1
|
Hallström GF, Jones DL, Locke RC, Bonnevie ED, Kim SY, Laforest L, Garcia DC, Mauck RL. Microenvironmental mechanoactivation through Yap/Taz suppresses chondrogenic gene expression. Mol Biol Cell 2023; 34:ar73. [PMID: 37043309 PMCID: PMC10295477 DOI: 10.1091/mbc.e22-12-0543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 04/13/2023] Open
Abstract
Chondrocyte phenotype is preserved when cells are round and the actin cytoskeleton is cortical. Conversely, these cells rapidly dedifferentiate in vitro with increased mechanoactive Rho signaling, which increases cell size and causes large actin stress fiber to form. While the effects of Rho on chondrocyte phenotype are well established, the molecular mechanism is not yet fully elucidated. Yap, a transcriptional coregulator, is regulated by Rho in a mechanotransductive manner and can suppress chondrogenesis in vivo. Here, we sought to elucidate the relationship between mechanoactive Rho and Yap on chondrogenic gene expression. We first show that decreasing mechanoactive state through Rho inhibition results in a broad increase in chondrogenic gene expression. Next, we show that Yap and its coregulator Taz are negative regulators of chondrogenic gene expression, and removal of these factors promotes chondrogenesis even in environments that promote cell spreading. Finally, we establish that Yap/Taz is essential for translating Rho-mediated signals to negatively regulate chondrogenic gene expression, and that its removal negates the effects of increased Rho signaling. Together, these data indicate that Rho is a mechanoregulator of chondrogenic differentiation, and that its impact on chondrogenic expression is exerted principally through mechanically induced translocation and activity of Yap and Taz.
Collapse
Affiliation(s)
- Grey F. Hallström
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104
| | - Dakota L. Jones
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine
| | - Ryan C. Locke
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104
| | - Edward D. Bonnevie
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104
| | - Sung Yeon Kim
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104
| | - Lorielle Laforest
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine
| | - Diana Cruz Garcia
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104
| |
Collapse
|
2
|
Application of Alginate Hydrogels for Next-Generation Articular Cartilage Regeneration. Int J Mol Sci 2022; 23:ijms23031147. [PMID: 35163071 PMCID: PMC8835677 DOI: 10.3390/ijms23031147] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/28/2022] Open
Abstract
The articular cartilage has insufficient intrinsic healing abilities, and articular cartilage injuries often progress to osteoarthritis. Alginate-based scaffolds are attractive biomaterials for cartilage repair and regeneration, allowing for the delivery of cells and therapeutic drugs and gene sequences. In light of the heterogeneity of findings reporting the benefits of using alginate for cartilage regeneration, a better understanding of alginate-based systems is needed in order to improve the approaches aiming to enhance cartilage regeneration with this compound. This review provides an in-depth evaluation of the literature, focusing on the manipulation of alginate as a tool to support the processes involved in cartilage healing in order to demonstrate how such a material, used as a direct compound or combined with cell and gene therapy and with scaffold-guided gene transfer procedures, may assist cartilage regeneration in an optimal manner for future applications in patients.
Collapse
|
3
|
Abstract
The fibrocartilage chondrocyte phenotype has been recognized to attribute to osteoarthritis (OA) development. These chondrocytes express genes related to unfavorable OA outcomes, emphasizing its importance in OA pathology. BMP7 is being explored as a potential disease-modifying molecule and attenuates the chondrocyte hypertrophic phenotype. On the other hand, BMP7 has been demonstrated to relieve organ fibrosis by counteracting the pro-fibrotic TGFβ-Smad3-PAI1 axis and increasing MMP2-mediated Collagen type I turnover. Whether BMP7 has anti-fibrotic properties in chondrocytes is unknown. Human OA articular chondrocytes (HACs) were isolated from end-stage OA femoral cartilage (total knee arthroplasty; n = 18 individual donors). SW1353 cells and OA HACs were exposed to 1 nM BMP7 for 24 h, after which gene expression of fibrosis-related genes and fibrosis-mediating factors was determined by RT-qPCR. In SW1353, Collagen type I protein levels were determined by immunocytochemistry and western blotting. PAI1 and MMP2 protein levels and activity were measured with an ELISA and activity assays, respectively. MMP2 activity was inhibited with the selective MMP-2 inhibitor OA-Hy. SMAD3 activity was determined by a (CAGA)12-reporter assay, and pSMAD2 levels by western blotting. Following BMP7 exposure, the expression of fibrosis-related genes was reduced in SW1353 cells and OA HACs. BMP7 reduced Collagen type I protein levels in SW1353 cells. Gene expression of MMP2 was increased in SW1353 cells following BMP7 treatment. BMP7 reduced PAI1 protein levels and -activity, while MMP2 protein levels and -activity were increased by BMP7. BMP7-dependent inhibition of Collagen type I protein levels in SW1353 cells was abrogated when MMP2 activity was inhibited. Finally, BMP7 reduced pSMAD2 levels determined by western blotting and reduced SMAD3 transcriptional activity as demonstrated by decreased (CAGA)12 luciferase reporter activity. Our data demonstrate that short-term exposure to BMP7 decreases the fibrocartilage chondrocyte phenotype. The BMP7-dependent reduction of Collagen type I protein expression seems MMP2-dependent and inhibition of Smad2/3-PAI1 activity was identified as a potential pathway via which BMP7 exerts its anti-fibrotic action. This indicates that in chondrocytes BMP7 may have a double mode-of-action by targeting both the hypertrophic as well as the fibrotic chondrocyte phenotype, potentially adding to the clinical relevance of using BMP7 as an OA disease-modifying molecule.
Collapse
|
4
|
Ryan C, Pugliese E, Shologu N, Gaspar D, Rooney P, Islam MN, O'Riordan A, Biggs M, Griffin M, Zeugolis D. A combined physicochemical approach towards human tenocyte phenotype maintenance. Mater Today Bio 2021; 12:100130. [PMID: 34632361 PMCID: PMC8488312 DOI: 10.1016/j.mtbio.2021.100130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 02/08/2023] Open
Abstract
During in vitro culture, bereft of their optimal tissue context, tenocytes lose their phenotype and function. Considering that tenocytes in their native tissue milieu are exposed simultaneously to manifold signals, combination approaches (e.g. growth factor supplementation and mechanical stimulation) are continuously gaining pace to control cell fate during in vitro expansion, albeit with limited success due to the literally infinite number of possible permutations. In this work, we assessed the potential of scalable and potent physicochemical approaches that control cell fate (substrate stiffness, anisotropic surface topography, collagen type I coating) and enhance extracellular matrix deposition (macromolecular crowding) in maintaining human tenocyte phenotype in culture. Cell morphology was primarily responsive to surface topography. The tissue culture plastic induced the largest nuclei area, the lowest aspect ratio, and the highest focal adhesion kinase. Collagen type I coating increased cell number and metabolic activity. Cell viability was not affected by any of the variables assessed. Macromolecular crowding intensely enhanced and accelerated native extracellular matrix deposition, albeit not in an aligned fashion, even on the grooved substrates. Gene analysis at day 14 revealed that the 130 kPa grooved substrate without collagen type I coating and under macromolecular crowding conditions positively regulated human tenocyte phenotype. Collectively, this work illustrates the beneficial effects of combined physicochemical approaches in controlling cell fate during in vitro expansion.
Collapse
Affiliation(s)
- C.N.M. Ryan
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - E. Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - N. Shologu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - D. Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - P. Rooney
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Md N. Islam
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Discipline of Biochemistry, School of Natural Sciences, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - A. O'Riordan
- Tyndall National Institute, University College Cork (UCC), Cork, Ireland
| | - M.J. Biggs
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - M.D. Griffin
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - D.I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
5
|
Phenotypic Characterization of Immortalized Chondrocytes from a Desbuquois Dysplasia Type 1 Mouse Model: A Tool for Studying Defects in Glycosaminoglycan Biosynthesis. Int J Mol Sci 2021; 22:ijms22179304. [PMID: 34502207 PMCID: PMC8431031 DOI: 10.3390/ijms22179304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
The complexity of skeletal pathologies makes use of in vivo models essential to elucidate the pathogenesis of the diseases; nevertheless, chondrocyte and osteoblast cell lines provide relevant information on the underlying disease mechanisms. Due to the limitations of primary chondrocytes, immortalized cells represent a unique tool to overcome this problem since they grow very easily for several passages. However, in the immortalization procedure the cells might lose the original phenotype; thus, these cell lines should be deeply characterized before their use. We immortalized primary chondrocytes from a Cant1 knock-out mouse, an animal model of Desbuquois dysplasia type 1, with a plasmid expressing the SV40 large and small T antigen. This cell line, based on morphological and biochemical parameters, showed preservation of the chondrocyte phenotype. In addition reduced proteoglycan synthesis and oversulfation of glycosaminoglycan chains were demonstrated, as already observed in primary chondrocytes from the Cant1 knock-out mouse. In conclusion, immortalized Cant1 knock-out chondrocytes maintained the disease phenotype observed in primary cells validating the in vitro model and providing an additional tool to further study the proteoglycan biosynthesis defect. The same approach might be extended to other cartilage disorders.
Collapse
|
6
|
Huan Z, Wang Y, Zhang M, Zhang X, Liu Y, Kong L, Xu J. Follicle-stimulating hormone worsens osteoarthritis by causing inflammation and chondrocyte dedifferentiation. FEBS Open Bio 2021. [PMID: 34176242 PMCID: PMC8329950 DOI: 10.1002/2211-5463.13238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/28/2021] [Accepted: 06/25/2021] [Indexed: 01/08/2023] Open
Abstract
Previous studies have found follicle‐stimulating hormone (FSH) receptors on chondrocytes (cartilage cells), but the mechanism of FSH action on chondrocytes is not clear. The purpose of this experiment is to study whether FSH affects chondrocytes and how it causes changes in these cells. Our results show that osteoarthritis became worse after FSH injection in the knee joint of mice. After the stimulation of chondrocytes by FSH, a total of 664 up‐regulated genes, such as Col12a1 and Col1a1, and 644 down‐regulated genes, such as MGP, were screened by transcriptomics. A subset of extracellular matrix (ECM)‐related genes and pathways underwent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and the downregulation of MGP, the upregulation of EGR1 and Col1a1, and the increase of IL‐6 were verified. It was also observed that FSH can inhibit the cAMP/PKA and MKK4/JNK signaling pathway. In conclusion, we demonstrated that FSH can increase cartilage inflammatory response and promote chondrocyte dedifferentiation by inhibiting the cAMP/PKA and MKK4/JNK signaling pathways.
Collapse
Affiliation(s)
- Zhikun Huan
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Yan Wang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Mengqi Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Xiujuan Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China.,Department of Endocrinology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
| | - Yaping Liu
- Department of Endocrinology, Jining No.1 People's Hospital, Jining, China
| | - Lei Kong
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China.,Department of Endocrinology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
| | - Jin Xu
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China.,Department of Endocrinology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
7
|
Spinnen J, Shopperly LK, Rendenbach C, Kühl AA, Sentürk U, Kendoff D, Hemmati-Sadeghi S, Sittinger M, Dehne T. A Novel Method Facilitating the Simple and Low-Cost Preparation of Human Osteochondral Slice Explants for Large-Scale Native Tissue Analysis. Int J Mol Sci 2021; 22:ijms22126394. [PMID: 34203791 PMCID: PMC8232634 DOI: 10.3390/ijms22126394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022] Open
Abstract
For in vitro modeling of human joints, osteochondral explants represent an acceptable compromise between conventional cell culture and animal models. However, the scarcity of native human joint tissue poses a challenge for experiments requiring high numbers of samples and makes the method rather unsuitable for toxicity analyses and dosing studies. To scale their application, we developed a novel method that allows the preparation of up to 100 explant cultures from a single human sample with a simple setup. Explants were cultured for 21 days, stimulated with TNF-α or TGF-β3, and analyzed for cell viability, gene expression and histological changes. Tissue cell viability remained stable at >90% for three weeks. Proteoglycan levels and gene expression of COL2A1, ACAN and COMP were maintained for 14 days before decreasing. TNF-α and TGF-β3 caused dose-dependent changes in cartilage marker gene expression as early as 7 days. Histologically, cultures under TNF-α stimulation showed a 32% reduction in proteoglycans, detachment of collagen fibers and cell swelling after 7 days. In conclusion, thin osteochondral slice cultures behaved analogously to conventional punch explants despite cell stress exerted during fabrication. In pharmacological testing, both the shorter diffusion distance and the lack of need for serum in the culture suggest a positive effect on sensitivity. The ease of fabrication and the scalability of the sample number make this manufacturing method a promising platform for large-scale preclinical testing in joint research.
Collapse
Affiliation(s)
- Jacob Spinnen
- Department of Rheumatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.K.S.); (S.H.-S.); (M.S.); (T.D.)
- Correspondence:
| | - Lennard K. Shopperly
- Department of Rheumatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.K.S.); (S.H.-S.); (M.S.); (T.D.)
| | - Carsten Rendenbach
- Department of Oral and Maxillofacial Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany;
| | - Anja A. Kühl
- iPATH Histopathology Core Unit, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany;
| | - Ufuk Sentürk
- Department of Orthopedics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany;
| | - Daniel Kendoff
- Department of Orthopaedic Surgery, Helios Klinikum Berlin-Buch, 13125 Berlin, Germany;
| | - Shabnam Hemmati-Sadeghi
- Department of Rheumatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.K.S.); (S.H.-S.); (M.S.); (T.D.)
| | - Michael Sittinger
- Department of Rheumatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.K.S.); (S.H.-S.); (M.S.); (T.D.)
| | - Tilo Dehne
- Department of Rheumatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.K.S.); (S.H.-S.); (M.S.); (T.D.)
| |
Collapse
|
8
|
Madry H, Grässel S, Nöth U, Relja B, Bernstein A, Docheva D, Kauther MD, Katthagen JC, Bader R, van Griensven M, Wirtz DC, Raschke MJ, Huber-Lang M. The future of basic science in orthopaedics and traumatology: Cassandra or Prometheus? Eur J Med Res 2021; 26:56. [PMID: 34127057 PMCID: PMC8200553 DOI: 10.1186/s40001-021-00521-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/20/2021] [Indexed: 12/23/2022] Open
Abstract
Orthopaedic and trauma research is a gateway to better health and mobility, reflecting the ever-increasing and complex burden of musculoskeletal diseases and injuries in Germany, Europe and worldwide. Basic science in orthopaedics and traumatology addresses the complete organism down to the molecule among an entire life of musculoskeletal mobility. Reflecting the complex and intertwined underlying mechanisms, cooperative research in this field has discovered important mechanisms on the molecular, cellular and organ levels, which subsequently led to innovative diagnostic and therapeutic strategies that reduced individual suffering as well as the burden on the society. However, research efforts are considerably threatened by economical pressures on clinicians and scientists, growing obstacles for urgently needed translational animal research, and insufficient funding. Although sophisticated science is feasible and realized in ever more individual research groups, a main goal of the multidisciplinary members of the Basic Science Section of the German Society for Orthopaedics and Trauma Surgery is to generate overarching structures and networks to answer to the growing clinical needs. The future of basic science in orthopaedics and traumatology can only be managed by an even more intensified exchange between basic scientists and clinicians while fuelling enthusiasm of talented junior scientists and clinicians. Prioritized future projects will master a broad range of opportunities from artificial intelligence, gene- and nano-technologies to large-scale, multi-centre clinical studies. Like Prometheus in the ancient Greek myth, transferring the elucidating knowledge from basic science to the real (clinical) world will reduce the individual suffering from orthopaedic diseases and trauma as well as their socio-economic impact.
Collapse
Affiliation(s)
- Henning Madry
- Institute of Experimental Orthopaedics and Osteoarthritis Research, Saarland University, Homburg, Germany
| | - Susanne Grässel
- Experimental Orthopedics, Department of Orthopedic Surgery, University of Regensburg, Regensburg, Germany
| | - Ulrich Nöth
- Department of Orthopaedics and Trauma Surgery, Evangelisches Waldkrankenhaus Berlin Spandau, Berlin, Germany
| | - Borna Relja
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Anke Bernstein
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Max Daniel Kauther
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Essen, Essen, Germany
| | - Jan Christoph Katthagen
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| | - Rainer Bader
- Department of Orthopaedics, Research Lab for Biomechanics and Implant Technology, Rostock University Medical Center, Rostock, Germany
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN-Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Dieter C Wirtz
- Department of Orthopaedics and Trauma Surgery, University Hopsital Bonn, Bonn, Germany
| | - Michael J Raschke
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology (ITI), University Hospital Ulm, Helmholzstr. 8/1, Ulm, Germany.
| |
Collapse
|
9
|
COMP and TSP-4: Functional Roles in Articular Cartilage and Relevance in Osteoarthritis. Int J Mol Sci 2021; 22:ijms22052242. [PMID: 33668140 PMCID: PMC7956748 DOI: 10.3390/ijms22052242] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is a slow-progressing joint disease, leading to the degradation and remodeling of the cartilage extracellular matrix (ECM). The usually quiescent chondrocytes become reactivated and accumulate in cell clusters, become hypertrophic, and intensively produce not only degrading enzymes, but also ECM proteins, like the cartilage oligomeric matrix protein (COMP) and thrombospondin-4 (TSP-4). To date, the functional roles of these newly synthesized proteins in articular cartilage are still elusive. Therefore, we analyzed the involvement of both proteins in OA specific processes in in vitro studies, using porcine chondrocytes, isolated from femoral condyles. The effect of COMP and TSP-4 on chondrocyte migration was investigated in transwell assays and their potential to modulate the chondrocyte phenotype, protein synthesis and matrix formation by immunofluorescence staining and immunoblot. Our results demonstrate that COMP could attract chondrocytes and may contribute to a repopulation of damaged cartilage areas, while TSP-4 did not affect this process. In contrast, both proteins similarly promoted the synthesis and matrix formation of collagen II, IX, XII and proteoglycans, but inhibited that of collagen I and X, resulting in a stabilized chondrocyte phenotype. These data suggest that COMP and TSP-4 activate mechanisms to protect and repair the ECM in articular cartilage.
Collapse
|
10
|
韩 玮, 罗 海, 郭 传, 宁 琦, 孟 娟. [Expression of cartilage oligomeric matrix protein in the synovial chondromatosis of the temporomandibular joint]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2020; 53:34-39. [PMID: 33550333 PMCID: PMC7867961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 08/11/2024]
Abstract
OBJECTIVE To detect the expression of cartilage oligomeric matrix protein (COMP) in the synovial chondromatosis of the temporomandibular joint (TMJSC), and to discuss the possible interactions between COMP, transforming growth factor (TGF)-β3, TGF-β1 and bone morphogenetic protein-2 (BMP-2) in the development of this neoplastic disease. METHODS Patients in Peking University School and Hospital of Stomatology from January 2011 to February 2020 were selected, who had complete medical records, TMJSC was verified histologically after operation. The expressions of COMP, TGF-β3, TGF-β1 and BMP-2 in the TMJSC of the temporomandibular joint were detected by immunohistochemistry and quantitative real-time PCR (RT-PCR) at the protein level and mRNA level respectively, compared with the normal synovial tissue of temporomandibular joint. The histological morphology, protein expression and distribution of TMJSC tissues were observed microscopically, and the positive staining proteins were counted and scored. SPSS 22.0 statistical software was used to analyze the expression differences between the related proteins in TMJSC tissue and the normal synovial tissue of temporomandibular joint and to compare their differences. P < 0.05 indicated that the difference was statistically significant. RESULTS Immunohistochemical results showed that the positive expression of COMP in TMJSC tissues was mostly found in synovial tissues and chondrocytes adjacent to synovial tissues, and the difference was statistically significant, compared with the normal temporomandibular joint synovial tissues. The positive expression of COMP was significantly different between recurrent TMJSC and non-recurrent ones. The positive expressions of TGF-β3, TGF-β1 and BMP-2 were higher than the normal synovial tissue, and were also mostly found in the synovial cells and adjacent chondrocytes, which was further confirmed by Western blot. According to the RT-PCR results, the expressions of COMP, TGF-β3, TGF-β1 and BMP-2 in TMJSC were higher than those in the normal synovial tissue. CONCLUSION The expression of COMP in TMJSC of temporomandibular joint increased significantly, compared with the normal synovial tissue. There may be interactions between COMP and cytokines related to the proliferation and differentiation, like TGF-β3, TGF-β1 and BMP-2, which may play a potential role in the pathogenesis of TMJSC.
Collapse
Affiliation(s)
- 玮华 韩
- 北京大学口腔医学院·口腔医院,颌面外科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 海燕 罗
- 北京大学口腔医学院·口腔医院,病理科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 传瑸 郭
- 北京大学口腔医学院·口腔医院,颌面外科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 琦 宁
- 北京大学口腔医学院·口腔医院,颌面外科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 娟红 孟
- 北京大学口腔医学院·口腔医院,颌面外科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
11
|
Chin AR, Taboas JM, Almarza AJ. Regenerative Potential of Mandibular Condyle Cartilage and Bone Cells Compared to Costal Cartilage Cells When Seeded in Novel Gelatin Based Hydrogels. Ann Biomed Eng 2020; 49:1353-1363. [PMID: 33155145 DOI: 10.1007/s10439-020-02674-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/21/2020] [Indexed: 11/25/2022]
Abstract
The field of temporomandibular joint (TMJ) condyle regeneration is hampered by a limited understanding of the phenotype and regeneration potential of cells in mandibular condyle cartilage. It has been shown that chondrocytes derived from hyaline and costal cartilage exhibit a greater chondro-regenerative potential in vitro than those from mandibular condylar cartilage. However, our recent in vivo studies suggest that mandibular condyle cartilage cells do have the potential for cartilage regeneration in osteochondral defects, but that bone regeneration is inadequate. The objective of this study was to determine the regeneration potential of cartilage and bone cells from goat mandibular condyles in two different photocrosslinkable hydrogel systems, PGH and methacrylated gelatin, compared to the well-studied costal chondrocytes. PGH is composed of methacrylated poly(ethylene glycol), gelatin, and heparin. Histology, biochemistry and unconfined compression testing was performed after 4 weeks of culture. For bone derived cells, histology showed that PGH inhibited mineralization, while gelatin supported it. For chondrocytes, costal chondrocytes had robust glycosaminoglycan (GAG) deposition in both PGH and gelatin, and compression properties on par with native condylar cartilage in gelatin. However, they showed signs of hypertrophy in gelatin but not PGH. Conversely, mandibular condyle cartilage chondrocytes only had high GAG deposition in gelatin but not in PGH. These appeared to remain dormant in PGH. These results show that mandibular condyle cartilage cells do have innate regeneration potential but that they are more sensitive to hydrogel material than costal cartilage cells.
Collapse
Affiliation(s)
- A R Chin
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 409 Salk Pavilion, 335 Sutherland Drive, Pittsburgh, PA, 15213, USA
| | - J M Taboas
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 409 Salk Pavilion, 335 Sutherland Drive, Pittsburgh, PA, 15213, USA
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center of Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - A J Almarza
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 409 Salk Pavilion, 335 Sutherland Drive, Pittsburgh, PA, 15213, USA.
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Center of Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Nishizawa S, Kanazawa S, Fujihara Y, Asawa Y, Nagata S, Harai M, Hikita A, Takato T, Hoshi K. Glial Fibrillary Acidic Protein as Biomarker Indicates Purity and Property of Auricular Chondrocytes. Biores Open Access 2020; 9:51-63. [PMID: 32140296 PMCID: PMC7057647 DOI: 10.1089/biores.2019.0058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Instead of the silicone implants previously used for repair and reconstruction of the auricle and nose lost due to accidents and disease, a new treatment method using tissue-engineered cartilage has been attracting attention. The quality of cultured cells is important in this method because it affects treatment outcomes. However, a marker of chondrocytes, particularly auricular chondrocytes, has not yet been established. The objective of this study was to establish an optimal marker to evaluate the quality of cultured auricular chondrocytes as a cell source of regenerative cartilage tissue. Gene expression levels were comprehensively compared using the microarray method between human undifferentiated and dedifferentiated auricular chondrocytes to investigate a candidate quality control index with an expression level that is high in differentiated cells, but markedly decreases in dedifferentiated cells. We identified glial fibrillary acidic protein (GFAP) as a marker that decreased with serial passages in auricular chondrocytes. GFAP was not detected in articular chondrocytes, costal chondrocytes, or fibroblasts, which need to be distinguished from auricular chondrocytes in cell cultures. GFAP mRNA expression was observed in cultured auricular chondrocytes, and GFAP protein levels were also measured in the cell lysates and culture supernatants of these cells. However, GFAP levels detected from mRNA and protein in cell lysates were significantly decreased by increases in the incubation period. In contrast, the amount of protein in the cell supernatant was not affected by the incubation period. Furthermore, the protein level of GFAP in the supernatants of cultured cells correlated with the in vitro and in vivo production of the cartilage matrix by these cells. The productivity of the cartilage matrix in cultured auricular chondrocytes may be predicted by measuring GFAP protein levels in the culture supernatants of these cells. Thus, GFAP is regarded as a marker of the purity and properties of cultured auricular chondrocytes.
Collapse
Affiliation(s)
- Satoru Nishizawa
- Translational Research Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Sanshiro Kanazawa
- Department of Cell and Tissue Engineering (Fujisoft) and Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuko Fujihara
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukiyo Asawa
- Department of Cell and Tissue Engineering (Fujisoft) and Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoru Nagata
- NAGATA Microtia and Reconstructive Plastic Surgery Clinic, Toda City, Japan
| | - Motohiro Harai
- FUJISOFT Tissue Engineering Co., Ltd., Yokohama-shi, Japan
| | - Atsuhiko Hikita
- Department of Cell and Tissue Engineering (Fujisoft) and Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Takato
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuto Hoshi
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Speichert S, Molotkov N, El Bagdadi K, Meurer A, Zaucke F, Jenei-Lanzl Z. Role of Norepinephrine in IL-1β-Induced Chondrocyte Dedifferentiation under Physioxia. Int J Mol Sci 2019; 20:ijms20051212. [PMID: 30861996 PMCID: PMC6429278 DOI: 10.3390/ijms20051212] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
As part of the pathogenesis of osteoarthritis (OA), chondrocytes lose their phenotype and become hypertrophic, or dedifferentiate, mainly driven by interleukin-1β (IL-1β). The contribution of other factors to the dedifferentiation process is not completely understood. Recent studies suggested a dose-dependent role for the sympathetic neurotransmitter norepinephrine (NE) in OA chondrocyte metabolism. Therefore, the aim of this study was to analyze the contribution of NE (10-8 M, 10-6 M) to human articular OA chondrocyte dedifferentiation in the absence or presence of IL-1β (0.5 ng/mL). Here, we demonstrate that OA chondrocytes express α2A-, α2C- and β2-adrenoceptors (AR) and show the characteristic shift towards a fibroblast-like shape at day 7 in physioxic monolayer culture. NE alone did not affect morphology but, in combination with IL-1β, markedly accelerated this shift. Moderate glycosaminoglycan (GAG) staining was observed in untreated and NE-treated cells, while IL-1β strongly decreased GAG deposition. IL-1β alone or in combination with NE decreased SOX9, type II collagen, COMP, and aggrecan, and induced MMP13 and ADAMTS4 gene expression, indicating an accelerated dedifferentiation. NE alone did not influence gene expression and did not modulate IL-1β-mediated effects. In conclusion, these results indicate that low-grade inflammation exerts a dominant effect on chondrocyte dedifferentiation and should be targeted early in OA therapy.
Collapse
Affiliation(s)
- Saskia Speichert
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim gGmbH, Marienburgstr. 2, 60528 Frankfurt/Main, Germany.
| | - Natalie Molotkov
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim gGmbH, Marienburgstr. 2, 60528 Frankfurt/Main, Germany.
| | - Karima El Bagdadi
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim gGmbH, Marienburgstr. 2, 60528 Frankfurt/Main, Germany.
| | - Andrea Meurer
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim gGmbH, Marienburgstr. 2, 60528 Frankfurt/Main, Germany.
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim gGmbH, Marienburgstr. 2, 60528 Frankfurt/Main, Germany.
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim gGmbH, Marienburgstr. 2, 60528 Frankfurt/Main, Germany.
| |
Collapse
|
14
|
Bousnaki M, Bakopoulou A, Papadogianni D, Barkoula NM, Alpantaki K, Kritis A, Chatzinikolaidou M, Koidis P. Fibro/chondrogenic differentiation of dental stem cells into chitosan/alginate scaffolds towards temporomandibular joint disc regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:97. [PMID: 29946796 DOI: 10.1007/s10856-018-6109-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
Tissue engineering (TE) may provide effective alternative treatment for challenging temporomandibular joint (TMJ) pathologies associated with disc malpositioning or degeneration and leading to severe masticatory dysfunction. Aim of this study was to evaluate the potential of chitosan/alginate (Ch/Alg) scaffolds to promote fibro/chondrogenic differentiation of dental pulp stem cells (DPSCs) and production of fibrocartilage tissue, serving as a replacement of the natural TMJ disc. Ch/Alg scaffolds were fabricated by crosslinking with CaCl2 combined or not with glutaraldehyde, resulting in two scaffold types that were physicochemically characterized, seeded with DPSCs or human nucleus pulposus cells (hNPCs) used as control and evaluated for cell attachment, viability, and proliferation. The DPSCs/scaffold constructs were incubated for up to 8 weeks and assessed for extracellular matrix production by means of histology, immunofluorescence, and thermomechanical analysis. Both Ch/Alg scaffold types with a mass ratio of 1:1 presented a gel-like structure with interconnected pores. Scaffolds supported cell adhesion and long-term viability/proliferation of DPSCs and hNPCs. DPSCs cultured into Ch/Alg scaffolds demonstrated a significant increase of gene expression of fibrocartilaginous markers (COLI, COL X, SOX9, COM, ACAN) after up to 3 weeks in culture. Dynamic thermomechanical analysis revealed that scaffolds loaded with DPSCs significantly increased storage modulus and elastic response compared to cell-free scaffolds, obtaining values similar to those of native TMJ disc. Histological data and immunochemical staining for aggrecan after 4 to 8 weeks indicated that the scaffolds support abundant fibrocartilaginous tissue formation, thus providing a promising strategy for TMJ disc TE-based replacement.
Collapse
Affiliation(s)
- Maria Bousnaki
- Department of Prosthodontics, Faculty of Dentistry, Aristotle University of Thessaloniki, University Campus, Dentistry Building, 54124, Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics, Faculty of Dentistry, Aristotle University of Thessaloniki, University Campus, Dentistry Building, 54124, Thessaloniki, Greece
| | - Danai Papadogianni
- Department of Materials Science and Technology, University of Crete, Voutes Campus, Heraklion, 71003, Crete, Greece
| | - Nektaria-Marianthi Barkoula
- Department of Materials Science and Engineering, University of Ioannina, University Campus, 45500, Ioannina, Greece
| | - Kalliopi Alpantaki
- Department of Materials Science and Technology, University of Crete, Voutes Campus, Heraklion, 71003, Crete, Greece
| | - Aristidis Kritis
- Department of Physiology and Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, University Campus, 54006, Thessaloniki, Greece
- cGMP Regenerative Medicine facility, Department of Physiology and Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54006, Greece
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, Voutes Campus, Heraklion, 71003, Crete, Greece
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Vassilika Vouton, Heraklion, 70013, Crete, Greece
| | - Petros Koidis
- Department of Prosthodontics, Faculty of Dentistry, Aristotle University of Thessaloniki, University Campus, Dentistry Building, 54124, Thessaloniki, Greece.
| |
Collapse
|
15
|
Wiggenhauser PS, Schwarz S, Rotter N. The distribution patterns of COMP and matrilin-3 in septal, alar and triangular cartilages of the human nose. Histochem Cell Biol 2018; 150:291-300. [PMID: 29721643 DOI: 10.1007/s00418-018-1672-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2018] [Indexed: 01/07/2023]
Abstract
The biomechanical characteristics of septal cartilage depend strongly on the distinct extracellular matrix of cartilage tissue; therefore, it is essential that the components of this matrix are identified and understood. Cartilage oligomeric matrix protein (COMP) and matrilin-3 are localised in articular cartilage. This study was the first to examine all subtypes of mature human nasal cartilages (alar, triangular and septal) with specific attention to the distribution of COMP and matrilin-3. Three whole fresh-frozen noses from human donors were dissected, and exemplary biopsies were examined using histochemical staining (haematoxylin and eosin and Alcian blue) and immunohistochemistry (collagen II, COMP and matrilin-3). The following three zones within the nasal cartilage were identified: superficial, intermediate and central. COMP was detected as highest in the intermediate zones in all three subtypes of nasal cartilage, whereas matrilin-3 was detected with pericellular deposition mainly within septal cartilage predominantly in the superficial zones. The distinct staining patterns of COMP and matrilin-3 underscore the different functional roles of both proteins in nasal cartilage. According to the literature, COMP might be involved with collagen II in the formation of networks, whereas matrilin-3 is reported to prevent ossification or regulate mechanosensitivity. The predominant staining observed in septal cartilage suggests matrilin-3's modulatory role because of its presence in the osteochondral junctional zone and given that the biomechanical load in septal cartilage is different from that in alar or triangular cartilage. In conclusion, COMP and matrilin-3 were detected in mature human nasal cartilage but displayed different staining patterns that might be explained by the functional roles of the respective matrix protein; however, further research is necessary to identify and define the functional aspects of this morphological difference.
Collapse
Affiliation(s)
- Paul Severin Wiggenhauser
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany.
- Department of Hand, Plastic and Aesthetic Surgery, University Hospital, Ludwig-Maximilians University, Pettenkoferstr. 8a, 80336, Munich, Germany.
| | - Silke Schwarz
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany
- Department of Anatomy, Paracelsus Medical University, Prof. Ernst Nathan Str. 1, Salzburg, 90419, Nuremberg, Germany
| | - Nicole Rotter
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany
- Department of Oto-Rhino-Laryngology, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
16
|
Gutner-Hoch E, Waldman Ben-Asher H, Yam R, Shemesh A, Levy O. Identifying genes and regulatory pathways associated with the scleractinian coral calcification process. PeerJ 2017; 5:e3590. [PMID: 28740755 PMCID: PMC5522607 DOI: 10.7717/peerj.3590] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/27/2017] [Indexed: 01/04/2023] Open
Abstract
Reef building corals precipitate calcium carbonate as an exo-skeleton and provide substratum for prosperous marine life. Biomineralization of the coral’s skeleton is a developmental process that occurs concurrently with other proliferation processes that control the animal extension and growth. The development of the animal body is regulated by large gene regulatory networks, which control the expression of gene sets that progressively generate developmental patterns in the animal body. In this study we have explored the gene expression profile and signaling pathways followed by the calcification process of a basal metazoan, the Red Sea scleractinian (stony) coral, Stylophora pistillata. When treated by seawater with high calcium concentrations (addition of 100 gm/L, added as CaCl2.2H2O), the coral increases its calcification rates and associated genes were up-regulated as a result, which were then identified. Gene expression was compared between corals treated with elevated and normal calcium concentrations. Calcification rate measurements and gene expression analysis by microarray RNA transcriptional profiling at two time-points (midday and night-time) revealed several genes common within mammalian gene regulatory networks. This study indicates that core genes of the Wnt and TGF-β/BMP signaling pathways may also play roles in development, growth, and biomineralization in early-diverging organisms such as corals.
Collapse
Affiliation(s)
- Eldad Gutner-Hoch
- Department of Zoology, The George S. Wise Center for Life Sciences, Tel Aviv University, Tel Aviv, Israel.,The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Hiba Waldman Ben-Asher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Ruth Yam
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Aldo Shemesh
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Oren Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
17
|
Wang SQ, Xia J, Chen J, Lu JX, Wei YB, Chen FY, Huang GY, Shi JS, Yu YL. Influence of biological scaffold regulation on the proliferation of chondrocytes and the repair of articular cartilage. Am J Transl Res 2016; 8:4564-4573. [PMID: 27904662 PMCID: PMC5126304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/19/2016] [Indexed: 06/06/2023]
Abstract
PURPOSE To investigate the effects of hard tissue engineering scaffold (the material is β-TCP) with different micro-structures on the proliferation of chondrocytes, and the influence of its composite erythrocytes on the repair of articular cartilage defects. METHODS Rabbit cartilage cells were on β-TCP bioceramic scaffold with different micro-structures in vitro, the proliferation growth trend of chondrocytes within the scaffold was calculated, and a optimal micro-structure suitable for cartilage cell growth was determined. Composite chondrocytes were implanted into rabbit models of articular cartilage defects, and the repair situation was observed. RESULTS the bioceramic scaffold with an inner diameter of 120 μm and an aperture of 500-630 μm was suitable for the growth of cartilage cells. Scaffold loaded with second generation of cartilage cell suspension got a top histological score of 20.76±2.13, which was closely similar to that of normal cartilage. CONCLUSION When loaded with the second generation of cartilage cells, the β-TCP biological ceramic scaffold with a pore size of 500-630 μm, and an inner diameter of 120 μm, shows a best repairing effect on animal articular cartilage defects.
Collapse
Affiliation(s)
- Si-Qun Wang
- Department of Orthopaedics, Huashan Hospital of Fudan UniversityShanghai 200040, China
| | - Jun Xia
- Department of Orthopaedics, Huashan Hospital of Fudan UniversityShanghai 200040, China
| | - Jie Chen
- Department of Orthopaedics, Huashan Hospital of Fudan UniversityShanghai 200040, China
| | - Jian-Xi Lu
- Shanghai Bio-Lu Biomaterials Co. LtdShanghai 201114, China
| | - Yi-Bing Wei
- Department of Orthopaedics, Huashan Hospital of Fudan UniversityShanghai 200040, China
| | - Fei-Yan Chen
- Department of Orthopaedics, Huashan Hospital of Fudan UniversityShanghai 200040, China
| | - Gang-Yong Huang
- Department of Orthopaedics, Huashan Hospital of Fudan UniversityShanghai 200040, China
| | - Jing-Sheng Shi
- Department of Orthopaedics, Huashan Hospital of Fudan UniversityShanghai 200040, China
| | - Yong-Lin Yu
- Department of Orthopaedics, Huashan Hospital of Fudan UniversityShanghai 200040, China
| |
Collapse
|
18
|
Mata-Miranda MM, Martinez-Martinez CM, Noriega-Gonzalez JE, Paredes-Gonzalez LE, Vázquez-Zapién GJ. Morphological, genetic and phenotypic comparison between human articular chondrocytes and cultured chondrocytes. Histochem Cell Biol 2016; 146:183-9. [PMID: 27094849 DOI: 10.1007/s00418-016-1437-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2016] [Indexed: 12/20/2022]
Abstract
Articular cartilage is an avascular and aneural tissue with limited capacity for regeneration. On large articular lesions, it is recommended to use regenerative medicine strategies, like autologous chondrocyte implantation. There is a concern about morphological changes that chondrocytes suffer once they have been isolated and cultured. Due to the fact that there is little evidence that compares articular cartilage chondrocytes with cultured chondrocytes, in this research we proposed to obtain chondrocytes from human articular cartilage, compare them with themselves once they have been cultured and characterize them through genetic, phenotypic and morphological analysis. Knee articular cartilage samples of 10 mm were obtained, and each sample was divided into two fragments; a portion was used to determine gene expression, and from the other portion, chondrocytes were obtained by enzymatic disaggregation, in order to be cultured and expanded in vitro. Subsequently, morphological, genetic and phenotypic characteristics were compared between in situ (articular cartilage) and cultured chondrocytes. Obtained cultured chondrocytes were rounded in shape, possessing a large nucleus with condensed chromatin and a clear cytoplasm; histological appearance was quite similar to typical chondrocyte. The expression levels of COL2A1 and COL10A1 genes were higher in cultured chondrocytes than in situ chondrocytes; moreover, the expression of COL1A1 was almost undetectable on cultured chondrocytes; likewise, COL2 and SOX9 proteins were detected by immunofluorescence. We concluded that chondrocytes derived from adult human cartilage cultured for 21 days do not tend to dedifferentiate, maintaining their capacity to produce matrix and also retaining their synthesis capacity and morphology.
Collapse
Affiliation(s)
- Mónica Maribel Mata-Miranda
- Laboratorio de Biología Celular y Tisular, Escuela Médico Militar, Universidad del Ejército y Fuerza Aérea, 11200, Ciudad de México, Mexico.,CIBA-Tlaxcala, Instituto Politécnico Nacional, 90700, Tepetitla, Tlaxcala, Mexico
| | - Claudia María Martinez-Martinez
- Laboratorio de Biología Celular y Tisular, Escuela Médico Militar, Universidad del Ejército y Fuerza Aérea, 11200, Ciudad de México, Mexico
| | - Jesús Emmanuel Noriega-Gonzalez
- Laboratorio de Embriología, Escuela Médico Militar, Universidad del Ejército y Fuerza Aérea, Cerrada de Palomas S/N, Lomas de Sotelo, Miguel Hidalgo, 11200, Ciudad de México, Mexico
| | - Luis Enrique Paredes-Gonzalez
- Laboratorio Multidisciplinario de Investigación, Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea, 11200, Ciudad de México, Mexico
| | - Gustavo Jesús Vázquez-Zapién
- CIBA-Tlaxcala, Instituto Politécnico Nacional, 90700, Tepetitla, Tlaxcala, Mexico. .,Laboratorio de Embriología, Escuela Médico Militar, Universidad del Ejército y Fuerza Aérea, Cerrada de Palomas S/N, Lomas de Sotelo, Miguel Hidalgo, 11200, Ciudad de México, Mexico.
| |
Collapse
|
19
|
Zwickl H, Niculescu-Morzsa E, Halbwirth F, Bauer C, Jeyakumar V, Reutterer A, Berger M, Nehrer S. Correlation Analysis of SOX9, -5, and -6 as well as COL2A1 and Aggrecan Gene Expression of Collagen I Implant-Derived and Osteoarthritic Chondrocytes. Cartilage 2016; 7:185-92. [PMID: 27047641 PMCID: PMC4797238 DOI: 10.1177/1947603515615388] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Matrix-assisted autologous chondrocyte implantation is frequently applied to replace damaged cartilage in order to support tissue regeneration or repair and to prevent progressive cartilage degradation and osteoarthritis. Its application, however, is limited to primary defects and contraindicated in the case of osteoarthritis that is partially ascribed to dedifferentiation and phenotype alterations of chondrocytes obtainable from patients' biopsies. The differentiation state of chondrocytes is reflected at the level of structural gene (COL2A1, ACAN, COL1A1) and transcription factor (SOX9, 5, 6) expression. METHODS/DESIGN We determined the mRNA abundances of COL2A1, ACAN, and COL1A1as well as SOX9, -5, and -6 of freshly isolated and passaged collagen I implant-derived and osteoarthritic chondrocytes via reverse transcription-polymerase chain reaction. Moreover, we analyzed the correlation of structural and transcription factor gene expression. Thus, we were able to evaluate the impact of the mRNA levels of transcription factors on the expression of cartilage-specific structural genes. RESULTS Significant differences were obtained (1) for freshly isolated osteoarthritic versus collagen I implant-derived chondrocytes, (2) due to passaging of the respective cell sources, (3) for osteoarthritic versus nonosteoarthritic chondrocytes, and (4) for COL2A1 versus ACAN expression with respect to the coherence with SOX9, -5, and -6 transcript levels. CONCLUSION Our results might contribute to a better understanding of the transcriptional regulation of structural gene expression of chondrocytes with implications for their use in matrix-assisted autologous chondrocyte implantation.
Collapse
Affiliation(s)
- Hannes Zwickl
- Center for Regenerative Medicine and Orthopaedics, Department for Clinical Medicine and Biotechnology, Danube University Krems, Krems, Austria
| | - Eugenia Niculescu-Morzsa
- Center for Regenerative Medicine and Orthopaedics, Department for Clinical Medicine and Biotechnology, Danube University Krems, Krems, Austria
| | - Florian Halbwirth
- Center for Regenerative Medicine and Orthopaedics, Department for Clinical Medicine and Biotechnology, Danube University Krems, Krems, Austria
| | - Christoph Bauer
- Center for Regenerative Medicine and Orthopaedics, Department for Clinical Medicine and Biotechnology, Danube University Krems, Krems, Austria,Christoph Bauer, Center for Regenerative Medicine and Orthopaedics, Department for Clinical Medicine and Biotechnology, Danube University Krems, Dr. Karl Dorrek Straße 30, Krems 3500, Austria.
| | - Vivek Jeyakumar
- Center for Regenerative Medicine and Orthopaedics, Department for Clinical Medicine and Biotechnology, Danube University Krems, Krems, Austria
| | - Angelique Reutterer
- Center for Regenerative Medicine and Orthopaedics, Department for Clinical Medicine and Biotechnology, Danube University Krems, Krems, Austria
| | - Manuela Berger
- Center for Regenerative Medicine and Orthopaedics, Department for Clinical Medicine and Biotechnology, Danube University Krems, Krems, Austria
| | - Stefan Nehrer
- Center for Regenerative Medicine and Orthopaedics, Department for Clinical Medicine and Biotechnology, Danube University Krems, Krems, Austria
| |
Collapse
|
20
|
Spitters TWGM, Mota CMD, Uzoechi SC, Slowinska B, Martens DE, Moroni L, Karperien M. Glucose gradients influence zonal matrix deposition in 3D cartilage constructs. Tissue Eng Part A 2015; 20:3270-8. [PMID: 24903611 DOI: 10.1089/ten.tea.2014.0059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Reproducing the native collagen structure and glycosaminoglycan (GAG) distribution in tissue-engineered cartilage constructs is still a challenge. Articular cartilage has a specific nutrient supply and mechanical environment due to its location and function in the body. Efforts to simulate this native environment have been reported through the use of bioreactor systems. However, few of these devices take into account the existence of gradients over cartilage as a consequence of the nutrient supply by diffusion. We hypothesized that culturing chondrocytes in an environment, in which gradients of nutrients can be mimicked, would induce zonal differentiation. Indeed, we show that glucose gradients facilitating a concentration distribution as low as physiological glucose levels enhanced a zonal chondrogenic capacity similar to the one found in native cartilage. Furthermore, we found that the glucose consumption rates of cultured chondrocytes were higher under physiological glucose concentrations and that GAG production rates were highest in 5 mM glucose. From these findings, we concluded that this condition is better suited for matrix deposition compared to 20 mM glucose standard used in a chondrocyte culture system. Reconsidering the culture conditions in cartilage tissue engineering strategies can lead to cartilaginous constructs that have better mechanical and structural properties, thus holding the potential of further enhancing integration with the host tissue.
Collapse
Affiliation(s)
- Tim W G M Spitters
- 1 Department of Developmental BioEngineering, MIRA Institute, University of Twente , Enschede, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
21
|
Park Y, Hosomichi J, Ge C, Xu J, Franceschi R, Kapila S. Immortalization and characterization of mouse temporomandibular joint disc cell clones with capacity for multi-lineage differentiation. Osteoarthritis Cartilage 2015; 23:1532-42. [PMID: 25887369 PMCID: PMC4558381 DOI: 10.1016/j.joca.2015.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/17/2015] [Accepted: 04/02/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Despite the importance of temporomandibular joint (TMJ) disc in normal function and disease, studying the responses of its cells has been complicated by the lack of adequate characterization of the cell subtypes. The purpose of our investigation was to immortalize, clone, characterize and determine the multi-lineage potential of mouse TMJ disc cells. DESIGN Cells from 12-week-old female mice were cultured and immortalized by stable transfection with human telomerase reverse transcriptase (hTERT). The immortalized cell clones were phenotyped for fibroblast- or chondrocyte-like characteristics and ability to undergo adipocytic, osteoblastic and chondrocytic differentiation. RESULTS Of 36 isolated clones, four demonstrated successful immortalization and maintenance of stable protein expression for up to 50 passages. Two clones each were initially characterized as fibroblast-like and chondrocyte-like on the basis of cell morphology and growth rate. Further the chondrocyte-like clones had higher mRNA expression levels of cartilage oligomeric matrix protein (COMP) (>3.5-fold), collagen X (>11-fold), collagen II expression (2-fold) and collagen II:I ratio than the fibroblast-like clones. In contrast, the fibroblast-like clones had higher mRNA expression level of vimentin (>1.5-fold), and fibroblastic specific protein 1 (>2.5-fold) than the chondrocyte-like clones. Both cell types retained multi-lineage potential as demonstrated by their capacity to undergo robust adipogenic, osteogenic and chondrogenic differentiation. CONCLUSIONS These studies are the first to immortalize TMJ disc cells and characterize chondrocyte-like and fibroblast-like clones with retained multi-differentiation potential that would be a valuable resource in studies to dissect the behavior of specific cell types in health and disease and for tissue engineering.
Collapse
Affiliation(s)
- Young Park
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, The University of Michigan, Ann Arbor, MI, USA
| | - Jun Hosomichi
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, The University of Michigan, Ann Arbor, MI, USA,Department of Orthodontic Science, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chunxi Ge
- Department of Periodontics and Oral Medicine, School of Dentistry, The University of Michigan, Ann Arbor, MI, USA
| | - Jinping Xu
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, The University of Michigan, Ann Arbor, MI, USA
| | - Renny Franceschi
- Department of Periodontics and Oral Medicine, School of Dentistry, The University of Michigan, Ann Arbor, MI, USA
| | - Sunil Kapila
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, The University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Guo P, Shi ZL, Liu A, Lin T, Bi F, Shi M, Yan SG. Effects of cartilage oligomeric matrix protein on bone morphogenetic protein-2-induced differentiation of mesenchymal stem cells. Orthop Surg 2015; 6:280-7. [PMID: 25430711 DOI: 10.1111/os.12135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 05/27/2014] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To investigate the effect of overexpression of cartilage oligomeric matrix protein (COMP) on bone morphogenetic protein-2 (BMP-2) induced osteogenic and chondrogenic differentiation of mesenchymal stem cells (MSCs). In this study, we used liposomes to transfect MSCs with plasmid encoding COMP and then induced the transfected MSCs to differentiate in osteogenic and chondrogenic differentiation media containing BMP-2. METHODS MSCs transfected with plasmid DNA encoding recombinant human COMP were induced to differentiate into osteocytes and chondrocytes by BMP-2. Real-time polymerase chain reaction (PCR) assays of osteogenesis-related markers (collagen type I alpha 1, runt-related transcription factor 2, osteopontin, bone gla protein) and chondrogenesis-related markers (collagen type II alpha 1, sry-related high-mobility group box 9, Aggrecan) was performed to evaluate the process of cell differentiation. Cell differentiation was evaluated by alkaline phosphatase (ALP) and Alizarin red S stains for osteogenic differentiation and alcian blue staining for chondrogenic differentiation. RESULTS Real-time PCR assay showed significantly greater COMP expression by MSCs when COMP gene had been transfected into the cells (P < 0.01). Overexpression of COMP down-regulated expression of osteogenesis-related markers and up-regulated expression of chondrogenesis-related markers. ALP staining and Alizarin red S staining were weakened, whereas alcian blue staining was enhanced. CONCLUSION Overexpression of COMP inhibits BMP-2-induced osteogenic differentiation and promotes BMP-2-induced chondrogenic differentiation. These findings may provide new insights for cartilage tissue engineering. The experiments in the present study were all in vitro, which has potential limitations. Further in vivo studies to investigate the effects of COMP in animal models are necessary, which will be the next step in our research.
Collapse
Affiliation(s)
- Peng Guo
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Label-free relative quantification applied to LC-MALDI acquisition for rapid analysis of chondrocyte secretion modulation. J Proteomics 2015; 114:263-73. [DOI: 10.1016/j.jprot.2014.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/10/2014] [Accepted: 10/22/2014] [Indexed: 11/21/2022]
|
24
|
Activation of multiple signaling pathways during the differentiation of mesenchymal stem cells cultured in a silicon nanowire microenvironment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1153-63. [DOI: 10.1016/j.nano.2014.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 01/31/2014] [Accepted: 02/13/2014] [Indexed: 12/30/2022]
|
25
|
Tailored PVA/ECM scaffolds for cartilage regeneration. BIOMED RESEARCH INTERNATIONAL 2014; 2014:762189. [PMID: 25147814 PMCID: PMC4131468 DOI: 10.1155/2014/762189] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/08/2014] [Accepted: 07/08/2014] [Indexed: 11/20/2022]
Abstract
Articular cartilage lesions are a particular challenge for regenerative medicine due to cartilage low self-ability repair in case of damage. Hence, a significant goal of musculoskeletal tissue engineering is the development of suitable structures in virtue of their matrix composition and biomechanical properties. The objective of our study was to design in vitro a supporting structure for autologous chondrocyte growth. We realized a biohybrid composite scaffold combining a novel and nonspecific extracellular matrix (ECM), which is decellularized Wharton's jelly ECM, with the biomechanical properties of the synthetic hydrogel polyvinyl alcohol (PVA). Wharton's jelly ECM was tested for its ability in promoting scaffold colonization by chondrocytes and compared with polyvinyl alcohol itself and the more specific decellularized cartilage matrix. Our preliminary evidences highlighted the chance of using Wharton's jelly ECM in combination with PVA hydrogels as an innovative and easily available scaffold for cartilage restoration.
Collapse
|
26
|
Stoelzel K, Kohl B, Hoyer M, Meier C, Szczepek AJ, Olze H, Schulze-Tanzil G. Effect of nasal sprays on an in vitro survival and morphology of nasoseptal cartilage. Eur Arch Otorhinolaryngol 2014; 272:877-887. [PMID: 24993660 DOI: 10.1007/s00405-014-3165-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/15/2014] [Indexed: 10/25/2022]
Abstract
Nasal sprays were introduced several years ago to support the treatment of allergic rhinitis. These sprays may come in direct contact with directly exposed nasoseptal cartilage (e.g. is case of nasoseptal perforation). To date, no studies investigated the effects of nasal sprays on cartilage tissues and cells. Therefore, our aim was to analyze the influence of two different nasal spray types (thixotropic and liposomal) on the vitality of nasoseptal chondrocytes. Human chondrocytes were isolated from surgically dissected tissues. Alternatively, nasal septa (porcine and human) tissue explants were used. The cell or explant cultures were treated with nasal sprays for 4-24 h. As a read-out, cell vitality and gene and protein expression profiles of type I and II collagen, SOX 9 and matrix metalloproteinase MMP-1 were compared to the untreated controls by means of real-time RT-PCR and immunostaining. Using the liposomal, but not thixotropic nasal spray in an explant or chondrocyte in vitro culture led to increased cell death, as compared to the untreated controls. A trend towards suppression of type II collagen and SOX 9 on protein level was found in cultures exposed to liposomal nasal spray, as compared to the controls. The thixotropic nasal spray has not affected the nasoseptal chondrocytes. Further studies with the use of viable nasoseptal cartilage explants and particularly using an in vivo animal model of exposed nasoseptal cartilage are necessary to clear the effect of liposomal spray on chondrocytes.
Collapse
Affiliation(s)
- Katharina Stoelzel
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin, Campus Charité Mitte, Chariteplatz 1, 10117, Berlin, Germany.
| | - Benjamin Kohl
- Department of Orthopedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin, Campus Benjamin Franklin, Garystrasse 5, 14195, Berlin, Germany
| | - Mariann Hoyer
- Department of Orthopedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin, Campus Benjamin Franklin, Garystrasse 5, 14195, Berlin, Germany
| | - Carola Meier
- Department of Orthopedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin, Campus Benjamin Franklin, Garystrasse 5, 14195, Berlin, Germany
| | - Agnieszka J Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin, Campus Charité Mitte, Chariteplatz 1, 10117, Berlin, Germany
| | - Heidi Olze
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin, Campus Charité Mitte, Chariteplatz 1, 10117, Berlin, Germany
| | - Gundula Schulze-Tanzil
- Department of Orthopedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin, Campus Benjamin Franklin, Garystrasse 5, 14195, Berlin, Germany
| |
Collapse
|
27
|
Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater 2014; 10:2834-42. [PMID: 24512978 DOI: 10.1016/j.actbio.2014.02.002] [Citation(s) in RCA: 328] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 01/05/2014] [Accepted: 02/02/2014] [Indexed: 12/12/2022]
Abstract
Magnesium alloys are being investigated for load-bearing bone fixation devices due to their initial mechanical strength, modulus similar to native bone, biocompatibility and ability to degrade in vivo. Previous studies have found Mg alloys to support bone regeneration in vivo, but the mechanisms have not been investigated in detail. In this study, we analyzed the effects of Mg(2+) stimulation on intracellular signaling mechanisms of human bone marrow stromal cells (hBMSCs). hBMSCs were cultured in medium containing 0.8, 5, 10, 20 and 100mM MgSO4, either with or without osteogenic induction factors. After 3weeks, mineralization of extracellular matrix (ECM) was analyzed by Alizarin red staining, and gene expression was analyzed by quantitative polymerase chain reaction array. Mineralization of ECM was enhanced at 5 and 10mM MgSO4, and collagen type X mRNA (COL10A1, an ECM protein deposited during bone healing) expression was increased at 10mM MgSO4 both with and without osteogenic factors. We also confirmed the increased production of collagen type X protein by Western blotting. Next, we investigated the mechanisms of intracellular signaling by analyzing the protein production of hypoxia-inducible factor (HIF)-1α and 2α (transcription factors of COL10A1), vascular endothelial growth factor (VEGF) (activated by HIF-2α) and peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α (transcription coactivator of VEGF). We observed that 10mM MgSO4 stimulation enhanced COL10A1 and VEGF expression, possibly via HIF-2α in undifferentiated hBMSCs and via PGC-1α in osteogenic cells. These data suggest possible ECM proteins and transcription factors affected by Mg(2+) that are responsible for the enhanced bone regeneration observed around degradable Mg orthopedic/craniofacial devices.
Collapse
|
28
|
Zhang Q, Zhou J, Ge H, Cheng B. Tgif1 and SnoN modified chondrocytes or stem cells for tendon-bone insertion regeneration. Med Hypotheses 2013; 81:163-6. [PMID: 23747175 DOI: 10.1016/j.mehy.2013.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 05/02/2013] [Accepted: 05/15/2013] [Indexed: 10/26/2022]
Abstract
Tendon-bone insertion injuries are a common occurrence but rarely heal, despite the many strategies that have been employed. The tendon-bone insertion consists of four types of tissues: tendon, fibrocartilage, mineral fibrocartilage and bone, making it hard to regenerate. The key to reconstructing the tendon enthesis is to rebuild the gradations of cell type, collagen type, mineral content and collagen fiber orientation. Chondrocytes were found to be able to differentiate into tendon and bone tissues upon special stimulation, which offers promise for tendon enthesis regeneration. Tgif1 is a key factor that represses the expression of the cartilage master gene Sox9, which is induced by TGFβs, and changes the expression rate of Sox9 versus Scx, eventually promoting fibrogenesis. SnoN is a key factor that is induced by TGFβs to inhibit the hypertrophy of chondrocytes and therefore bone formation. It appears that the induction of Tgif1 and the repression of SnoN can cause chondrocytes to differentiate into tendon and bone tissues. Moreover, a gradation of the expression levels of Tgif1 and SnoN in chondrocytes may create a gradation of the tissue from tendon to fibrocartilage to bone. Consequently, we propose that a gradation of gene-modified chondrocytes (Tgif1-inducing cells, primary cells, SnoN-repressing cells) or stem cells that arise from a gradation of stimulation (Tgif1 induction and SnoN repression) will aid in the regeneration of the tendon-bone insertion.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medcine, Shanghai, China
| | | | | | | |
Collapse
|
29
|
Watson JT, Foo T, Wu J, Moed BR, Thorpe M, Schon L, Zhang Z. CD271 as a marker for mesenchymal stem cells in bone marrow versus umbilical cord blood. Cells Tissues Organs 2013; 197:496-504. [PMID: 23689142 DOI: 10.1159/000348794] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2013] [Indexed: 11/19/2022] Open
Abstract
CD271 has been applied to isolate mesenchymal stem cells (MSCs) from bone marrow and other tissues. Umbilical cord blood is a unique resource of stem cells and endothelial progenitor cells. Isolation of MSCs from umbilical cord blood, however, has been inefficient and inconsistent. This study was designed to examine the potential application of CD271 as a marker for the isolation of MSCs from umbilical cord blood. CD271+ cells were isolated from umbilical cord blood and bone marrow using CD271 antibody-conjugated microbeads, and characterized in osteogenic, chondrogenic and adipogenic differentiation. CD271+ cells from umbilical cord blood were slow to proliferate compared with those isolated from bone marrow. While CD271+ cells from bone marrow differentiated into osteogenic, chondrogenic and adipogenic lineages, there were no sound indications of differentiation by CD271+ cells from umbilical cord blood under the same differentiation conditions applied to the CD271+ cells from bone marrow. The study also found that bone marrow CD271+ cells remarkably upregulated the expression of chondrogenic genes under chondrogenic differentiation induction. When implanted into bone defects in mice, CD271+ cells from bone marrow regenerated significant bone, but the counterparts in umbilical cord blood formed little bone in the bone defects. In conclusion, CD271 is an efficient marker for MSC isolation from bone marrow but has failed to isolate MSCs from umbilical cord blood. CD271+ cells in bone marrow are particularly chondrogenic. The property of CD271+ cells is unique but varies from different tissues.
Collapse
Affiliation(s)
- J Tracy Watson
- Department of Orthopedic Surgery, Saint Louis University, St. Louis, MO, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Chen X, Zhang F, He X, Xu Y, Yang Z, Chen L, Zhou S, Yang Y, Zhou Z, Sheng W, Zeng Y. Chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells in type I collagen-hydrogel for cartilage engineering. Injury 2013; 44:540-9. [PMID: 23337703 DOI: 10.1016/j.injury.2012.09.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 09/11/2012] [Accepted: 09/24/2012] [Indexed: 02/02/2023]
Abstract
INTRODUCTION A potent mesenchymal stem cell (MSC) population was recently isolated from the Wharton's jelly of human umbilical cord (UC). The aim of the current experiments was to determine the potential of human UC-derived MSC (UC-MSC) in cartilage healing. MATERIALS AND METHODS Chondrogenic differentiation of collagen hydrogel-embedded cells was induced in standard chondrocyte conditioning medium and further detected by real-time PCR, histochemistry and immunohistochemistry analyses. Cell viability and apoptosis of the MSCs in the collagen I hydrogels were monitored using apoptosis detection kit. RESULTS Cells isolated from UC were positive for MSC biomarkers and negative for haematopoietic lineage and endothelial biomarkers and possess the capacity to differentiate along osteogenic lineage. UC-MSCs embedded in collagen hydrogel can undergo chondrogenesis characterised by significantly increased expressions of collagen II, aggrecan, COMP (cartilage oligomeric matrix protein) and sox9 after exposed cells-embedded hydrogels to chondrogenic factors. The most of cells remained viable throughout the hydrogels after 3 weeks of cultivation in chondrogenic differentiation medium. CONCLUSIONS Collagen hydrogel can provide an appropriate 3-D environment for the chondrogenesis of UC-MSCs. UC-MSCs embedded in biocompatible scaffold may have great potential for cartilage engineering.
Collapse
Affiliation(s)
- Xuebin Chen
- Department of Pharmacology and Biology, College of Life Science and Bioengineering, Beijing University of Technology, P.R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang N, Grad S, Stoddart MJ, Niemeyer P, Südkamp NP, Pestka J, Alini M, Chen J, Salzmann GM. Bioreactor-Induced Chondrocyte Maturation Is Dependent on Cell Passage and Onset of Loading. Cartilage 2013; 4:165-76. [PMID: 26069659 PMCID: PMC4297099 DOI: 10.1177/1947603512471345] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To explore the effect of shifting in vitro culture conditions regarding cellular passage and onset of loading within matrix-associated bovine articular chondrocytes cultured under free-swelling and/or dynamical loading conditions on general chondrocyte maturation. METHODS Primary or passage 3 bovine chondrocytes were seeded in fibrin-polyurethane scaffolds. Constructs were cultured either free-swelling for 2 or 4 weeks, under direct mechanical loading for 2 or 4 weeks, or free swelling for 2 weeks followed by 2 weeks of loading. Samples were collected for glycosaminoglycan (GAG) quantification, mRNA expression of chondrogenic genes, immunohistochemistry, and histology. RESULTS Mechanical loading generally stimulated GAG synthesis, up-regulated chondrogenic genes, and improved the accumulation of matrix in cell-laden constructs when compared with free-swelling controls. Primary chondrocytes underwent more effective cartilage maturation when compared with passaged chondrocytes. Constructs of primary chondrocytes that were initially free-swelling followed by 2 weeks of mechanical load (delayed) had overall highest GAG with strongest responsiveness to load regarding matrix synthesis. Constructs that experienced the delayed loading regime also demonstrated most favorable chondrogenic gene expression profiles in both primary and third passage cells. Furthermore, most intense matrix staining and immunostaining of collagen type II and aggrecan were visualized in these constructs. CONCLUSIONS Primary chondrocytes were more effective than passage 3 chondrocytes when chondrogenesis was concerned. The most efficient chondrogenesis resulted from primary articular chondrocytes, which were initially free-swelling followed by a standardized loading protocol.
Collapse
Affiliation(s)
- Ning Wang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, People’s Republic of China,Department of Orthopaedic and Trauma Surgery, University Medical Center, Albert-Ludwigs University Freiburg, Freiburg, Germany,AO Research Institute Davos, Davos, Switzerland
| | | | | | - Philipp Niemeyer
- Department of Orthopaedic and Trauma Surgery, University Medical Center, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Norbert P. Südkamp
- Department of Orthopaedic and Trauma Surgery, University Medical Center, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Jan Pestka
- Department of Orthopaedic and Trauma Surgery, University Medical Center, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | - Jiying Chen
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, People’s Republic of China
| | - Gian M. Salzmann
- Department of Orthopaedic and Trauma Surgery, University Medical Center, Albert-Ludwigs University Freiburg, Freiburg, Germany
| |
Collapse
|
32
|
Enochson L, Brittberg M, Lindahl A. Optimization of a chondrogenic medium through the use of factorial design of experiments. Biores Open Access 2013; 1:306-13. [PMID: 23514743 PMCID: PMC3559199 DOI: 10.1089/biores.2012.0277] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The standard culture system for in vitro cartilage research is based on cells in a three-dimensional micromass culture and a defined medium containing the chondrogenic key growth factor, transforming growth factor (TGF)-β1. The aim of this study was to optimize the medium for chondrocyte micromass culture. Human chondrocytes were cultured in different media formulations, designed with a factorial design of experiments (DoE) approach and based on the standard medium for redifferentiation. The significant factors for the redifferentiation of the chondrocytes were determined and optimized in a two-step process through the use of response surface methodology. TGF-β1, dexamethasone, and glucose were significant factors for differentiating the chondrocytes. Compared to the standard medium, TGF-β1 was increased 30%, dexamethasone reduced 50%, and glucose increased 22%. The potency of the optimized medium was validated in a comparative study against the standard medium. The optimized medium resulted in micromass cultures with increased expression of genes important for the articular chondrocyte phenotype and in cultures with increased glycosaminoglycan/DNA content. Optimizing the standard medium with the efficient DoE method, a new medium that gave better redifferentiation for articular chondrocytes was determined.
Collapse
Affiliation(s)
- Lars Enochson
- Department of Clinical Chemistry and Transfusion Medicine, The Sahlgrenska Academy, University of Gothenburg , Gothenburg, Sweden
| | | | | |
Collapse
|
33
|
Cha BH, Lee JS, Kim SW, Cha HJ, Lee SH. The modulation of the oxidative stress response in chondrocytes by Wip1 and its effect on senescence and dedifferentiation during in vitro expansion. Biomaterials 2013; 34:2380-8. [PMID: 23306038 DOI: 10.1016/j.biomaterials.2012.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 12/13/2012] [Indexed: 01/31/2023]
Abstract
Obtaining a sufficient number of cells ex vivo for tissue regeneration, which are appropriate for cartilage repair, requires improved techniques for the continuous expansion of chondrocytes in a manner that does not change their innate characteristics. Rapid senescence or dedifferentiation during in vitro expansion results in loss of chondrocyte phenotype and the formation of fibrous cartilage replacement tissue, rather than hyaluronic cartilage, after transplantation. As demonstrated in the current study, wild-type p53-inducible phosphatase (Wip1), a well-established stress modulator, was highly expressed in early-passage chondrocytes, but declined rapidly during in vitro expansion. Stable Wip1-expressing chondrocytes generated by microporation were less susceptible to the onset of senescence and dedifferentiation, and were more resistant to oxidative stress. The increased resistance of Wip1 chondrocytes to oxidative stress was due to modulation of p38 mitogen-activated protein kinase (MAPK) activity. Importantly, chondrocytes expressing Wip1 maintained their innate chondrogenic properties for a longer period of time, resulting in improvements in cartilage regeneration after transplantation. Chondrocytes from Wip1 knockout (Wip1(-/-)) mice were defective in cartilage regeneration compared with those from wild-type mice. Thus, Wip1 expression represents a potentially useful mechanism by which a chondrocyte phenotype can be retained during in vitro expansion through modulation of cellular stress responses.
Collapse
Affiliation(s)
- Byung-Hyun Cha
- Department of Biomedical Sciences, CHA University, Republic of Korea
| | | | | | | | | |
Collapse
|
34
|
Matmati M, Ng TF, Rosenzweig DH, Quinn TM. Protection of Bovine Chondrocyte Phenotype by Heat Inactivation of Allogeneic Serum in Monolayer Expansion Cultures. Ann Biomed Eng 2013; 41:894-903. [DOI: 10.1007/s10439-012-0732-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
|
35
|
Rakar J, Lönnqvist S, Sommar P, Junker J, Kratz G. Interpreted gene expression of human dermal fibroblasts after adipo-, chondro- and osteogenic phenotype shifts. Differentiation 2012; 84:305-13. [DOI: 10.1016/j.diff.2012.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 07/30/2012] [Accepted: 08/19/2012] [Indexed: 11/27/2022]
|
36
|
Enhanced cartilage formation by inhibiting cathepsin K expression in chondrocytes expanded in vitro. Biomaterials 2012; 33:7394-404. [PMID: 22818652 DOI: 10.1016/j.biomaterials.2012.06.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 06/23/2012] [Indexed: 02/08/2023]
Abstract
Although engineered cartilage has great potential in cartilage regeneration and reconstruction, dedifferentiation of chondrocytes during in vitro expansion remains a technical bottleneck in the clinical application. To overcome the problem, a gene modification approach was developed to knock-down the key gene involving dedifferentiation of human chondrocytes. A microarray assay revealed 84 up-regulated genes and 56 down-regulated genes in passage 4 (dedifferentiated) human chondrocytes compared to passage 1 cells. Among them, cathepsin K (CTSK) was the key gene (with 28 folds of increased gene expression), which was further confirmed by RT-PCR and Western-Blot. Furthermore, over-expression of CTSK led to reduced matrix production in cultured human chondrocytes in vitro and poor formation of engineered cartilage in vivo. In contrast, CTSK knock-down could better maintain the chondrogenic phenotype of in vitro expanded cells with increased gene and protein expression of collagen II and aggrecan when compared to control cells. More importantly, after 6 passages, the knock-down cells formed much better engineered cartilage than the control cells after in vivo implantation with 30% Pluronic F127 for 8 weeks as the experimental group formed much bigger sized cartilages with significantly increased weight and glycosaminoglycan content (p < 0.05) than the control group. Histologically, the knock-down cells formed a more homogenous cartilage structure with enhanced production of collagen II and proteoglycans. Overall, these results suggest that CTSK knock-down may provide a feasible way to expand functional human chondrocytes in vitro for engineering good quality human cartilage and thus may have its great potential in the clinical translation of engineered cartilage in the future, given the fact that biosafe RNA interference techniques are already available.
Collapse
|
37
|
Janardhanan S, Wang MO, Fisher JP. Coculture strategies in bone tissue engineering: the impact of culture conditions on pluripotent stem cell populations. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:312-21. [PMID: 22655979 DOI: 10.1089/ten.teb.2011.0681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The use of pluripotent stem cell populations for bone tissue regeneration provides many opportunities and challenges within the bone tissue engineering field. For example, coculture strategies have been utilized to mimic embryological development of bone tissue, and particularly the critical intercellular signaling pathways. While research in bone biology over the last 20 years has expanded our understanding of these intercellular signaling pathways, we still do not fully understand the impact of the system's physical characteristics (orientation, geometry, and morphology). This review of coculture literature delineates the various forms of coculture systems and their respective outcomes when applied to bone tissue engineering. To understand fully the key differences between the different coculture methods, we must appreciate the underlying paradigms of physiological interactions. Recent advances have enabled us to extrapolate these techniques to larger dimensions and higher geometric resolutions. Finally, the contributions of bioreactors, micropatterned biomaterials, and biomaterial interaction platforms are evaluated to give a sense of the sophistication established by a combination of these concepts with coculture systems.
Collapse
Affiliation(s)
- Sathyanarayana Janardhanan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
38
|
Wilson R. Umbilical cord stromal cell differentiation: little correlation with known markers of the chondrocyte phenotype or cartilage extracellular matrix. Mol Cell Proteomics 2012; 11:L111.010495. [PMID: 22474083 DOI: 10.1074/mcp.l111.010496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
39
|
Trimborn M, Endres M, Bommer C, Janke U, Krüger JP, Morawietz L, Kreuz PC, Kaps C. Karyotyping of human chondrocytes in scaffold-assisted cartilage tissue engineering. Acta Biomater 2012; 8:1519-29. [PMID: 22214539 DOI: 10.1016/j.actbio.2011.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 12/09/2011] [Accepted: 12/15/2011] [Indexed: 12/24/2022]
Abstract
Scaffold-assisted autologous chondrocyte implantation (ACI) is an effective clinical procedure for cartilage repair. The aim of our study was to evaluate the chromosomal stability of human chondrocytes subjected to typical cell culture procedures needed for regenerative approaches in polymer-scaffold-assisted cartilage repair. Chondrocytes derived from post mortem donors and from donors scheduled for ACI were expanded, cryopreserved and re-arranged in polyglycolic acid (PGA)-fibrin scaffolds for tissue culture. Chondrocyte redifferentiation was analyzed by electron microscopy, histology and gene expression analysis. Karyotyping was performed using GTG banding and fluorescence in situ hybridization on a single cell basis. Chondrocytes showed de- and redifferentiation accompanied by the formation of extracellular matrix and induction of typical chondrocyte marker genes like type II collagen in PGA-fibrin scaffolds. Post mortem chondrocytes showed up to 1.7% structural and high numbers of numerical (up to 26.7%) chromosomal aberrations, while chondrocytes from living donors scheduled for ACI showed up to 1.8% structural and up to 1.3% numerical alterations. Cytogenetically, cell culture procedures and PGA-fibrin scaffolds did not significantly alter chromosomal integrity of the chondrocyte genome. Human chondrocytes derived from living donors subjected to regenerative medicine cell culture procedures like cell expansion, cryopreservation and culture in resorbable polymer-based scaffolds show normal chromosomal integrity and normal karyotypes.
Collapse
Affiliation(s)
- Marc Trimborn
- Institut für Medizinische Genetik und Humangenetik, Charité Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Li H, Haudenschild D, Posey K, Hecht J, Di Cesare P, Yik J. Comparative analysis with collagen type II distinguishes cartilage oligomeric matrix protein as a primary TGFβ-responsive gene. Osteoarthritis Cartilage 2011; 19:1246-53. [PMID: 21843649 PMCID: PMC4098880 DOI: 10.1016/j.joca.2011.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 07/15/2011] [Accepted: 07/25/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study aims to investigate the regulation of expression of Cartilage oligomeric matrix protein (COMP), which is predominately expressed by chondrocytes and functions to organize the extracellular matrix. Mutations in COMP cause two skeletal dysplasias: pseudoachondroplasia and multiple epiphyseal dysplasia. The mechanism controlling COMP expression during chondrocyte differentiation is still poorly understood. DESIGN Primary human bone marrow-derived stem cells were induced to differentiate into chondrocyte by pellet cultures. We then compared the temporal expression of COMP with the well-characterized cartilage-specific Type II collagen (Col2a1), and their response to transforming growth factor (TGF)β and Sox trio (Sox5, 6, and 9) stimulation. RESULTS COMP and Col2a1 expression are differentially regulated by three distinct mechanisms. First, upregulation of COMP mRNA precedes Col2a1 by several days during chondrogenesis. Second, COMP expression is independent of high cell density but requires TGF-β1. Induction of COMP mRNA by TGF-β1 is detected within 2h in the absence of protein synthesis and is blocked by specific inhibitors of the TGFβ signaling pathway; and therefore, COMP is a primary TFGβ-response gene. Lastly, while Col2a1 expression is intimately controlled by the Sox trio, overexpression of Sox trio fails to activate the COMP promoter. CONCLUSION COMP and Col2a1 expression are regulated differently during chondrogenesis. COMP is a primary response gene of TGFβ and its fast induction during chondrogenesis suggests that COMP is suitable for rapidly accessing the chondrogenic potential of stem cells.
Collapse
Affiliation(s)
- H. Li
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - D.R. Haudenschild
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - K.L. Posey
- Department of Pediatrics, University of Texas Medical School at Houston, Texas, USA
| | - J.T. Hecht
- Department of Pediatrics, University of Texas Medical School at Houston, Texas, USA
| | - P.E. Di Cesare
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - J.H.N. Yik
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA,Address correspondence and reprint requests to: J.H.N. Yik, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, 4635 Second Ave, Research Building 1, Room 2000, Sacramento, CA 95817, USA. Fax: 1-916-734-5750. (J.H.N. Yik)
| |
Collapse
|
41
|
Haudenschild DR, Hong E, Yik JHN, Chromy B, Mörgelin M, Snow KD, Acharya C, Takada Y, Di Cesare PE. Enhanced activity of transforming growth factor β1 (TGF-β1) bound to cartilage oligomeric matrix protein. J Biol Chem 2011; 286:43250-8. [PMID: 21940632 DOI: 10.1074/jbc.m111.234716] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cartilage oligomeric matrix protein (COMP) is an important non-collagenous cartilage protein that is essential for the structural integrity of the cartilage extracellular matrix. The repeated modular structure of COMP allows it to "bridge" and assemble multiple cartilage extracellular matrix components such as collagens, matrilins, and proteoglycans. With its modular structure, COMP also has the potential to act as a scaffold for growth factors, thereby affecting how and when the growth factors are presented to cell-surface receptors. However, it is not known whether COMP binds growth factors. We studied the binding interaction between COMP and TGF-β1 in vitro and determined the effect of COMP on TGF-β1-induced signal transduction in reporter cell lines and primary cells. Our results demonstrate that mature COMP protein binds to multiple TGF-β1 molecules and that the peak binding occurs at slightly acidic pH. These interactions were confirmed by dual polarization interferometry and visualized by rotary shadow electron microscopy. There is cation-independent binding of TGF-β1 to the C-terminal domain of COMP. In the presence of manganese, an additional TGF-β-binding site is present in the TSP3 repeats of COMP. Finally, we show that COMP-bound TGF-β1 causes increased TGF-β1-dependent transcription. We conclude that TGF-β1 binds to COMP and that TGF-β1 bound to COMP has enhanced bioactivity.
Collapse
Affiliation(s)
- Dominik R Haudenschild
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, California 95817, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Construction of eukaryotic expression plasmid of hTGF-β3 and its inducing effect on differentiation of precartilaginous stem cells into chondroblasts. ACTA ACUST UNITED AC 2011; 31:524. [DOI: 10.1007/s11596-011-0484-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Indexed: 10/17/2022]
|
43
|
Montero JA, Lorda-Diez CI, Hurlé JM. Regenerative medicine and connective tissues: cartilage versus tendon. J Tissue Eng Regen Med 2011; 6:337-47. [DOI: 10.1002/term.436] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 04/25/2011] [Indexed: 12/21/2022]
|
44
|
Wang SH, Shen CY, Weng TC, Lin PH, Yang JJ, Chen IF, Kuo SM, Chang SJ, Tu YK, Kao YH, Hung CH. Detection of cartilage oligomeric matrix protein using a quartz crystal microbalance. SENSORS 2010; 10:11633-43. [PMID: 22163547 PMCID: PMC3231063 DOI: 10.3390/s101211633] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/10/2010] [Accepted: 12/11/2010] [Indexed: 11/20/2022]
Abstract
Current methods for diagnosing early stage osteoarthritis (OA) based on the magnetic resonance imaging and enzyme-linked immunosorbent assay methods are specific, but require specialized laboratory facilities and highly trained personal to obtain a definitive result. In this work, a user friendly and non-invasive quartz crystal microbalance (QCM) immunosensor method has been developed to detect Cartilage Oligomeric Matrix Protein (COMP) for early stage OA diagnosis. This QCM immunosensor was fabricated to immobilize COMP antibodies utilizing the self-assembled monolayer technique. The surface properties of the immunosensor were characterized by its FTIR and electrochemical impedance spectra (EIS). The feasibility study was based on urine samples obtained from 41 volunteers. Experiments were carried out in a flow system and the reproducibility of the electrodes was evaluated by the impedance measured by EIS. Its potential dynamically monitored the immunoreaction processes and could increase the efficiency and sensitivity of COMP detection in laboratory-cultured preparations and clinical samples. The frequency responses of the QCM immunosensor changed from 6 kHz when testing 50 ng/mL COMP concentration. The linear regression equation of frequency shift and COMP concentration was determined as: y = 0.0872 x + 1.2138 (R2 = 0.9957). The COMP in urine was also determined by both QCM and EIS for comparison. A highly sensitive, user friendly and cost effective analytical method for the early stage OA diagnosis has thus been successfully developed.
Collapse
Affiliation(s)
- Shih-Han Wang
- Department of Chemical Engineering, I-Shou University, No. 1, Sec. 1, Syuecheng Rd., Dashu Township, Kaohsiung County 840, Taiwan; E-Mails: (S.-H.W.); (P.-H.L); (J.-J.Y.)
| | - Chi-Yen Shen
- Department of Electrical Engineering, I-Shou University, Taiwan; E-Mails: (C.-Y.S.); (T.-C.W.)
| | - Ting-Chan Weng
- Department of Electrical Engineering, I-Shou University, Taiwan; E-Mails: (C.-Y.S.); (T.-C.W.)
| | - Pin-Hsuan Lin
- Department of Chemical Engineering, I-Shou University, No. 1, Sec. 1, Syuecheng Rd., Dashu Township, Kaohsiung County 840, Taiwan; E-Mails: (S.-H.W.); (P.-H.L); (J.-J.Y.)
| | - Jia-Jyun Yang
- Department of Chemical Engineering, I-Shou University, No. 1, Sec. 1, Syuecheng Rd., Dashu Township, Kaohsiung County 840, Taiwan; E-Mails: (S.-H.W.); (P.-H.L); (J.-J.Y.)
| | - I-Fen Chen
- Department of Biomedical Engineering, I-Shou University, No.8, Yi-Da Road, Jiau-shu Tsuen, Yan-chau Shiang, Kaohsiung County, Taiwan; E-Mails: (I.-F.C.); (S.-M.K); (S.-J.S.)
| | - Shyh-Ming Kuo
- Department of Biomedical Engineering, I-Shou University, No.8, Yi-Da Road, Jiau-shu Tsuen, Yan-chau Shiang, Kaohsiung County, Taiwan; E-Mails: (I.-F.C.); (S.-M.K); (S.-J.S.)
| | - Shwu-Jen Chang
- Department of Biomedical Engineering, I-Shou University, No.8, Yi-Da Road, Jiau-shu Tsuen, Yan-chau Shiang, Kaohsiung County, Taiwan; E-Mails: (I.-F.C.); (S.-M.K); (S.-J.S.)
| | - Yuan-Kun Tu
- Department of Orthopaedic Surgery, E-Da Hospital; No.1, Yi-Da Road, Jiau-shu Tsuen, Yan-chau Shiang, Kaohsiung County, Taiwan; E-Mails: (Y.-K.T.); (Y.-H.K.)
| | - Yu-Hsien Kao
- Department of Orthopaedic Surgery, E-Da Hospital; No.1, Yi-Da Road, Jiau-shu Tsuen, Yan-chau Shiang, Kaohsiung County, Taiwan; E-Mails: (Y.-K.T.); (Y.-H.K.)
| | - Chih-Hsin Hung
- Department of Chemical Engineering, I-Shou University, No. 1, Sec. 1, Syuecheng Rd., Dashu Township, Kaohsiung County 840, Taiwan; E-Mails: (S.-H.W.); (P.-H.L); (J.-J.Y.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-7-6577711 ext 3414; Fax: +886-7-6578945
| |
Collapse
|
45
|
Dehne T, Schenk R, Perka C, Morawietz L, Pruss A, Sittinger M, Kaps C, Ringe J. Gene expression profiling of primary human articular chondrocytes in high-density micromasses reveals patterns of recovery, maintenance, re- and dedifferentiation. Gene 2010; 462:8-17. [PMID: 20433912 DOI: 10.1016/j.gene.2010.04.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/07/2010] [Accepted: 04/16/2010] [Indexed: 12/13/2022]
Abstract
The high-density micromass culture has been widely applied to study chondrocyte cell physiology and pathophysiological mechanisms. Since an integrated image has not been established so far, we analyzed the phenotypic alterations of human articular chondrocytes in this model on the broad molecular level. Freshly isolated chondrocytes were assembled as micromasses and maintained up to 6 weeks in medium containing human serum. Formation of cartilaginous extracellular matrix (ECM) was evaluated by histological and immunohistochemical staining. At 0, 3 and 6 weeks, chondrocyte micromasses were subjected to gene expression analysis using oligonucleotide microarrays and real-time RT-PCR. Micromasses developed a cartilaginous ECM rich in proteoglycans and type II collagen. On gene expression level, time-dependent expression patterns was observed. The induction of genes associated with cartilage-specific ECM (COL2A1 and COL11A1) and developmental signaling (GDF5, GDF10, ID1, ID4 and FGFR1-3) indicated redifferentiation within the first 3 weeks. The repression of genes related to stress response (HSPA1A and HSPA4), apoptotic events (HYOU1, NFKBIA and TRAF1), and degradation (MMP1, MMP10 and MMP12) suggested a recovery of chondrocytes. Constant expression of other chondrogenic (ACAN, FN1 and MGP) and hypertrophic markers (COL10A1, ALPL, PTHR1 and PTHR2) indicated a pattern of phenotypic maintenance. Simultaneously, the expression of chondrogenic growth (BMP6, TGFA, FGF1 and FGF2) and transcription factors (SOX9, EGR1, HES1 and TGIF1), and other cartilage ECM-related genes (COMP and PRG4) was consistently repressed and expression of collagens related to dedifferentiation (COL1A1 and COL3A1) was steadily induced indicating a progressing loss of cartilage phenotype. Likewise, a steady increase of genes associated with proliferation (GAS6, SERPINF1, VEGFB and VEGFC) and apoptosis (DRAM, DPAK1, HSPB, GPX1, NGFRAP1 and TIA1) was observed. Sequence and interplay of identified expression patterns suggest that chondrocyte micromass cultures maintain a differentiated phenotype up to 3 weeks in vitro and might be useful for studying chondrocyte biology, pathophysiology and differentiation. Cultivation longer than 6 weeks leads to progressing dedifferentiation of chondrocytes that should be considered on long-term evaluations.
Collapse
Affiliation(s)
- Tilo Dehne
- Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Tucholskystrasse 2, 10117 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Adkisson HD, Martin JA, Amendola RL, Milliman C, Mauch KA, Katwal AB, Seyedin M, Amendola A, Streeter PR, Buckwalter JA. The potential of human allogeneic juvenile chondrocytes for restoration of articular cartilage. Am J Sports Med 2010; 38:1324-33. [PMID: 20423988 PMCID: PMC3774103 DOI: 10.1177/0363546510361950] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Donor-site morbidity, limited numbers of cells, loss of phenotype during ex vivo expansion, and age-related decline in chondrogenic activity present critical obstacles to the use of autologous chondrocyte implantation for cartilage repair. Chondrocytes from juvenile cadaveric donors may represent an alternative to autologous cells. Hypothesis/ PURPOSE The authors hypothesized that juvenile chondrocyte would show stronger and more stable chondrogenic activity than adult cells in vitro and that juvenile cells pose little risk of immunologic incompatibility in adult hosts. STUDY DESIGN Controlled laboratory study. METHODS Cartilage samples were from juvenile (<13 years old) and adult (>13 years old) donors. The chondrogenic activity of freshly isolated human articular chondrocytes and of expanded cells after monolayer culture was measured by proteoglycan assay, gene expression analysis, and histology. Lymphocyte proliferation assays were used to assess immunogenic activity. RESULTS Proteoglycan content in neocartilage produced by juvenile chondrocytes was 100-fold higher than in neocartilage produced by adult cells. Collagen type II and type IX mRNA in fresh juvenile chondrocytes were 100- and 700-fold higher, respectively, than in adult chondrocytes. The distributions of collagens II and IX were similar in native juvenile cartilage and in neocartilage made by juvenile cells. Juvenile cells grew significantly faster in monolayer cultures than adult cells (P = .002) and proteoglycan levels produced in agarose culture was significantly higher in juvenile cells than in adult cells after multiple passages (P < .001). Juvenile chondrocytes did not stimulate lymphocyte proliferation. CONCLUSION These results document a dramatic age-related decline in human chondrocyte chondrogenic potential and show that allogeneic juvenile chondrocytes do not stimulate an immunologic response in vivo. CLINICAL RELEVANCE Juvenile human chondrocytes have greater potential to restore articular cartilage than adult cells, and may be transplanted without the fear of rejection, suggesting a new allogeneic approach to restoring articular cartilage in older individuals.
Collapse
Affiliation(s)
- H Davis Adkisson
- ISTO Technologies, Inc, St Louis, Missouri, St Louis, MO 63132, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dehne T, Karlsson C, Ringe J, Sittinger M, Lindahl A. Chondrogenic differentiation potential of osteoarthritic chondrocytes and their possible use in matrix-associated autologous chondrocyte transplantation. Arthritis Res Ther 2009; 11:R133. [PMID: 19723327 PMCID: PMC2787268 DOI: 10.1186/ar2800] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 07/27/2009] [Accepted: 09/02/2009] [Indexed: 02/08/2023] Open
Abstract
Introduction Autologous chondrocyte transplantation (ACT) is a routine technique to regenerate focal cartilage lesions. However, patients with osteoarthritis (OA) are lacking an appropriate long-lasting treatment alternative, partly since it is not known if chondrocytes from OA patients have the same chondrogenic differentiation potential as chondrocytes from donors not affected by OA. Methods Articular chondrocytes from patients with OA undergoing total knee replacement (Mankin Score > 3, Ahlbäck Score > 2) and from patients undergoing ACT, here referred to as normal donors (ND), were isolated applying protocols used for ACT. Their chondrogenic differentiation potential was evaluated both in high-density pellet and scaffold (Hyaff-11) cultures by histological proteoglycan assessment (Bern Score) and immunohistochemistry for collagen types I and II. Chondrocytes cultured in monolayer and scaffolds were subjected to gene expression profiling using genome-wide oligonucleotide microarrays. Expression data were verified by using real-time PCR. Results Chondrocytes from ND and OA donors demonstrated accumulation of comparable amounts of cartilage matrix components, including sulphated proteoglycans and collagen types I and II. The mRNA expression of cartilage markers (ACAN, COL2A1, COMP, CRTL1, SOX9) and genes involved in matrix synthesis (BGN, CILP2, COL9A2, COL11A1, TIMP4) was highly induced in 3D cultures of chondrocytes from both donor groups. Genes associated with hypertrophic or OA cartilage (ALPL, COL1A1, COL3A1, COL10A1, MMP13, POSTN, PTH1R, RUNX2) were not significantly regulated between the two groups of donors. The expression of 661 genes, including COMP, FN1, and SOX9, was differentially regulated between OA and ND chondrocytes cultured in monolayer. During scaffold culture, the differences diminished between the OA and ND chondrocytes, and only 184 genes were differentially regulated. Conclusions Only few genes were differentially expressed between OA and ND chondrocytes in Hyaff-11 culture. The risk of differentiation into hypertrophic cartilage does not seem to be increased for OA chondrocytes. Our findings suggest that the chondrogenic capacity is not significantly affected by OA, and OA chondrocytes fulfill the requirements for matrix-associated ACT.
Collapse
Affiliation(s)
- Tilo Dehne
- Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Tucholskystrasse 2, Berlin, 10117, Germany.
| | | | | | | | | |
Collapse
|
48
|
Boubriak OA, Brooks JTS, Urban JPG. Cytochrome c oxidase levels in chondrocytes during monolayer expansion and after return to three dimensional culture. Osteoarthritis Cartilage 2009; 17:1084-92. [PMID: 19303470 DOI: 10.1016/j.joca.2009.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 02/12/2009] [Accepted: 03/04/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Here we investigate whether monolayer culture or culture at 21% oxygen influences activity of cytochrome c oxidase, the terminal enzyme in the respiratory chain whose activity is essential for oxidative metabolism and whether return to three dimensional (3-D) culture restores cytochrome c oxidase activity to original levels. METHODS Primary bovine articular chondrocytes were cultured in alginate beads (3-D) for 4 weeks or in monolayer under 1% and 21% oxygen for up to 9 days and then returned to 3-D culture for up to 4 weeks. Cells were stained to localise cytochrome c oxidase within the cells. Mitochondrial protein content and cytochrome c oxidase enzymatic activity were determined. Expression of cytochrome c oxidase subunits, COXI and COXIV, was assessed by qRT-PCR. RESULTS Cytochrome c oxidase staining remained minimal in chondrocytes cultured in alginate for 4 weeks under 21% oxygen. Mitochondrial protein content and cytochrome c oxidase activity increased significantly during 9 days of chondrocyte expansion in monolayer, accompanied by up-regulation of the COXI mitochondrial gene but not the COXIV nuclear-encoded gene. Cytochrome c oxidase staining increased from day 5 of monolayer culture and remained high even after the cells were returned to 3-D culture for 4 weeks. CONCLUSIONS Culture of chondrocytes in monolayer leads to a rapid increase in mitochondrial protein content and cytochrome c oxidase activity. The increase in cytochrome c oxidase activity is not reversed even after chondrocytes are returned to 3-D culture for 4 weeks; high oxygen tension alone does not appear to stimulate cytochrome c oxidase activity.
Collapse
Affiliation(s)
- O A Boubriak
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | | | | |
Collapse
|
49
|
Schulze-Tanzil G. Activation and dedifferentiation of chondrocytes: implications in cartilage injury and repair. Ann Anat 2009; 191:325-38. [PMID: 19541465 DOI: 10.1016/j.aanat.2009.05.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 05/19/2009] [Accepted: 05/20/2009] [Indexed: 01/12/2023]
Abstract
Cartilage injury remains a major challenge in orthopedic surgery due to the fact that articular cartilage has only a limited capacity for intrinsic healing. Cartilage impaction is followed by a post-traumatic inflammatory response. Chondrocytes and synoviocytes are activated to produce inflammatory mediators and degradative enzymes which can induce a progradient cartilage self-destruction finally leading to secondary osteoarthritis (OA). However, an anti-inflammatory compensatory response is also detectable in cartilage by up-regulation of anti-inflammatory cytokines, probably a temporary attempt by chondrocytes to restore cartilage homeostasis. Matrix-assisted autologous chondrocyte transplantation (MACT) is a suitable technique for improving the rate of repair of larger articular cartilage defects. For MACT, autologous chondrocytes were isolated from a cartilage biopsy of a non-load bearing joint area. This technique requires sufficient expansion of differentiated autologous chondrocytes, which were then seeded on suitable biodegradable three-dimensional (3D) matrices to preform an extracellular cartilage matrix (ECM) before implantation into the defect. Cell expansion is accompanied by chondrocyte dedifferentiation, whereby substantial changes occur at multiple levels of chondrocyte synthetic profiles: including the ECM, cell surface receptors and cytoskeletal proteins. Since these dedifferentiated chondrocytes produce a non-specific mechanically inferior ECM, they are not suitable for MACT. 3D cultures are means of inducing and maintaining chondrocyte (re)differentiation and to preform ECM. The combination of MACT with anabolic growth factors and anti-inflammatory strategies using anti-inflammatory mediators might be useful for stabilizing the differentiated chondrocyte phenotype, to support neocartilage formation and inhibit post-traumatic cartilage inflammation and hence, the development of secondary OA.
Collapse
Affiliation(s)
- Gundula Schulze-Tanzil
- Department of Trauma and Reconstructive Surgery, Charité-University of Medicine, Campus Benjamin Franklin, FEM, Krahmerstrasse 6-10, Berlin, Germany
| |
Collapse
|
50
|
Rai MF, Rachakonda PS, Manning K, Palissa C, Sittinger M, Ringe J, Schmidt MFG. Molecular and phenotypic modulations of primary and immortalized canine chondrocytes in different culture systems. Res Vet Sci 2009; 87:399-407. [PMID: 19439332 DOI: 10.1016/j.rvsc.2009.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/24/2009] [Accepted: 04/14/2009] [Indexed: 11/24/2022]
Abstract
This study was conducted to determine physiological and functional features of primary and immortalized canine chondrocytes. Chondrocytes were immortalized by introducing the catalytic component of human telomerase namely human telomerase reverse transcriptase (hTERT). Primary chondrocytes lost their characteristic phenotype and growth properties whereas the immortalized cells remained polygonal with rapid growth rate. The expression of chondrocyte-specific markers decreased many-fold whereas that of chondrocyte-non-specific gene increased in primary chondrocytes. The immortalized cells did not express chondrocyte-specific genes in monolayers. Both primary and immortalized cells were encapsulated in alginate microspheres to construct three-dimensional (3D) culture system. As the primary chondrocytes, also the telomerase-transfected cells adopted a chondrocyte-specific gene expression pattern in alginate culture. Thus, the expression of telomerase represents possibility to expand chondrocytes without limitation while maintaining the chondrocyte-specific phenotype in 3D cultures. Use of such cells provides a standardized tool for testing different tissue engineering applications in canine model.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Institute of Immunology and Molecular Biology, Faculty of Veterinary Medicine, Freie Universität, House 18, Philippstrasse 13, D-10115 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|