1
|
Macher M, Platzman I, Spatz JP. Bottom-Up Assembly of Bioinspired, Fully Synthetic Extracellular Vesicles. Methods Mol Biol 2023; 2654:263-276. [PMID: 37106188 DOI: 10.1007/978-1-0716-3135-5_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Extracellular vesicles (EVs) are lipid membrane-enclosed compartments released by cells for intercellular communication in homeostasis and disease. Studies have shown great therapeutic potential of EVs, including but not limited to regenerative and immunomodulatory therapies. Additionally, EVs are promising next-generation drug delivery systems due to their biocompatibility, low immunogenicity, and inherent target specificity. However, clinical application of EVs is so far limited due to challenges in scaling up production, high heterogeneity, batch-to-batch variation, and limited control over composition. Although attaining a fundamental characterization of EVs' functions is a compelling goal, these limitations have hindered a full understanding. Therefore, there is rising interest in exploiting the beneficial properties of EVs while gaining better control over their production and composition. Herein, we describe a method for the bottom-up assembly of bioinspired, fully synthetic vesicles that mimic the most important biophysical and biochemical properties of natural EVs.
Collapse
Affiliation(s)
- Meline Macher
- Max Planck Institute for Medical Research, Heidelberg, Germany
- Institute of Molecular Systems Engineering, Heidelberg, Germany
- Max Planck School Matter to Life, Heidelberg, Germany
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, Bristol, UK
| | - Ilia Platzman
- Max Planck Institute for Medical Research, Heidelberg, Germany.
- Institute of Molecular Systems Engineering, Heidelberg, Germany.
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, Bristol, UK.
| | - Joachim P Spatz
- Max Planck Institute for Medical Research, Heidelberg, Germany.
- Institute of Molecular Systems Engineering, Heidelberg, Germany.
- Max Planck School Matter to Life, Heidelberg, Germany.
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, Bristol, UK.
| |
Collapse
|
2
|
Müller LK, Landfester K. Natural liposomes and synthetic polymeric structures for biomedical applications. Biochem Biophys Res Commun 2015; 468:411-8. [PMID: 26315266 DOI: 10.1016/j.bbrc.2015.08.088] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
In the last decades, the development and design of drug delivery systems have attracted great attention. Especially siRNA carriers have been of special interest since discovered as suitable tool for gene silencing. Self-assembled structures consisting of amphiphilic molecules are the most investigated carriers with regards to siRNA delivery. Liposomes as drug vehicles already found their way into clinical use, as they are highly biocompatible and their colloidal stability and circulation time in blood can be significantly enhanced by PEGylation. Fully synthetic polymersomes inspired by these natural structures provide enhanced stability and offer a wide range of modification-possibilities. Therefore, their design as carrier vehicles has become of great interest. This mini-review highlights the possibilities of using polymeric vesicles for potential drug delivery and gives a brief overview of their potential regarding fine-tuning towards targeted delivery or triggered drug release.
Collapse
Affiliation(s)
- Laura K Müller
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
3
|
Maindarkar SN, Hoogland H, Henson MA. Achieving Target Emulsion Drop Size Distributions Using Population Balance Equation Models of High-Pressure Homogenization. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shashank N. Maindarkar
- Department
of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003-9303, United States
| | | | - Michael A. Henson
- Department
of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
4
|
Krieger JW, Singh AP, Garbe CS, Wohland T, Langowski J. Dual-color fluorescence cross-correlation spectroscopy on a single plane illumination microscope (SPIM-FCCS). OPTICS EXPRESS 2014; 22:2358-75. [PMID: 24663528 DOI: 10.1364/oe.22.002358] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Single plane illumination microscopy based fluorescence correlation spectroscopy (SPIM-FCS) is a new method for imaging FCS in 3D samples, providing diffusion coefficients, flow velocities and concentrations in an imaging mode. Here we extend this technique to two-color fluorescence cross-correlation spectroscopy (SPIM-FCCS), which allows to measure molecular interactions in an imaging mode. We present a theoretical framework for SPIM-FCCS fitting models, which is subsequently used to evaluate several test measurements of in-vitro (labeled microspheres, several DNAs and small unilamellar vesicles) and in-vivo samples (dimeric and monomeric dual-color fluorescent proteins, as well as membrane bound proteins). Our method yields the same quantitative results as the well-established confocal FCCS, but in addition provides unmatched statistics and true imaging capabilities.
Collapse
|
5
|
Romero G, Sanz DJ, Qiu Y, Yu D, Mao Z, Gao C, Moya SE. Lipid layer engineering of poly(lactide-co-glycolide) nanoparticles to control their uptake and intracellular co-localisation. J Mater Chem B 2013; 1:2252-2259. [DOI: 10.1039/c3tb00284e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Maindarkar SN, Raikar NB, Bongers P, Henson MA. Incorporating emulsion drop coalescence into population balance equation models of high pressure homogenization. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2011.12.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Romero G, Moya SE. Synthesis of Organic Nanoparticles. NANOBIOTECHNOLOGY - INORGANIC NANOPARTICLES VS ORGANIC NANOPARTICLES 2012. [DOI: 10.1016/b978-0-12-415769-9.00004-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Raikar NB, Bhatia SR, Malone MF, McClements DJ, Almeida-Rivera C, Bongers P, Henson MA. Prediction of emulsion drop size distributions with population balance equation models of multiple drop breakage. Colloids Surf A Physicochem Eng Asp 2010. [DOI: 10.1016/j.colsurfa.2010.03.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Experimental studies and population balance equation models for breakage prediction of emulsion drop size distributions. Chem Eng Sci 2009. [DOI: 10.1016/j.ces.2009.01.062] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Self-similar inverse population balance modeling for turbulently prepared batch emulsions: Sensitivity to measurement errors. Chem Eng Sci 2006. [DOI: 10.1016/j.ces.2006.08.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Simões S, Filipe A, Faneca H, Mano M, Penacho N, Düzgünes N, de Lima MP. Cationic liposomes for gene delivery. Expert Opin Drug Deliv 2006; 2:237-54. [PMID: 16296751 DOI: 10.1517/17425247.2.2.237] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cationic liposome-DNA complexes (lipoplexes) constitute a potentially viable alternative to viral vectors for the delivery of therapeutic genes. This review will focus on various parameters governing lipoplex biological activity, from their mode of formation to in vivo behaviour. Particular emphasis is given to the mechanism of interaction of lipoplexes with cells, in an attempt to dissect the different barriers that need to be surpassed for efficient gene expression to occur. Aspects related to new trends in the formulation of lipid-based gene delivery systems aiming at overcoming some of their limitations will be covered. Finally, examples illustrating the potential of cationic liposomes in clinical applications will be provided.
Collapse
Affiliation(s)
- Sérgio Simões
- University of Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Portugal.
| | | | | | | | | | | | | |
Collapse
|
12
|
Segota S, Tezak D. Spontaneous formation of vesicles. Adv Colloid Interface Sci 2006; 121:51-75. [PMID: 16769012 DOI: 10.1016/j.cis.2006.01.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 01/20/2006] [Indexed: 10/24/2022]
Abstract
his review highlights the relevant issues of spontaneous formation of vesicles. Both the common characteristics and the differences between liposomes and vesicles are given. The basic concept of the molecular packing parameter as a precondition of vesicles formation is discussed in terms of geometrical factors, including the volume and critical length of the amphiphile hydrocarbon chain. According to theoretical considerations, the formation of vesicles occurs in the systems with packing parameters between 1/2 and 1. Using common as well as new methods of vesicle preparation, a variety of structures is described, and their nomenclature is given. With respect to sizes, shapes and inner structures, vesicles structures can be formed as a result of self-organisation of curved bilayers into unilamellar and multilamellar closed soft particles. Small, large and giant uni-, oligo-, or multilamellar vesicles can be distinguished. Techniques for determination of the structure and properties of vesicles are described as visual observations by optical and electron microscopy as well as the scattering techniques, notably dynamic light scattering, small angle X-ray and neutron scattering. Some theoretical aspects are described in short, viz., the scattering and the inverse scattering problem, angular and time dependence of the scattering intensity, the principles of indirect Fourier transformation, and the determination of electron density of the system by deconvolution of p(r) function. Spontaneous formation of vesicles was mainly investigated in catanionic mixtures. A number of references are given in the review.
Collapse
Affiliation(s)
- Suzana Segota
- Department of Chemistry, University of Zagreb, Faculty of Science, Horvatovac 102a, P.O. Box 163, 10001 Zagreb, Croatia
| | | |
Collapse
|
13
|
Chan G, Booth AJ, Mannweiler K, Hoare M. Ultra scale-down studies of the effect of flow and impact conditions duringE. coli cell processing. Biotechnol Bioeng 2006; 95:671-83. [PMID: 16804948 DOI: 10.1002/bit.21049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The ability to recover cells from a fermentation broth in an intact form can be an important criterion for determining the overall performance of a recovery and purification sequence. Disruption of the cells can lead to undesired contamination of an extracellular product with intracellular components and vice versa loss of intracellular products may occur. In particular, the value of directed location of a product in the periplasmic space of say Escherichia coli (E. coli) would be diminished by such premature non-selective cell disruption. Several options exist for cell recovery/removal; namely centrifugation, in batch or continuous configuration, filtration or membrane operations, and in selected cases expanded beds. The choice of operation is dependant on many variables including the impact on the overall process sequence. In all cases, the cells are exposed to shear stresses of varying levels and times and additionally such environments exist in ancillary operations such as pumping, pipe flow, and control valves. In this study, a small-scale device has been designed to expose cells to controlled levels of shear, time and impact in a way that seeks to mimic those effects that may occur during full-scale processes. The extent of cell breakage was found to be proportional to shear stress. An additional level of breakage occurred due to the jet impacting on the collecting surface. Here it was possible to correlate the additional breakage with the impact velocity, which is a function of the distance that the jet travels before meeting the collection surface and the initial jet velocity.
Collapse
Affiliation(s)
- G Chan
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| | | | | | | |
Collapse
|
14
|
Lu Q, Chen X, Wu Y, Hu S. Studies on direct electron transfer and biocatalytic properties of heme proteins in lecithin film. Biophys Chem 2005; 117:55-63. [PMID: 15907360 DOI: 10.1016/j.bpc.2005.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 03/04/2005] [Indexed: 10/25/2022]
Abstract
Myoglobin (Mb), hemoglobin (Hb) and horseradish peroxidase (HRP) were incorporated in lecithin (PC) film on glassy carbon (GC) electrode by the method of vesicle-fusion. A pair of well-defined and quasi-reversible cyclic voltammetric peaks was obtained, which reflected the direct electron transfer of heme proteins. UV-Vis and reflectance absorption infrared (RAIR) spectroscopy showed that proteins in PC films remained at their secondary structure similar to their native states. Scanning electron microscopy (SEM) demonstrated the interaction between the proteins and PC would make the morphology of protein-PC films very different from the PC films alone. The immobilized proteins retained their biocatalytic activity to the reduction of NO and hydrogen peroxide, which provide the perspective to be the third generation sensors.
Collapse
Affiliation(s)
- Qing Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | |
Collapse
|
15
|
Camp JP, Capitano AT. Size-dependent mobile surface charge model of cell electrophoresis. Biophys Chem 2005; 113:115-22. [PMID: 15617817 DOI: 10.1016/j.bpc.2004.07.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 07/21/2004] [Accepted: 07/21/2004] [Indexed: 11/22/2022]
Abstract
A model that accurately predicts the effects of cellular size and electric field strength on electrophoretic mobility has been developed. Previous models have predicted that electrophoretic mobility (EPM) is dependent only on cell surface charge, bath viscosity and ionic strength of the electrolyte. However, careful analysis of experimental data from the literature shows that these models do not accurately depict the relationship between chemically determined surface charge and observed mobility. We propose a new model that accounts for electrically driven redistribution of mobile surface charge islands, such as the recently proposed lipid raft structures. This model predicts electrophoretic mobility as a function of a new dimensionless quantity, A, that incorporates the cell radius, the electric field strength, and the average diameter of charged membrane complexes.
Collapse
Affiliation(s)
- James P Camp
- Department of Chemical and Biomolecular Engineering, The University of Houston, Houston, TX 77204, USA
| | | |
Collapse
|
16
|
Gómez-Hens A, Manuel Fernández-Romero J. The role of liposomes in analytical processes. Trends Analyt Chem 2005. [DOI: 10.1016/j.trac.2004.07.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|