open
Abstract
Microcephaly is a devastating condition defined by a small head and small brain compared to the age- and sex-matched population. Mutations in a number of different genes causative for microcephaly have been identified, e.g., MCPH1, WDR62, and ASPM. Recently, mutations in the gene encoding the enzyme asparagine synthetase (ASNS) were associated to microcephaly and so far 24 different mutations in ASNS causing microcephaly have been described. In a family with two affected girls, we identified novel compound heterozygous variants in ASNS (c.1165G > C, p.E389Q and c.601delA, p.M201Wfs∗28). The first mutation (E389Q) is a missense mutation resulting in the replacement of a glutamate residue evolutionary conserved from Escherichia coli to Homo sapiens by glutamine. Protein modeling based on the known crystal structure of ASNS of E. coli predicted a destabilization of the protein by E389Q. The second mutation (p.M201Wfs∗28) results in a premature stop codon after amino acid 227, thereby truncating more than half of the protein. The novel variants expand the growing list of microcephaly causing mutations in ASNS.
Collapse
Affiliation(s)
- Dorit Schleinitz
- IFB AdiposityDiseases, Leipzig University Medical Center, University of Leipzig, Leipzig, Germany
| | - Anna Seidel
- Division of Nephrology, Department of Internal Medicine, Leipzig University Medical Center, University of Leipzig, Leipzig, Germany
| | - Ruth Stassart
- Division of Neuropathology, Department of Diagnostic, Leipzig University Medical Center, University of Leipzig, Leipzig, Germany
| | - Jürgen Klammt
- Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Petra G Hirrlinger
- Medizinisch-Experimentelles Zentrum, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Ulrike Winkler
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Susanne Köhler
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - John T Heiker
- IFB AdiposityDiseases, Leipzig University Medical Center, University of Leipzig, Leipzig, Germany.,Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Ria Schönauer
- Division of Nephrology, Department of Internal Medicine, Leipzig University Medical Center, University of Leipzig, Leipzig, Germany
| | - Joanna Bialek
- Institute of Human Genetics, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Knut Krohn
- Core Unit DNA Technologien, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Katrin Hoffmann
- Institute of Human Genetics, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Peter Kovacs
- IFB AdiposityDiseases, Leipzig University Medical Center, University of Leipzig, Leipzig, Germany
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
19
|
Sacharow SJ, Dudenhausen EE, Lomelino CL, Rodan L, El Achkar CM, Olson HE, Genetti CA, Agrawal PB, McKenna R, Kilberg MS. Characterization of a novel variant in siblings with Asparagine Synthetase Deficiency. Mol Genet Metab 2018; 123:317-325. [PMID: 29279279 PMCID: PMC5832599 DOI: 10.1016/j.ymgme.2017.12.433] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022]
Abstract
Asparagine Synthetase Deficiency (ASD) is a recently described inborn error of metabolism caused by bi-allelic pathogenic variants in the asparagine synthetase (ASNS) gene. ASD typically presents congenitally with microcephaly and severe, often medically refractory, epilepsy. Development is generally severely affected at birth. Tone is abnormal with axial hypotonia and progressive appendicular spasticity. Hyperekplexia has been reported. Neuroimaging typically demonstrates gyral simplification, abnormal myelination, and progressive cerebral atrophy. The present report describes two siblings from consanguineous parents with a homozygous Arg49Gln variant associated with a milder form of ASD that is characterized by later onset of symptoms. Both siblings had a period of normal development before onset of seizures, and development regression. Primary fibroblast studies of the siblings and their parents document that homozygosity for Arg49Gln blocks cell growth in the absence of extracellular asparagine. Functional studies with these cells suggest no impact of the Arg49Gln variant on basal ASNS mRNA or protein levels, nor on regulation of the gene itself. Molecular modelling of the ASNS protein structure indicates that the Arg49Gln variant lies near the substrate binding site for glutamine. Collectively, the results suggest that the Arg49Gln variant affects the enzymatic function of ASNS. The clinical, cellular, and molecular observations from these siblings expand the known phenotypic spectrum of ASD.
Collapse
Affiliation(s)
- Stephanie J Sacharow
- Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Elizabeth E Dudenhausen
- Department of Biochemistry & Molecular Biology, Genetics Institute, University of Florida College of Medicine, 1200 Newell Drive, FL 32608, USA
| | - Carrie L Lomelino
- Department of Biochemistry & Molecular Biology, Genetics Institute, University of Florida College of Medicine, 1200 Newell Drive, FL 32608, USA
| | - Lance Rodan
- Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States; Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Christelle Moufawad El Achkar
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States; Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Heather E Olson
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States; Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Casie A Genetti
- Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States; Manton Center for Orphan Disease Research, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States; Manton Center for Orphan Disease Research, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States; Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Robert McKenna
- Department of Biochemistry & Molecular Biology, Genetics Institute, University of Florida College of Medicine, 1200 Newell Drive, FL 32608, USA
| | - Michael S Kilberg
- Department of Biochemistry & Molecular Biology, Genetics Institute, University of Florida College of Medicine, 1200 Newell Drive, FL 32608, USA.
| |
Collapse
|
20
|
Lomelino CL, Andring JT, McKenna R, Kilberg MS. Asparagine synthetase: Function, structure, and role in disease. J Biol Chem 2017; 292:19952-19958. [PMID: 29084849 PMCID: PMC5723983 DOI: 10.1074/jbc.r117.819060] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Asparagine synthetase (ASNS) converts aspartate and glutamine to asparagine and glutamate in an ATP-dependent reaction. ASNS is present in most, if not all, mammalian organs, but varies widely in basal expression. Human ASNS activity is highly responsive to cellular stress, primarily by increased transcription from a single gene located on chromosome 7. Elevated ASNS protein expression is associated with resistance to asparaginase therapy in childhood acute lymphoblastic leukemia. There is evidence that ASNS expression levels may also be inversely correlated with asparaginase efficacy in certain solid tumors as well. Children with mutations in the ASNS gene exhibit developmental delays, intellectual disability, microcephaly, intractable seizures, and progressive brain atrophy. Thus far, 15 unique mutations in the ASNS gene have been clinically associated with asparagine synthetase deficiency (ASD). Molecular modeling using the Escherichia coli ASNS-B structure has revealed that most of the reported ASD substitutions are located near catalytic sites or within highly conserved regions of the protein. For some ASD patients, fibroblast cell culture studies have eliminated protein and mRNA synthesis or stability as the basis for decreased proliferation.
Collapse
Affiliation(s)
- Carrie L Lomelino
- Department of Biochemistry and Molecular Biology, Shands Cancer Center, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Jacob T Andring
- Department of Biochemistry and Molecular Biology, Shands Cancer Center, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, Shands Cancer Center, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Michael S Kilberg
- Department of Biochemistry and Molecular Biology, Shands Cancer Center, College of Medicine, University of Florida, Gainesville, Florida 32610.
| |
Collapse
|
21
|
Fung MKL, Chan GCF. Drug-induced amino acid deprivation as strategy for cancer therapy. J Hematol Oncol 2017; 10:144. [PMID: 28750681 PMCID: PMC5530962 DOI: 10.1186/s13045-017-0509-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/10/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer is caused by uncontrollable growth of neoplastic cells, leading to invasion of adjacent and distant tissues resulting in death. Cancer cells have specific nutrient(s) auxotrophy and have a much higher nutrient demand compared to normal tissues. Therefore, different metabolic inhibitors or nutrient-depleting enzymes have been tested for their anti-cancer activities. We review recent available laboratory and clinical data on using various specific amino acid metabolic pathways inhibitors in treating cancers. Our focus is on glutamine, asparagine, and arginine starvation. These three amino acids are chosen due to their better scientific evidence compared to other related approaches in cancer treatment. Amino acid-specific depleting enzymes have been adopted in different standard chemotherapy protocols. Glutamine starvation by glutaminase inhibitior, transporter inhibitor, or glutamine depletion has shown to have significant anti-cancer effect in pre-clinical studies. Currently, glutaminase inhibitor is under clinical trial for testing anti-cancer efficacy. Clinical data suggests that asparagine depletion is effective in treating hematologic malignancies even as a single agent. On the other hand, arginine depletion has lower toxicity profile and can effectively reduce the level of pro-cancer biochemicals in patients as shown by ours and others’ data. This supports the clinical use of arginine depletion as anti-cancer therapy but its exact efficacy in various cancers requires further investigation. However, clinical application of these enzymes is usually hindered by common problems including allergy to these foreign proteins, off-target cytotoxicity, short half-life and rapidly emerging chemoresistance. There have been efforts to overcome these problems by modifying the drugs in different ways to circumvent these hindrance such as (1) isolate human native enzymes to reduce allergy, (2) isolate enzyme isoforms with higher specificities and efficiencies, (3) pegylate the enzymes to reduce allergy and prolong the half-lives, and (4) design drug combinations protocols to enhance the efficacy of chemotherapy by drug synergy and minimizing resistance. These improvements can potentially lead to the development of more effective anti-cancer treatment with less adverse effects and higher therapeutic efficacy.
Collapse
Affiliation(s)
- Marcus Kwong Lam Fung
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
22
|
Huang H, Vandekeere S, Kalucka J, Bierhansl L, Zecchin A, Brüning U, Visnagri A, Yuldasheva N, Goveia J, Cruys B, Brepoels K, Wyns S, Rayport S, Ghesquière B, Vinckier S, Schoonjans L, Cubbon R, Dewerchin M, Eelen G, Carmeliet P. Role of glutamine and interlinked asparagine metabolism in vessel formation. EMBO J 2017; 36:2334-2352. [PMID: 28659375 DOI: 10.15252/embj.201695518] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 12/31/2022] Open
Abstract
Endothelial cell (EC) metabolism is emerging as a regulator of angiogenesis, but the precise role of glutamine metabolism in ECs is unknown. Here, we show that depriving ECs of glutamine or inhibiting glutaminase 1 (GLS1) caused vessel sprouting defects due to impaired proliferation and migration, and reduced pathological ocular angiogenesis. Inhibition of glutamine metabolism in ECs did not cause energy distress, but impaired tricarboxylic acid (TCA) cycle anaplerosis, macromolecule production, and redox homeostasis. Only the combination of TCA cycle replenishment plus asparagine supplementation restored the metabolic aberrations and proliferation defect caused by glutamine deprivation. Mechanistically, glutamine provided nitrogen for asparagine synthesis to sustain cellular homeostasis. While ECs can take up asparagine, silencing asparagine synthetase (ASNS, which converts glutamine-derived nitrogen and aspartate to asparagine) impaired EC sprouting even in the presence of glutamine and asparagine. Asparagine further proved crucial in glutamine-deprived ECs to restore protein synthesis, suppress ER stress, and reactivate mTOR signaling. These findings reveal a novel link between endothelial glutamine and asparagine metabolism in vessel sprouting.
Collapse
Affiliation(s)
- Hongling Huang
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Saar Vandekeere
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Joanna Kalucka
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Laura Bierhansl
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Annalisa Zecchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Ulrike Brüning
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Asjad Visnagri
- Leeds Institute of Cardiovascular & Metabolic Medicine, The University of Leeds, Leeds, UK
| | - Nadira Yuldasheva
- Leeds Institute of Cardiovascular & Metabolic Medicine, The University of Leeds, Leeds, UK
| | - Jermaine Goveia
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Bert Cruys
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Katleen Brepoels
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Sabine Wyns
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Stephen Rayport
- Department of Psychiatry, Columbia University, New York, NY, USA.,Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Bart Ghesquière
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Luc Schoonjans
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Richard Cubbon
- Leeds Institute of Cardiovascular & Metabolic Medicine, The University of Leeds, Leeds, UK
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium .,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| |
Collapse
|
23
|
Koprivnikar J, McCloskey J, Faderl S. Safety, efficacy, and clinical utility of asparaginase in the treatment of adult patients with acute lymphoblastic leukemia. Onco Targets Ther 2017; 10:1413-1422. [PMID: 28331334 PMCID: PMC5348069 DOI: 10.2147/ott.s106810] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Adults with acute lymphoblastic leukemia (ALL) are known to have inferior outcomes compared to the pediatric population. Although the reasons for this are likely manyfold, the agents utilized and the increased intensity of pediatric treatments compared to adult treatments are likely significant contributing factors. Asparaginase, an enzyme that converts asparagine to aspartic acid, forms the backbone of almost all pediatric regimens and works by depleting extracellular asparagine, which ALL cells are unable to synthesize. Asparaginase toxicities, which include hypersensitivity reactions, pancreatitis, liver dysfunction, and thrombosis, have hindered its widespread use in the adult population. Here, we review the toxicity and efficacy of asparaginase in adult patients with ALL. With the proper precautions, it is a safe and effective agent in the treatment of younger adults with ALL with response rates in the frontline setting ranging from 78% to 96%, compared to most trials showing a 4-year overall survival of 50% or better. The age cutoff for consideration of treatment with pediatric-inspired regimens is not clear, but recent studies show promise particularly in the adolescent and young adult population. New formulations of asparaginase are actively in development, including erythrocyte-encapsulated asparaginase, which is designed to minimize the toxicity and improve the delivery of the drug.
Collapse
Affiliation(s)
- Jamie Koprivnikar
- Division of Leukemia, John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ, USA
| | - James McCloskey
- Division of Leukemia, John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ, USA
| | - Stefan Faderl
- Division of Leukemia, John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ, USA
| |
Collapse
|
24
|
KMT2E-ASNS: a novel relapse-specific fusion gene in early T-cell precursor acute lymphoblastic leukemia. Blood 2017; 129:1729-1732. [PMID: 28069604 DOI: 10.1182/blood-2016-10-744219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
25
|
Vert A, Castro J, Ribó M, Benito A, Vilanova M. A nuclear-directed human pancreatic ribonuclease (PE5) targets the metabolic phenotype of cancer cells. Oncotarget 2017; 7:18309-24. [PMID: 26918450 PMCID: PMC4951290 DOI: 10.18632/oncotarget.7579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/11/2016] [Indexed: 12/18/2022] Open
Abstract
Ribonucleases represent a new class of antitumor RNA-damaging drugs. However, many wild-type members of the vertebrate secreted ribonuclease family are not cytotoxic because they are not able to evade the cytosolic ribonuclease inhibitor. We previously engineered the human pancreatic ribonuclease to direct it to the cell nucleus where the inhibitor is not present. The best characterized variant is PE5 that kills cancer cells through apoptosis mediated by the p21WAF1/CIP1 induction and the inactivation of JNK. Here, we have used microarray-derived transcriptional profiling to identify PE5 regulated genes on the NCI/ADR-RES ovarian cancer cell line. RT-qPCR analyses have confirmed the expression microarray findings. The results show that PE5 cause pleiotropic effects. Among them, it is remarkable the down-regulation of multiple genes that code for enzymes involved in deregulated metabolic pathways in cancer cells.
Collapse
Affiliation(s)
- Anna Vert
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Jessica Castro
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Marc Ribó
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Antoni Benito
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Maria Vilanova
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| |
Collapse
|
26
|
Costa IM, Schultz L, de Araujo Bianchi Pedra B, Leite MSM, Farsky SHP, de Oliveira MA, Pessoa A, Monteiro G. Recombinant L-asparaginase 1 from Saccharomyces cerevisiae: an allosteric enzyme with antineoplastic activity. Sci Rep 2016; 6:36239. [PMID: 27824095 PMCID: PMC5099943 DOI: 10.1038/srep36239] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 10/12/2016] [Indexed: 01/16/2023] Open
Abstract
L-asparaginase (L-ASNase) (EC 3.5.1.1) is an important enzyme for the treatment of acute lymphoblastic leukaemia. Currently, the enzyme is obtained from bacteria, Escherichia coli and Erwinia chrysanthemi. The bacterial enzymes family is subdivided in type I and type II; nevertheless, only type II have been employed in therapeutic proceedings. However, bacterial enzymes are susceptible to induce immune responses, leading to a high incidence of adverse effects compromising the effectiveness of the treatment. Therefore, alternative sources of L-ASNase may be useful to reduce toxicity and enhance efficacy. The yeast Saccharomyces cerevisiae has the ASP1 gene responsible for encoding L-asparaginase 1 (ScASNase1), an enzyme predicted as type II, like bacterial therapeutic isoforms, but it has been poorly studied. Here we characterised ScASNase1 using a recombinant enzyme purified by affinity chromatography. ScASNase1 has specific activity of 196.2 U/mg and allosteric behaviour, like type I enzymes, but with a low K0.5 = 75 μM like therapeutic type II. We showed through site-directed mutagenesis that the T64-Y78-T141-K215 residues are involved in catalysis. Furthermore, ScASNase1 showed cytotoxicity for the MOLT-4 leukemic cell lineage. Our data show that ScASNase1 has characteristics described for the two subfamilies of l-asparaginase, types I and II, and may have promising antineoplastic properties.
Collapse
Affiliation(s)
- Iris Munhoz Costa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo/SP 05508-000, Brazil
| | - Leonardo Schultz
- Biosciences Institute, São Paulo State University - UNESP, Coastal Campus, São Vicente/SP 11330-900, Brazil
| | - Beatriz de Araujo Bianchi Pedra
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo/SP 05508-000, Brazil
| | - Mariana Silva Moreira Leite
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo/SP 05508-000, Brazil
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analysis School of Pharmaceutical Sciences, University of São Paulo, São Paulo/SP 05508-000, Brazil
| | - Marcos Antonio de Oliveira
- Biosciences Institute, São Paulo State University - UNESP, Coastal Campus, São Vicente/SP 11330-900, Brazil
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo/SP 05508-000, Brazil
| | - Gisele Monteiro
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo/SP 05508-000, Brazil
| |
Collapse
|
27
|
Toda K, Kawada K, Iwamoto M, Inamoto S, Sasazuki T, Shirasawa S, Hasegawa S, Sakai Y. Metabolic Alterations Caused by KRAS Mutations in Colorectal Cancer Contribute to Cell Adaptation to Glutamine Depletion by Upregulation of Asparagine Synthetase. Neoplasia 2016; 18:654-665. [PMID: 27764698 PMCID: PMC5071549 DOI: 10.1016/j.neo.2016.09.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 12/28/2022] Open
Abstract
A number of clinical trials have shown that KRAS mutations of colorectal cancer (CRC) can predict a lack of responses to anti-epidermal growth factor receptor-based therapy. Recently, there have been several studies to elucidate metabolism reprogramming in cancer. However, it remains to be investigated how mutated KRAS can coordinate the metabolic shift to sustain CRC tumor growth. In this study, we found that KRAS mutation in CRC caused alteration in amino acid metabolism. KRAS mutation causes a marked decrease in aspartate level and an increase in asparagine level in CRC. Using several human CRC cell lines and clinical specimens of primary CRC, we demonstrated that the expression of asparagine synthetase (ASNS), an enzyme that synthesizes asparagine from aspartate, was upregulated by mutated KRAS and that ASNS expression was induced by KRAS-activated signaling pathway, in particular PI3K-AKT-mTOR pathway. Importantly, we demonstrated that KRAS-mutant CRC cells could become adaptive to glutamine depletion through asparagine biosynthesis by ASNS and that asparagine addition could rescue the inhibited growth and viability of cells grown under the glutamine-free condition in vitro. Notably, a pronounced growth suppression of KRAS-mutant CRC was observed upon ASNS knockdown in vivo. Furthermore, combination of L-asparaginase plus rapamycin markedly suppressed the growth of KRAS-mutant CRC xenografts in vivo, whereas either L-asparaginase or rapamycin alone was not effective. These results indicate ASNS might be a novel therapeutic target against CRCs with mutated KRAS.
Collapse
Affiliation(s)
- Kosuke Toda
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| | - Masayoshi Iwamoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Susumu Inamoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | | | - Senji Shirasawa
- Departments of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Suguru Hasegawa
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; Gastroenterological Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
28
|
Thomas X, Le Jeune C. Erythrocyte encapsulated l-asparaginase (GRASPA) in acute leukemia. Int J Hematol Oncol 2016; 5:11-25. [PMID: 30302200 PMCID: PMC6172001 DOI: 10.2217/ijh-2016-0002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/19/2016] [Indexed: 11/21/2022] Open
Abstract
l-asparaginase, an enzyme originally derived from Escherichia coli, represents a major drug in the treatment of acute lymphoblastic leukemia. However, the occurrence of major adverse effects often leads to early withdrawal of the enzyme. Main side effects include immune-allergic reactions, coagulopathy, pancreatitis and hepatic disorders. Novel asparaginase formulations and alternative sources have been developed to address this issue, but the results were not totally satisfactory. l-asparaginase loaded red blood cells (RBCs; GRASPA) represent a new asparaginase presentation with reduced immunological adverse reactions. RBCs protect l-asparaginase, enhance its half-life and reduce the occurrence of adverse events. We reviewed the history, biology and clinical experiences with l-asparaginase, and the characteristics and first clinical experiences with GRASPA in the treatment of acute leukemia.
Collapse
Affiliation(s)
- Xavier Thomas
- Hospices Civils de Lyon, Hematology Department, Lyon-Sud Hospital, Bât.1G, 165 chemin du Grand Revoyet, 69495 Pierre-Bénite, France
| | - Caroline Le Jeune
- Hospices Civils de Lyon, Hematology Department, Lyon-Sud Hospital, Bât.1G, 165 chemin du Grand Revoyet, 69495 Pierre-Bénite, France
| |
Collapse
|
29
|
Wu SJ, Li YF, Wang YJ. [Expression of asparagine synthetase in relapsed or refractory extranodal NK/T cell lymphoma]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2016; 37:465-469. [PMID: 28446397 PMCID: PMC6744099 DOI: 10.3969/j.issn.1673-4254.2017.04.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To detect the expression level of asparagine synthetase (ASNS) in patients with relapsed or refractory extranodal NK/T cell lymphoma and explore its clinical significance. METHODS Ten patients with relapsed or refractory extranodal NK/T cell lymphoma admitted in our department from January, 2013 to January, 2016 were analyzed. The diagnoses were confirmed by pathological and immunohistochemical examination following failed chemotherapies in all cases. Branched DNA-liquidchip technique (bDNA-LCT) was used for detecting ASNS mRNA expression in paraffin-embedded tissue sections in the 10 cases of relapsed or refractory extranodal NK/T cell lymphoma and in 5 cases of chronic rhinitis. The correlations were analyzed between ASNS expression and the clinicopathological features and outcomes of the patients with failed chemotherapy regimens containing asparaginasum. RESULTS Six out of the 10 patients with relapsed or refractory extranodal NK/T cell lymphoma died due to diseaseprogression. The expression level of ASNS was significantly higher in the lymphoma tissues than in tissue specimens of chronic rhinitis (P<0.05). The expression level of ASNS was associated with the International Prognostic Index (P=0.023) in patients with relapsed or refractory extranodal NK/T cell lymphoma, and Kaplan-Meier curve showed that a high ASNS expression was correlated with a reduced overall survival and progression-free survival of the patients. CONCLUSION Asparaginasum-based chemotherapy regimens are recommended for treatment of relapsed or refractory extranodal NK/T cell lymphoma with low ASNS expressions.
Collapse
Affiliation(s)
- Shao-Jie Wu
- Department of Hematology, Southern Medical University, Zhujiang Hospital, Guangzhou 510282, China. E-mail:
| | | | | |
Collapse
|
30
|
Wu SJ, Li YF, Wang YJ. [Expression of asparagine synthetase in relapsed or refractory extranodal NK/T cell lymphoma]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2016; 37:465-469. [PMID: 28446397 PMCID: PMC6744099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Indexed: 07/30/2024]
Abstract
OBJECTIVE To detect the expression level of asparagine synthetase (ASNS) in patients with relapsed or refractory extranodal NK/T cell lymphoma and explore its clinical significance. METHODS Ten patients with relapsed or refractory extranodal NK/T cell lymphoma admitted in our department from January, 2013 to January, 2016 were analyzed. The diagnoses were confirmed by pathological and immunohistochemical examination following failed chemotherapies in all cases. Branched DNA-liquidchip technique (bDNA-LCT) was used for detecting ASNS mRNA expression in paraffin-embedded tissue sections in the 10 cases of relapsed or refractory extranodal NK/T cell lymphoma and in 5 cases of chronic rhinitis. The correlations were analyzed between ASNS expression and the clinicopathological features and outcomes of the patients with failed chemotherapy regimens containing asparaginasum. RESULTS Six out of the 10 patients with relapsed or refractory extranodal NK/T cell lymphoma died due to diseaseprogression. The expression level of ASNS was significantly higher in the lymphoma tissues than in tissue specimens of chronic rhinitis (P<0.05). The expression level of ASNS was associated with the International Prognostic Index (P=0.023) in patients with relapsed or refractory extranodal NK/T cell lymphoma, and Kaplan-Meier curve showed that a high ASNS expression was correlated with a reduced overall survival and progression-free survival of the patients. CONCLUSION Asparaginasum-based chemotherapy regimens are recommended for treatment of relapsed or refractory extranodal NK/T cell lymphoma with low ASNS expressions.
Collapse
Affiliation(s)
- Shao-Jie Wu
- Department of Hematology, Southern Medical University, Zhujiang Hospital, Guangzhou 510282, China. E-mail:
| | | | | |
Collapse
|
31
|
Shen QJ, Kassim H, Huang Y, Li H, Zhang J, Li G, Wang PY, Yan J, Ye F, Liu JL. Filamentation of Metabolic Enzymes in Saccharomyces cerevisiae. J Genet Genomics 2016; 43:393-404. [PMID: 27312010 PMCID: PMC4920916 DOI: 10.1016/j.jgg.2016.03.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/09/2016] [Accepted: 03/28/2016] [Indexed: 01/21/2023]
Abstract
Compartmentation via filamentation has recently emerged as a novel mechanism for metabolic regulation. In order to identify filament-forming metabolic enzymes systematically, we performed a genome-wide screening of all strains available from an open reading frame-GFP collection in Saccharomyces cerevisiae. We discovered nine novel filament-forming proteins and also confirmed those identified previously. From the 4159 strains, we found 23 proteins, mostly metabolic enzymes, which are capable of forming filaments in vivo. In silico protein-protein interaction analysis suggests that these filament-forming proteins can be clustered into several groups, including translational initiation machinery and glucose and nitrogen metabolic pathways. Using glutamine-utilising enzymes as examples, we found that the culture conditions affect the occurrence and length of the metabolic filaments. Furthermore, we found that two CTP synthases (Ura7p and Ura8p) and two asparagine synthetases (Asn1p and Asn2p) form filaments both in the cytoplasm and in the nucleus. Live imaging analyses suggest that metabolic filaments undergo sub-diffusion. Taken together, our genome-wide screening identifies additional filament-forming proteins in S. cerevisiae and suggests that filamentation of metabolic enzymes is more general than currently appreciated.
Collapse
Affiliation(s)
- Qing-Ji Shen
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Hakimi Kassim
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Yong Huang
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Hui Li
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Zhang
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Guang Li
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Peng-Ye Wang
- Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Yan
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fangfu Ye
- Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ji-Long Liu
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
| |
Collapse
|
32
|
Chien WW, Le Beux C, Rachinel N, Julien M, Lacroix CE, Allas S, Sahakian P, Cornut-Thibaut A, Lionnard L, Kucharczak J, Aouacheria A, Abribat T, Salles G. Differential mechanisms of asparaginase resistance in B-type acute lymphoblastic leukemia and malignant natural killer cell lines. Sci Rep 2015; 5:8068. [PMID: 25626693 PMCID: PMC5389037 DOI: 10.1038/srep08068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/02/2015] [Indexed: 12/02/2022] Open
Abstract
Bacterial L-asparaginase (ASNase), hydrolyzing L-asparagine (Asn), is an important drug for treating patients with acute lymphoblastic leukaemia (ALL) and natural killer (NK) cell lymphoma. Although different native or pegylated ASNase-based chemotherapy are efficient, disease relapse is frequently observed, especially in adult patients. The neo-synthesis of Asn by asparagine synthetase (AsnS) following ASNase treatment, which involves the amino acid response and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathways, is believed to be the basis of ASNase-resistance mechanisms. However, AsnS expression has not emerged as an accurate predictive factor for ASNase susceptibility. The aim of this study was to identify possible ASNase sensitivity/resistance-related genes or pathways using a new asparaginase, namely a pegylated r-crisantaspase, with a focus on classic Asn-compensatory responses and cell death under conditions of Asn/L-glutamine limitation. We show that, for B-ALL cell lines, changes in the expression of apoptosis-regulatory genes (especially NFκB-related genes) are associated with ASNase susceptibility. The response of malignant NK cell lines to ASNase may depend on Asn-compensatory mechanisms and other cellular processes such as cleavage of BCL2A1, a prosurvival member of the Bcl-2 protein family. These results suggest that according to cellular context, factors other than AsnS can influence ASNase susceptibility.
Collapse
Affiliation(s)
- Wei-Wen Chien
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Céline Le Beux
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Nicolas Rachinel
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Michel Julien
- Alizeé Pharma, 15 Chemin du Saquin, Espace Européen, Building G, 69130, Ecully, FRANCE
| | - Claire-Emmanuelle Lacroix
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Soraya Allas
- Alizeé Pharma, 15 Chemin du Saquin, Espace Européen, Building G, 69130, Ecully, FRANCE
| | - Pierre Sahakian
- Alizeé Pharma, 15 Chemin du Saquin, Espace Européen, Building G, 69130, Ecully, FRANCE
| | - Aurélie Cornut-Thibaut
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Loïc Lionnard
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Jérôme Kucharczak
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Abdel Aouacheria
- Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE
| | - Thierry Abribat
- Alizeé Pharma, 15 Chemin du Saquin, Espace Européen, Building G, 69130, Ecully, FRANCE
| | - Gilles Salles
- 1] Université Claude Bernard Lyon 1, UMR 5239 CNRS ENS HCL, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921, BP12, Oullins, FRANCE [2] Hospices Civils de Lyon, Service d'Hématologie, 165 Chemin du Grand Revoyet, 69495 Pierre-Bénite, FRANCE
| |
Collapse
|
33
|
Zhang J, Fan J, Venneti S, Cross JR, Takagi T, Bhinder B, Djaballah H, Kanai M, Cheng EH, Judkins AR, Pawel B, Baggs J, Cherry S, Rabinowitz JD, Thompson CB. Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol Cell 2014; 56:205-218. [PMID: 25242145 DOI: 10.1016/j.molcel.2014.08.018] [Citation(s) in RCA: 314] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/02/2014] [Accepted: 08/14/2014] [Indexed: 12/17/2022]
Abstract
Many cancer cells consume large quantities of glutamine to maintain TCA cycle anaplerosis and support cell survival. It was therefore surprising when RNAi screening revealed that suppression of citrate synthase (CS), the first TCA cycle enzyme, prevented glutamine-withdrawal-induced apoptosis. CS suppression reduced TCA cycle activity and diverted oxaloacetate, the substrate of CS, into production of the nonessential amino acids aspartate and asparagine. We found that asparagine was necessary and sufficient to suppress glutamine-withdrawal-induced apoptosis without restoring the levels of other nonessential amino acids or TCA cycle intermediates. In complete medium, tumor cells exhibiting high rates of glutamine consumption underwent rapid apoptosis when glutamine-dependent asparagine synthesis was suppressed, and expression of asparagine synthetase was statistically correlated with poor prognosis in human tumors. Coupled with the success of L-asparaginase as a therapy for childhood leukemia, the data suggest that intracellular asparagine is a critical suppressor of apoptosis in many human tumors.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jing Fan
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Sriram Venneti
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Toshimitsu Takagi
- High-Throughput Screening Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bhavneet Bhinder
- High-Throughput Screening Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hakim Djaballah
- High-Throughput Screening Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Masayuki Kanai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alexander R Judkins
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Bruce Pawel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julie Baggs
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua D Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Craig B Thompson
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
34
|
Borek D, Kozak M, Pei J, Jaskolski M. Crystal structure of active site mutant of antileukemicl-asparaginase reveals conserved zinc-binding site. FEBS J 2014; 281:4097-111. [DOI: 10.1111/febs.12906] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/16/2014] [Accepted: 07/01/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Dominika Borek
- Department of Crystallography; Faculty of Chemistry; A. Mickiewicz University; Poznan Poland
| | - Maciej Kozak
- Department of Crystallography; Faculty of Chemistry; A. Mickiewicz University; Poznan Poland
- Department of Macromolecular Physics; Faculty of Physics; A. Mickiewicz University; Poznan Poland
| | - Jimin Pei
- Howard Hughes Medical Institute; University of Texas Southwestern Medical Center; Dallas TX USA
| | - Mariusz Jaskolski
- Department of Crystallography; Faculty of Chemistry; A. Mickiewicz University; Poznan Poland
- Center for Biocrystallographic Research; Institute of Bioorganic Chemistry; Polish Academy of Sciences; Poznan Poland
| |
Collapse
|
35
|
Yang H, He X, Zheng Y, Feng W, Xia X, Yu X, Lin Z. Down-Regulation of Asparagine Synthetase Induces Cell Cycle Arrest and Inhibits Cell Proliferation of Breast Cancer. Chem Biol Drug Des 2014; 84:578-84. [PMID: 24775638 DOI: 10.1111/cbdd.12348] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 03/14/2014] [Accepted: 04/15/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Hongjian Yang
- Department of Breast Surgery; Zhejiang Cancer Hospital; 38 Guangji Road Hangzhou 310022 China
| | - Xiangming He
- Department of Breast Surgery; Zhejiang Cancer Hospital; 38 Guangji Road Hangzhou 310022 China
| | - Yabing Zheng
- Department of Internal Oncology; Zhejiang Cancer Hospital; 38 Guangji Road Hangzhou 310022 China
| | - Weiliang Feng
- Department of Breast Surgery; Zhejiang Cancer Hospital; 38 Guangji Road Hangzhou 310022 China
| | - Xianghou Xia
- Department of Breast Surgery; Zhejiang Cancer Hospital; 38 Guangji Road Hangzhou 310022 China
| | - Xingfei Yu
- Department of Breast Surgery; Zhejiang Cancer Hospital; 38 Guangji Road Hangzhou 310022 China
| | - Zhiqiang Lin
- Zhejiang Cancer Research Institute; Zhejiang Cancer Hospital; 38 Guangji Road Hangzhou 310022 China
| |
Collapse
|
36
|
Comparative pharmacokinetic/pharmacodynamic characterisation of a new pegylated recombinant E. coli l-asparaginase preparation (MC0609) in Beagle dog. Cancer Chemother Pharmacol 2014; 74:367-78. [DOI: 10.1007/s00280-014-2506-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022]
|
37
|
Ben Tanfous M, Sharif-Askari B, Ceppi F, Laaribi H, Gagné V, Rousseau J, Labuda M, Silverman LB, Sallan SE, Neuberg D, Kutok JL, Sinnett D, Laverdière C, Krajinovic M. Polymorphisms of asparaginase pathway and asparaginase-related complications in children with acute lymphoblastic leukemia. Clin Cancer Res 2014; 21:329-34. [PMID: 24907114 DOI: 10.1158/1078-0432.ccr-14-0508] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE Asparaginase (ASNase) is a standard and critical component in the therapy of childhood acute lymphoblastic leukemia (ALL), but it is also associated with several toxicities. EXPERIMENTAL DESIGN We recently reported the results of an association study between ASNase pathway genes and event-free survival (EFS) in childhood patients with ALL. The same polymorphisms were interrogated here in relation to allergies, pancreatitis, and thrombotic events following treatment with E. coli ASNase. RESULTS Among patients of the discovery group, allergies, and pancreatitis were more frequent in individuals who are homozygous for the triple-repeat allele (3R) of the asparagine synthetase (ASNS) gene, resulting in remarkably higher risk of these toxicities associated with 3R3R genotype [OR for allergies, 14.6; 95% confidence interval (CI), 3.6-58.7; P < 0.0005 and OR for pancreatitis, 8.6; 95% CI, 2.0-37.3; P = 0.01]. In contrast, the ASNS haplotype *1 harboring double-repeat (2R) allele had protective effect against these adverse reactions (P ≤ 0.01). The same haplotype was previously reported to confer reduction in EFS. The risk effect of 3R3R genotype was not replicated in the validation cohort, whereas the protective effect of haplotype *1 against allergies was maintained (P ≤ 0.002). Analysis with additional polymorphisms in ASNS locus in lymphoblastoid cell lines showed that haplotype *1 is diversified in several subtypes of which one was associated with reduced in vitro sensitivity to ASNase (rs10486009, P = 0.01) possibly explaining an association seen in clinical setting. CONCLUSIONS This finding might have implication for treatment individualization in ALL and other cancers using asparagine depletion strategies. Clin Cancer Res; 21(2); 329-34. ©2014 AACR. See related commentary by Avramis, p. 230.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lewis B Silverman
- Pediatric Oncology; Division of Hematology/Oncology, Children's Hospital; and
| | - Stephen E Sallan
- Pediatric Oncology; Division of Hematology/Oncology, Children's Hospital; and
| | - Donna Neuberg
- Biostatistics and Computational Biology, Dana-Farber Cancer Institute; and
| | - Jeffery L Kutok
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Daniel Sinnett
- Research Center, CHU Sainte-Justine; Departments of Pediatrics
| | | | - Maja Krajinovic
- Research Center, CHU Sainte-Justine; Departments of Pediatrics; Pharmacology, University of Montreal, Montreal, Qubec, Canada; Departments of
| |
Collapse
|
38
|
The glutaminase activity of L-asparaginase is not required for anticancer activity against ASNS-negative cells. Blood 2014; 123:3596-606. [PMID: 24659632 DOI: 10.1182/blood-2013-10-535112] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
L-Asparaginase (L-ASP) is a key component of therapy for acute lymphoblastic leukemia. Its mechanism of action, however, is still poorly understood, in part because of its dual asparaginase and glutaminase activities. Here, we show that L-ASP's glutaminase activity is not always required for the enzyme's anticancer effect. We first used molecular dynamics simulations of the clinically standard Escherichia coli L-ASP to predict what mutated forms could be engineered to retain activity against asparagine but not glutamine. Dynamic mapping of enzyme substrate contacts identified Q59 as a promising mutagenesis target for that purpose. Saturation mutagenesis followed by enzymatic screening identified Q59L as a variant that retains asparaginase activity but shows undetectable glutaminase activity. Unlike wild-type L-ASP, Q59L is inactive against cancer cells that express measurable asparagine synthetase (ASNS). Q59L is potently active, however, against ASNS-negative cells. Those observations indicate that the glutaminase activity of L-ASP is necessary for anticancer activity against ASNS-positive cell types but not ASNS-negative cell types. Because the clinical toxicity of L-ASP is thought to stem from its glutaminase activity, these findings suggest the hypothesis that glutaminase-negative variants of L-ASP would provide larger therapeutic indices than wild-type L-ASP for ASNS-negative cancers.
Collapse
|
39
|
Panosyan EH, Wang Y, Xia P, Lee WNP, Pak Y, Laks DR, Lin HJ, Moore TB, Cloughesy TF, Kornblum HI, Lasky JL. Asparagine depletion potentiates the cytotoxic effect of chemotherapy against brain tumors. Mol Cancer Res 2014; 12:694-702. [PMID: 24505127 DOI: 10.1158/1541-7786.mcr-13-0576] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
UNLABELLED Targeting amino acid metabolism has therapeutic implications for aggressive brain tumors. Asparagine is an amino acid that is synthesized by normal cells. However, some cancer cells lack asparagine synthetase (ASNS), the key enzyme for asparagine synthesis. Asparaginase (ASNase) contributes to eradication of acute leukemia by decreasing asparagine levels in serum and cerebrospinal fluid. However, leukemic cells may become ASNase-resistant by upregulating ASNS. High expression of ASNS has also been associated with biologic aggressiveness of other cancers, including gliomas. Here, the impact of enzymatic depletion of asparagine on proliferation of brain tumor cells was determined. ASNase was used as monotherapy or in combination with conventional chemotherapeutic agents. Viability assays for ASNase-treated cells demonstrated significant growth reduction in multiple cell lines. This effect was reversed by glutamine in a dose-dependent manner--as expected, because glutamine is the main amino group donor for asparagine synthesis. ASNase treatment also reduced sphere formation by medulloblastoma and primary glioblastoma cells. ASNase-resistant glioblastoma cells exhibited elevated levels of ASNS mRNA. ASNase cotreatment significantly enhanced gemcitabine or etoposide cytotoxicity against glioblastoma cells. Xenograft tumors in vivo showed no significant response to ASNase monotherapy and little response to temozolomide alone. However, combinatorial therapy with ASNase and temozolomide resulted in significant growth suppression for an extended duration of time. Taken together, these findings indicate that amino acid depletion warrants further investigation as adjunctive therapy for brain tumors. IMPLICATIONS Findings have potential impact for providing adjuvant means to enhance brain tumor chemotherapy.
Collapse
Affiliation(s)
- Eduard H Panosyan
- Authors' Affiliations: Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance; Departments of 2Psychiatry and Molecular and Medical Pharmacology and 3Pediatrics; and 4The Jonsson Comprehensive Cancer Center, University of California Los Angeles (UCLA), Los Angeles, California
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Optimized CGenFF force-field parameters for acylphosphate and N-phosphonosulfonimidoyl functional groups. J Mol Model 2013; 19:5075-87. [PMID: 24085536 DOI: 10.1007/s00894-013-1990-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/28/2013] [Indexed: 10/26/2022]
Abstract
We report an optimized set of CGenFF parameters that can be used to model small molecules containing acylphosphate and N-phosphonosulfonimidoyl functional groups in combination with the CHARMM force field. Standard CGenFF procedures were followed to obtain bonded interaction parameters, which were validated by geometry optimizations, comparison to the results of calculations at the MP2/6-31+G(d) level of theory, and molecular dynamics simulations. In addition, partial atomic charges were assigned so that the energy of hydrogen bonding of the model compounds with water was correctly reproduced. The availability of these parameters will facilitate computational studies of enzymes that generate acyladenylate intermediates during catalytic turnover. In addition, given that the N-phosphonosulfonimidoyl moiety is a stable transition state analog for the reaction of ammonia with an acyladenylate, the parameters developed in this study should find use in efforts to develop novel and potent inhibitors of various glutamine-dependent amidotransferases that have been validated as drug targets. Topology and parameter files for the model compounds used in this study, which can be combined with other CGenFF parameters in computational studies of more complicated acylphosphates and N-phosphonosulfonimidates are made available.
Collapse
|
41
|
Zhang B, Dong LW, Tan YX, Zhang J, Pan YF, Yang C, Li MH, Ding ZW, Liu LJ, Jiang TY, Yang JH, Wang HY. Asparagine synthetase is an independent predictor of surgical survival and a potential therapeutic target in hepatocellular carcinoma. Br J Cancer 2013; 109:14-23. [PMID: 23764751 PMCID: PMC3708586 DOI: 10.1038/bjc.2013.293] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/23/2013] [Accepted: 05/20/2013] [Indexed: 11/09/2022] Open
Abstract
Background: Asparagine synthetase (ASNS) is associated with drug resistance in leukaemia, and the function of this enzyme in the context of hepatocellular carcinoma (HCC) is not clear. In this study, the relationship between ASNS expression and clinical outcomes after surgical resection was investigated, and the therapeutic value of ASNS was also evaluated. Methods: The expression of ASNS was evaluated in HCC samples by real-time PCR and immunohistochemistry assays. The correlation between ASNS expression and clinicopathological features was investigated. Potential clinicopathological prognostic factors were examined by univariate and multivariate survival analysis. Asparagine synthetase was overexpressed and knocked down in HCC cell lines to assess the influence of the enzyme on cell proliferation, migration and tumourigenicity. L-asparaginase was used to treat HCC cells with high or low levels of ASNS in vitro and in vivo to examine the therapeutic efficacy. Results: The expression of ASNS was higher in HCC tumour tissues and was closely correlated with the serum AFP level, tumour size, microscopic vascular invasion, tumour encapsulation, TNM stage and BCLC stage. Patients with low ASNS expression levels had a poor prognosis with respect to overall survival (OS). The multivariate survival analysis indicated that ASNS is an independent prognostic factor for OS. Furthermore, functional studies demonstrated that ASNS significantly inhibits the proliferation, migration and tumourigenicity of HCC cells. The knockdown of ASNS markedly increased sensitivity to L-asparaginase, indicating that cells with different ASNS protein levels have different sensitivities to L-asparaginase. Conclusion: The expression of ASNS is an independent factor affecting the survival of HCC patients, and low ASNS expression in HCC was correlated with worse surgical outcomes. The ASNS may be a promising therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- B Zhang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, 225 Changhai Road, Shanghai 200438, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Balasubramanian MN, Butterworth EA, Kilberg MS. Asparagine synthetase: regulation by cell stress and involvement in tumor biology. Am J Physiol Endocrinol Metab 2013; 304:E789-99. [PMID: 23403946 PMCID: PMC3625782 DOI: 10.1152/ajpendo.00015.2013] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Asparagine synthetase (ASNS) catalyzes the conversion of aspartate and glutamine to asparagine and glutamate in an ATP-dependent reaction. The enzyme is ubiquitous in its organ distribution in mammals, but basal expression is relatively low in tissues other than the exocrine pancreas. Human ASNS activity is highly regulated in response to cell stress, primarily by increased transcription from a single gene located on chromosome 7. Among the genomic elements that control ASNS transcription is the C/EBP-ATF response element (CARE) within the promoter. Protein limitation or an imbalanced dietary amino acid composition activate the ASNS gene through the amino acid response (AAR), a process that is replicated in cell culture through limitation for any single essential amino acid. Endoplasmic reticulum stress also increases ASNS transcription through the PERK-eIF2-ATF4 arm of the unfolded protein response (UPR). Both the AAR and UPR lead to increased synthesis of ATF4, which binds to the CARE and induces ASNS transcription. Elevated expression of ASNS protein is associated with resistance to asparaginase therapy in childhood acute lymphoblastic leukemia and may be a predictive factor in drug sensitivity for certain solid tumors as well. Activation of the GCN2-eIF2-ATF4 signaling pathway, leading to increased ASNS expression appears to be a component of solid tumor adaptation to nutrient deprivation and/or hypoxia. Identifying the roles of ASNS in fetal development, tissue differentiation, and tumor growth may reveal that ASNS function extends beyond asparagine biosynthesis.
Collapse
Affiliation(s)
- Mukundh N Balasubramanian
- Department of Biochemistry and Molecular Biology, Shands Cancer Center and Center for Nutritional Sciences, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
43
|
Kusano-Arai O, Iwanari H, Mochizuki Y, Nakata H, Kodama T, Kitoh T, Hamakubo T. Evaluation of the asparagine synthetase level in leukemia cells by monoclonal antibodies. Hybridoma (Larchmt) 2013; 31:325-32. [PMID: 23098298 DOI: 10.1089/hyb.2012.0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
L-Asparaginase (ASNase) is important for the treatment of childhood acute lymphoblastic leukemia. ASNase sensitivity has been shown to correlate with the asparagine synthetase (ASNS) protein content in acute lymphoblastic leukemia cell lines. However, there have been few studies to determine ASNS protein levels in human leukemias, since no appropriate monoclonal antibody is available for such quantitative analysis. In this study, we report the generation of anti-ASNS monoclonal antibodies, which are applicable to flow cytometry and enzyme-linked immunosorbent assay. These monoclonal antibodies should provide a valuable tool for the quantification of ASNS protein level and estimation of ASNase-resistance in leukemia cells.
Collapse
Affiliation(s)
- Osamu Kusano-Arai
- Department of Molecular Biology and Medicine, The University of Tokyo, Meguro, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Ikeuchi H, Ahn YM, Otokawa T, Watanabe B, Hegazy L, Hiratake J, Richards NGJ. A sulfoximine-based inhibitor of human asparagine synthetase kills L-asparaginase-resistant leukemia cells. Bioorg Med Chem 2012; 20:5915-27. [PMID: 22951255 DOI: 10.1016/j.bmc.2012.07.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/19/2012] [Accepted: 07/24/2012] [Indexed: 11/27/2022]
Abstract
An adenylated sulfoximine transition-state analogue 1, which inhibits human asparagine synthetase (hASNS) with nanomolar potency, has been reported to suppress the proliferation of an l-asparagine amidohydrolase (ASNase)-resistant MOLT-4 leukemia cell line (MOLT-4R) when l-asparagine is depleted in the medium. We now report the synthesis and biological activity of two new sulfoximine analogues of 1 that have been studied as part of systematic efforts to identify compounds with improved cell permeability and/or metabolic stability. One of these new analogues, an amino sulfoximine 5 having no net charge at cellular pH, is a better hASNS inhibitor (K(I)(∗)=8 nM) than 1 and suppresses proliferation of MOLT-4R cells at 10-fold lower concentration (IC(50)=0.1mM). More importantly, and in contrast to the lead compound 1, the presence of sulfoximine 5 at concentrations above 0.25 mM causes the death of MOLT-4R cells even when ASNase is absent in the culture medium. The amino sulfoximine 5 exhibits different dose-response behavior when incubated with an ASNase-sensitive MOLT-4 cell line (MOLT-4S), supporting the hypothesis that sulfoximine 5 exerts its effect by inhibiting hASNS in the cell. Our work provides further evidence for the idea that hASNS represents a chemotherapeutic target for the treatment of leukemia, and perhaps other cancers, including those of the prostate.
Collapse
Affiliation(s)
- Hideyuki Ikeuchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Hermanova I, Zaliova M, Trka J, Starkova J. Low expression of asparagine synthetase in lymphoid blasts precludes its role in sensitivity to L-asparaginase. Exp Hematol 2012; 40:657-65. [DOI: 10.1016/j.exphem.2012.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/16/2012] [Accepted: 04/18/2012] [Indexed: 11/25/2022]
|
46
|
Kilberg MS, Balasubramanian M, Fu L, Shan J. The transcription factor network associated with the amino acid response in mammalian cells. Adv Nutr 2012; 3:295-306. [PMID: 22585903 PMCID: PMC3649461 DOI: 10.3945/an.112.001891] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mammals exhibit multiple adaptive mechanisms that sense and respond to fluctuations in dietary nutrients. Consumption of reduced total dietary protein or a protein diet that is deficient in 1 or more of the essential amino acids triggers wide-ranging changes in feeding behavior and gene expression. At the level of individual cells, dietary protein deficiency is manifested as amino acid (AA) deprivation, which activates the AA response (AAR). The AAR is composed of a collection of signal transduction pathways that terminate in specific transcriptional programs designed to catalyze adaptation to the nutrient stress or, ultimately, undergo apoptosis. Independently of the AAR, endoplasmic reticulum stress activates 3 signaling pathways, collectively referred to as the unfolded protein response. The transcription factor activating transcription factor 4 is one of the terminal transcriptional mediators for both the AAR and the unfolded protein response, leading to a significant degree of overlap with regard to the target genes for these stress pathways. Over the past 5 y, research has revealed that the basic leucine zipper superfamily of transcription factors plays the central role in the AAR. Formation of both homo- and heterodimers among the activating transcription factor, CCAAT enhancer-binding protein, and FOS/JUN families of basic leucine zipper proteins forms the nucleus of a highly integrated transcription factor network that determines the initiation, magnitude, and duration of the cellular response to dietary protein or AA limitation.
Collapse
|
47
|
Wang H, Geng QR, Wang L, Lu Y. Curcumin potentiates antitumor activity of L-asparaginase via inhibition of the AKT signaling pathway in acute lymphoblastic leukemia. Leuk Lymphoma 2012; 53:1376-82. [PMID: 22185211 DOI: 10.3109/10428194.2011.649478] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
L-asparaginase (L-ASP) is a universal component of therapy for acute lymphoblastic leukemia (ALL). Curcumin is a naturally occurring yellow pigment that is derived from the rhizome of Curcuma longa. In this study, we evaluated the cytotoxicity of the combined treatment of L-ASP and curcumin in three ALL cell lines. Synergistic cytotoxicity was observed in all three cell lines following the combined treatment of curcumin and L-ASP. Our results revealed that curcumin significantly enhanced the antitumor effect of L-ASP in the three ALL cell lines compared to that for L-ASP alone ( p < 0.05). Curcumin and L-ASP co-treatments induced apoptosis, via activation and cleavage of caspase-8 and BID cleavage accompanied by release of cytochrome c and activation of caspase-9/3, compared to the group treated with only L-ASP and the control group. Furthermore, the combination of curcumin and L-ASP led to significant reductions in phosphorylated AKT and expression of AKT-regulated gene products (FoxO1, GSK3β, IKKα, NF-κB, XIAP) compared with the group treated with only L-ASP and the control group. Overall, our findings suggest that curcumin potentiates the antitumor effects of L-ASP in acute lymphoblastic leukemia by constitutively inhibiting AKT and AKT-regulated gene products.
Collapse
Affiliation(s)
- Hua Wang
- State Key Laboratory of Oncology in South China, Guangzhou, P R China
| | | | | | | |
Collapse
|
48
|
Battiston Loureiro C, Silva Borges K, Faria Andrade A, Gonzaga Tone L, Said S. Purification and Biochemical Characterization of Native and Pegylated Form of L-Asparaginase from <i>Aspergillus terreus</i> and Evaluation of Its Antiproliferative Activity. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/aim.2012.22019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
ATF5 polymorphisms influence ATF function and response to treatment in children with childhood acute lymphoblastic leukemia. Blood 2011; 118:5883-90. [PMID: 21972289 DOI: 10.1182/blood-2011-05-355560] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Asparaginase is a standard and critical component in the therapy of childhood acute lymphoblastic leukemia. Asparagine synthetase (ASNS) and the basic region leucine zipper activating transcription factor 5 (ATF5) and arginosuccinate synthase 1 (ASS1) have been shown to mediate the antileukemic effect of asparaginase and to display variable expression between leukemia cells that are resistant and sensitive to treatment. Fourteen polymorphisms in the regulatory and coding regions of these genes were investigated for an association with acute lymphoblastic leukemia outcome. Lower event-free survival (EFS) was associated with ATF5 T1562C, tandem-repeat ASNS polymorphism, derived haplotype, and ASS1 G1343T and G34T substitutions (P ≤ .03). Associations were limited to patients who received Escherichia coli asparaginase. Variations that sustained correction for multiple testing (ATF5 T1562C, P = .005; ASNS tandem-repeat and related haplotype, P ≤ .01) were subsequently analyzed in the replication cohort. The E coli-dependent association of the ATF5 T1562 allele with reduced EFS was confirmed (P = .01). A gene-reporter assay showed that the haplotype tagged by T1562 had higher promoter activity (P ≤ .01). The remaining regulatory polymorphisms also appeared to affect ATF5 function; 2 additional high-activity haplotypes were identified (P ≤ .02) and were further corroborated by quantitative mRNA analysis in lymphoblastoid cell lines. The ATF5-regulated increase in ASNS expression in response to more efficacious E coli-induced asparagine depletion may explain our observed results.
Collapse
|
50
|
DNA demethylation in PD-1 gene promoter induced by 5-azacytidine activates PD-1 expression on Molt-4 cells. Cell Immunol 2011; 271:450-4. [PMID: 21907333 DOI: 10.1016/j.cellimm.2011.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/15/2011] [Accepted: 08/17/2011] [Indexed: 01/20/2023]
Abstract
The expression of the programmed death 1 (PD-1) gene is an indicator of exhausted T-cells with decreased activation and function. It remains unknown, however, whether the methylation status of the PD-1 gene promoter is associated with PD-1 expression level. This study shows the changes of PD-1 expression levels and the demethylation status of the PD-1 promoter region in Molt-4 cells under different concentrations of 5-azacytidine (5-Zac). The result demonstrated that DNA demethylation at PD-1 promoter may contribute to PD-1 overexpression.
Collapse
|