1
|
Lin L, Xu L, Sun W, Liang L, Qi X, Zhao YE. Mild Photothermal Therapy Prevents Posterior Capsule Opacification through Cytoskeletal Remodeling. Adv Healthc Mater 2023; 12:e2300470. [PMID: 37728173 DOI: 10.1002/adhm.202300470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/11/2023] [Indexed: 09/21/2023]
Abstract
Cataract is the first leading cause of blindness in the world and posterior capsule opacification (PCO) is the most common long-term complication after surgery. The primary pathogenic processes contributing to PCO are the proliferation and migration of residual lens epithelial cells (LECs). This study aimed to explore the mild photothermal effect on LECs. Interestingly, this work finds that the mild photothermal effect significantly inhibited the proliferation and migration of LECs. The live cell fluorescence imaging reveals that the remodeling of the actin cytoskeleton and cell morphology attributed to the inhibition effect. Further mechanistic studies at molecular level suggest that the mild photothermal effect can regulate the phosphorylation of ERM, YAP, and Cofilin and thereby affect the proliferation and migration of LECs. In order to explore the potential clinical application of mild photothermal therapy for PCO prevention, PDA/PVA gel rings with photothermal effect is prepared by the repeated freeze-thaw method and conducted experiments in vivo, which achieved favorable PCO prevention effect. Overall, this study shows that the mild photothermal effect can regulate the proliferation and migration of LECs through cytoskeletal remodeling and the results of experiments in vivo demonstrate that mild photothermal effect is a promising approach for PCO prevention.
Collapse
Affiliation(s)
- Lei Lin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Liming Xu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Weijie Sun
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lili Liang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoliang Qi
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yun-E Zhao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
2
|
Upreti A, Padula SL, Tangeman JA, Wagner BD, O’Connell MJ, Jaquish TJ, Palko RK, Mantz CJ, Anand D, Lovicu FJ, Lachke SA, Robinson ML. Lens Epithelial Explants Treated with Vitreous Humor Undergo Alterations in Chromatin Landscape with Concurrent Activation of Genes Associated with Fiber Cell Differentiation and Innate Immune Response. Cells 2023; 12:501. [PMID: 36766843 PMCID: PMC9914805 DOI: 10.3390/cells12030501] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Lens epithelial explants are comprised of lens epithelial cells cultured in vitro on their native basement membrane, the lens capsule. Biologists have used lens epithelial explants to study many different cellular processes including lens fiber cell differentiation. In these studies, fiber differentiation is typically measured by cellular elongation and the expression of a few proteins characteristically expressed by lens fiber cells in situ. Chromatin and RNA was collected from lens epithelial explants cultured in either un-supplemented media or media containing 50% bovine vitreous humor for one or five days. Chromatin for ATAC-sequencing and RNA for RNA-sequencing was prepared from explants to assess regions of accessible chromatin and to quantitatively measure gene expression, respectively. Vitreous humor increased chromatin accessibility in promoter regions of genes associated with fiber differentiation and, surprisingly, an immune response, and this was associated with increased transcript levels for these genes. In contrast, vitreous had little effect on the accessibility of the genes highly expressed in the lens epithelium despite dramatic reductions in their mRNA transcripts. An unbiased analysis of differentially accessible regions revealed an enrichment of cis-regulatory motifs for RUNX, SOX and TEAD transcription factors that may drive differential gene expression in response to vitreous.
Collapse
Affiliation(s)
- Anil Upreti
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Stephanie L. Padula
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Jared A. Tangeman
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Brad D. Wagner
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | | | - Tycho J. Jaquish
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Raye K. Palko
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Courtney J. Mantz
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Frank J. Lovicu
- Molecular and Cellular Biomedicine, School of Medical Sciences, and Save Sight Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Michael L. Robinson
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
3
|
Mechanisms of Epithelial-Mesenchymal Transition and Prevention of Dispase-Induced PVR by Delivery of an Antioxidant αB Crystallin Peptide. Antioxidants (Basel) 2022; 11:antiox11102080. [PMID: 36290802 PMCID: PMC9598590 DOI: 10.3390/antiox11102080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022] Open
Abstract
Proliferative Vitreoretinopathy (PVR) is a refractory retinal disease whose primary pathogenesis involves the epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells. At present, there is no effective treatment other than surgery for PVR. The purpose of this study was to investigate the effect of αB crystallin peptide (αBC-P) on EMT in PVR. We have previously shown that this peptide is antiapoptotic and regulates RPE redox status. Subconfluent primary human RPE (hRPE) cells were stimulated by TGFβ2 (10 ng/mL) with or without αBC-P (50 or 75 μg/mL) for 48 h and expression of EMT/mesenchymal to epithelial transition (MET) markers was determined. Mitochondrial ROS (mtROS) generation in hRPE cells treated with TGFβ2 was analyzed. The effect of TGFβ2 and αBC-P on oxidative phosphorylation (OXPHOS) and glycolysis in hRPE was studied. RPE cell migration was also assessed. A PVR-like phenotype was induced by intravitreal dispase injection in C57BL/6J mice. PVR progression and potential therapeutic efficiency of αBC-Elastin-like polypeptides (ELP) was studied using fundus photography, OCT imaging, ERG, and histologic analysis of the retina. αSMA, E-cadherin, Vimentin, Fibronectin and, RPE65, and CTGF were analyzed on Day 28. Additionally, the amount of VEGF-A in retinal cell lysates was measured. The EMT-associated αSMA, Vimentin, SNAIL and SLUG showed a significant upregulation with TGFβ2, and their expression was significantly suppressed by cotreatment with αBC-P. The MET-associated markers, E-cadherin and Sirt1, were significantly downregulated by TGFβ2 and were restored by αBC-P. Incubation of hRPE with TGFβ2 for 24 h showed a marked increase in mitochondrial ROS which was noticeably inhibited by αBC-ELP. We also showed that after TGFβ2 treatment, SMAD4 translocated to mitochondria which was blocked by αBC-ELP. Mitochondrial oxygen consumption rate increased with TGFβ2 treatment for 48 h, and αBC-P co-treatment caused a further increase in OCR. Glycolytic functions of RPE were significantly suppressed with αBC-P (75 μg/mL). In addition, αBC-P significantly inhibited the migration from TGFβ2 treatment in hRPE cells. The formation of proliferative membranes was suppressed in the αBC-ELP-treated group, as evidenced by fundus, OCT, and H&E staining in dispase-induced PVR in mice. Furthermore, ERG showed an improvement in c-wave amplitude. In addition, immunostaining showed significant suppression of αSMA and RPE65 expression. It was also observed that αBC-ELP significantly reduced the expression level of vimentin, fibronectin, and CTGF. Our findings suggest that the antioxidant αBC-P may have therapeutic potential in preventing PVR by reversing the phenotype of EMT/MET and improving the mitochondrial function in RPE cells.
Collapse
|
4
|
Yan T, Wang K, Zhao Q, Zhuang J, Shen H, Ma G, Cong L, Du J. Gender specific eRNA TBX5-AS1 as the immunological biomarker for male patients with lung squamous cell carcinoma in pan-cancer screening. PeerJ 2021; 9:e12536. [PMID: 34900441 PMCID: PMC8627656 DOI: 10.7717/peerj.12536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/03/2021] [Indexed: 11/27/2022] Open
Abstract
As an innate feature of human beings, gender differences have an influence on various biological phenotypes, yet it does not attract enough attention in genomics studies. The prognosis of multiple carcinomas usually exhibits a favorable ending for female patients, but the neglect of gender differences can cause serious bias in survival analysis. Enhancer RNAs (eRNAs) are mostly downstream of androgens or estrogen. The present study was aimed to screen eRNAs in patients with non-small-cell lung cancer. The findings revealed that eRNA TBX5-AS1 was expressed differently between female and male patients. Meanwhile, its prognostic significance appeared only in male patients with squamous cell carcinoma (SCC) type. The Gene Set Enrichment Analysis proved that the expression level of TBX5-AS1 increased following the activation of the androgen signaling pathway. In pan-cancer analysis, the prognostic prediction based on gender grouping obtained more meaningful results, and the synergy between TBX5-AS1 and its homologous target was more consistent. Furthermore, immunity variations between sexes prompted us to explore the role that TBX5-AS1 played in tumor microenvironment and immunotherapy. The robust evidence proved that male patients with high expression of TBX5-AS1 possessed a malignant immune microenvironment and urgently needed immune checkpoint inhibitor treatment. In conclusion, TBX5-AS1 may be one of the strongest candidates to predict prognosis for male patients with SCC and provide a reference for immunotherapy.
Collapse
Affiliation(s)
- Tao Yan
- Institute of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kai Wang
- Institute of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Healthcare Respiratory Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qidi Zhao
- Institute of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Junjie Zhuang
- Institute of Oncology, Shandong Provincial Hospital affiliated to Shandong First Medicine University, Jinan, China
| | - Hongchang Shen
- Department of Oncology, Shandong Provincial Hospital affiliated to Shandong First Medicine University, Jinan, China
| | - Guoyuan Ma
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Cong
- Department of Oncology, Shandong Provincial Hospital affiliated to Shandong First Medicine University, Jinan, China.,Department of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
5
|
Fichtner JE, Patnaik J, Christopher KL, Petrash JM. Cataract inhibitors: Present needs and future challenges. Chem Biol Interact 2021; 349:109679. [PMID: 34600869 DOI: 10.1016/j.cbi.2021.109679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/25/2021] [Accepted: 09/29/2021] [Indexed: 12/21/2022]
Abstract
Cataracts result from opacification of the ocular lens and represent the leading cause of blindness worldwide. After surgical removal of the diseased lens material and implantation of an artificial intraocular lens, up to 50% of cataract patients develop a secondary lens defect called posterior capsular opacification (PCO). While vision can be restored in PCO patients by a laser-mediated capsulotomy, novel therapies involving inhibition of aldose reductase are now being developed to prevent PCO development and complications of laser capsulotomy. A question we wished to address was whether cataract surgeons believe there is an unmet need for a preventative PCO therapy, whether they would prescribe such a therapy were it available, and to assess their perceptions regarding the benefits of and obstacles to adopting novel PCO therapies in the place of laser capsulotomy. We gathered perspectives from adult, pediatric, and veterinary cataract surgeons using an online questionnaire. From 161 surgeon responses, we found that the majority of adult, pediatric, and veterinary cataract surgeons (78% n = 35, 88% n = 37, and 96% n = 71 respectively) believed there is an unmet need for preventative PCO therapy, with more than 95% expressing interest in incorporating such therapy into surgical protocols. Perceived benefits included optimizing visual outcomes, avoiding the need for additional procedures, eliminating complications related to neodymium:yttrium-aluminum-garnet laser, preserving the posterior capsule particularly in patients receiving multifocal intraocular lens implants, providing a viable solution for PCO in animals, and using it in developing countries that lack access to neodymium:yttrium-aluminum-garnet lasers. Perceived obstacles included potential lack of reimbursement by insurance companies, and the need for strong efficacy and safety profiles. Among adult surgeons, 70% (n = 31) indicated that preventative PCO therapy could add value to premium intraocular lens packages. Our studies revealed that cataract surgeons overwhelmingly support the development of preventative PCO therapy, and that clinical trials will play a critical role to test the safety and efficacy of specific therapeutic agents.
Collapse
Affiliation(s)
- Justin E Fichtner
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jennifer Patnaik
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - J Mark Petrash
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
6
|
Transforming growth factor-β2-mediated mesenchymal transition in lens epithelial cells is repressed in the absence of RAGE. Biochem J 2021; 478:2285-2296. [PMID: 34143864 DOI: 10.1042/bcj20210069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/27/2022]
Abstract
Transforming growth factor-β2 (TGFβ2)-mediated epithelial to mesenchymal transition (EMT) in lens epithelial cells (LECs) has been implicated in fibrosis associated with secondary cataracts. In this study, we investigated whether the receptor for advanced glycation end products (RAGE) plays a role in TGFβ2-mediated EMT in LECs. Unlike in the LECs from wild-type mice, TGFβ2 failed to elicit an EMT response in LECs from RAGE knockout mice. The lack of RAGE also diminished TGFβ2-mediated Smad signaling. In addition, treatment with TGFβ2 increased IL-6 levels in LECs from wild-type mice but not in those from RAGE knockout mice. Treatment of human LECs with the RAGE inhibitor FPS-ZM1 reduced TGFβ2-mediated Smad signaling and the EMT response. Unlike that in wild-type lenses, the removal of fiber cell tissue in RAGE knockout lenses did not result in elevated levels of α-smooth muscle actin (α-SMA), fibronectin (FN), and integrin β1 in capsule-adherent LECs. Taken together, these results suggest that TGFβ2 signaling is intricately linked to RAGE. Targeting RAGE could be explored as a therapeutic strategy against secondary cataracts.
Collapse
|
7
|
Wu A, Zhang L, Luo N, Zhang L, Li L, Liu Q. Limb-bud and heart (LBH) inhibits cellular migration, invasion and epithelial-mesenchymal transition in nasopharyngeal carcinoma via downregulating αB-crystallin expression. Cell Signal 2021; 85:110045. [PMID: 34000384 DOI: 10.1016/j.cellsig.2021.110045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/06/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Limb-bud and heart (LBH) gene has received increasing attention in recent cancer studies. Here we investigated the role of the LBH gene in regulating the metastasis capacity and epithelial-mesenchymal transition (EMT) of nasopharyngeal carcinoma (NPC) cells, and its potential mechanism. The expressions of LBH and αB-crystallin (CRYAB) were modulated by lentiviral infection, or plasmid/siRNA transfection, and the phosphorylation of p38 was suppressed by an inhibitor, to explore their functions in modulating NPC cell phenotypes, as well as the relationships of these factors with each other. Cellular proliferation, migration and invasion were examined by RTCA system, Transwell assays and Matrigel Transwell assays respectively. The EMT progression was indicated by RT-qPCR and Western blotting measuring the expressions of EMT biomarkers. NPC xenografts were constrcucted, and formed tumors were sectioned for morphology and immunohistofluorescence. The interaction between LBH and CRYAB was examined by colocalization and Fluorescence resonance energy transfer (FRET) analysis. We reached the conclusion that LBH inhibits the proliferation, migration, invasion and EMT of NPC cells, and its effects were partially achieved by suppressing p38 phosphorylation, which subsequently downregulates the mRNA expression and phosphorylation of CRYAB, while CRYAB directly interacts with LBH in NPC cells. This LBH-related pathway we revealed provides a novel therapeutic target for nasopharyngeal carcinoma research.
Collapse
Affiliation(s)
- Anbiao Wu
- Department of Cardiology, Laboratory of Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, 253# Middle Industrial Avenue, Guangzhou 510280, PR China
| | - Ling Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651# Dongfeng Road East, Guangzhou 510060, PR China
| | - Ning Luo
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Department of Nephrology, the First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan 2nd Avenue, Guangzhou 510080, PR China
| | - Lihong Zhang
- Department of Cardiology, Laboratory of Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, 253# Middle Industrial Avenue, Guangzhou 510280, PR China
| | - Li Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651# Dongfeng Road East, Guangzhou 510060, PR China.
| | - Qicai Liu
- Department of Cardiology, Laboratory of Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, 253# Middle Industrial Avenue, Guangzhou 510280, PR China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
8
|
Limb-bud and Heart (LBH) mediates proliferation, fibroblast-to-myofibroblast transition and EMT-like processes in cardiac fibroblasts. Mol Cell Biochem 2021; 476:2685-2701. [PMID: 33666830 DOI: 10.1007/s11010-021-04111-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
Cardiac fibrosis is an important pathological change after myocardial infarction (MI). Its progression is essential for post-MI infarct healing, during which transforming growth factor beta1 (TGF-β1) plays a critical role. Limb-bud and Heart (LBH), a newly discovered target gene of TGF-β1, was shown to promote normal cardiogenesis. αB-crystallin (CRYAB), an LBH-interacting protein, was demonstrated to be involved in TGF-β1-induced fibrosis. The roles and molecular mechanisms of LBH and CRYAB during cardiac fibrosis remain largely unexplored. In this study, we investigated the alterations of LBH and CRYAB expression in mouse cardiac tissue after MI. LBH and CRYAB were upregulated in activated cardiac fibroblasts (CFs), while in vitro TGF-β1 stimulation induced the upregulation of LBH, CRYAB, and fibrogenic genes in primary CFs of neonatal rats. The results of the ectopic expression of LBH proved that LBH accelerated CF proliferation under hypoxia, mediated the expression of CRYAB and fibrogenic genes, and promoted epithelial-mesenchymal transition (EMT)-like processes in rat CFs, while subsequent CRYAB silencing reversed the effects induced by elevated LBH expression. We also verified the protein-protein interaction (PPI) between LBH and CRYAB in fibroblasts. In summary, our work demonstrated that LBH promotes the proliferation of CFs, mediates TGF-β1-induced fibroblast-to-myofibroblast transition and EMT-like processes through CRYAB upregulation, jointly functioning in post-MI infarct healing. These findings suggest that LBH could be a promising potential target for the study of cardiac repair and cardiac fibrosis.
Collapse
|
9
|
Aspirin inhibits TGFβ2-induced epithelial to mesenchymal transition of lens epithelial cells: selective acetylation of K56 and K122 in histone H3. Biochem J 2020; 477:75-97. [PMID: 31815277 DOI: 10.1042/bcj20190540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022]
Abstract
Posterior capsule opacification (PCO) is a complication after cataract surgery that can disrupt vision. The epithelial to mesenchymal transition (EMT) of lens epithelial cells (LECs) in response to transforming growth factor β2 (TGFβ2) has been considered an obligatory mechanism for PCO. In this study, we tested the efficacy of aspirin in inhibiting the TGFβ2-mediated EMT of human LECs, LECs in human lens capsular bags, and lensectomized mice. In human LECs, the levels of the EMT markers α-smooth muscle actin (α-SMA) and fibronectin were drastically reduced by treatment with 2 mM aspirin. Aspirin also halted the EMT response of TGFβ2 when introduced after EMT initiation. In human capsular bags, treatment with 2 mM aspirin significantly suppressed posterior capsule wrinkling and the expression α-SMA in capsule-adherent LECs. The inhibition of TGFβ2-mediated EMT in human LECs was not dependent on Smad phosphorylation or MAPK and AKT-mediated signaling. We found that aspirin significantly increased the acetylation of K56 and K122 in histone H3 of human LECs. Chromatin immunoprecipitation assays using acetyl-H3K56 or acetyl-H3K122 antibody revealed that aspirin blocked the TGFβ2-induced acetylation of H3K56 and H3K122 at the promoter regions of ACTA2 and COL1A1. After lensectomy in mice, we observed an increase in the proliferation and α-SMA expression of the capsule-adherent LECs, which was ameliorated by aspirin administration through drinking water. Taken together, our results showed that aspirin inhibits TGFβ2-mediated EMT of LECs, possibly from epigenetic down-regulation of EMT-related genes.
Collapse
|
10
|
Therapeutic Effect of Mongolian Medicine RuXian-I on Hyperplasia of Mammary Gland Induced by Estrogen/Progesterone through CRYAB-Promoted Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5707106. [PMID: 32595729 PMCID: PMC7273489 DOI: 10.1155/2020/5707106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/13/2020] [Accepted: 05/15/2020] [Indexed: 12/30/2022]
Abstract
The traditional Mongolian medicine (TMM) RuXian-I is an empirical formula specifically used for treating the hyperplasia of mammary gland (HMG) in clinic based on the principles of traditional Mongolian medicine, but the treatment mechanism is not completely clear. In this paper, we elaborated the mechanism of RuXian-I in the treatment of HMG induced by estrogen and progestogen from its toxicity and activity. Firstly, RuXian-I exhibited no toxic effect on HMG rats through no changes of body weight and food intake measurement and no pathologic changes of the organs (heart, liver, spleen, lung, and kidney) detected. Secondly, RuXian-I could decrease the increased nipple height and diameter and remarkably relieve the pathologic changes of HMG rats and also alleviate serum sex hormone levels (estradiol (E2), luteinizing hormone (LH), progesterone (P), and testosterone (T)) of HMG rats. Finally, RuXian-I could obviously inhibit the upregulation level of antiapoptotic protein CRYAB of HMG rats and promote mammary gland cell apoptosis of HMG rats via increases of promoting apoptosis protein caspases-3, 8, and 9 and Bax and tumor suppressor protein p53, decreases of antiapoptosis protein Bcl-2, and release of cytochrome c. These results suggested that RuXian-I has protective and therapeutic effects on HMG rats induced by estrogen and progestogen possibly via promoting apoptotic pathway regulated by CRYAB and is a promising agent for treating HMG.
Collapse
|
11
|
Mohammadinejad R, Biagioni A, Arunkumar G, Shapiro R, Chang KC, Sedeeq M, Taiyab A, Hashemabadi M, Pardakhty A, Mandegary A, Thiery JP, Aref AR, Azimi I. EMT signaling: potential contribution of CRISPR/Cas gene editing. Cell Mol Life Sci 2020; 77:2701-2722. [PMID: 32008085 PMCID: PMC11104910 DOI: 10.1007/s00018-020-03449-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/24/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a complex plastic and reversible cellular process that has critical roles in diverse physiological and pathological phenomena. EMT is involved in embryonic development, organogenesis and tissue repair, as well as in fibrosis, cancer metastasis and drug resistance. In recent years, the ability to edit the genome using the clustered regularly interspaced palindromic repeats (CRISPR) and associated protein (Cas) system has greatly contributed to identify or validate critical genes in pathway signaling. This review delineates the complex EMT networks and discusses recent studies that have used CRISPR/Cas technology to further advance our understanding of the EMT process.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Alessio Biagioni
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Ganesan Arunkumar
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Kun-Che Chang
- Department of Ophthalmology, School of Medicine, Byers Eye Institute, Stanford University, Palo Alto, CA, 94303, USA
| | - Mohammed Sedeeq
- Division of Pharmacy, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Aftab Taiyab
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Mohammad Hashemabadi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Pardakhty
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mandegary
- Physiology Research Center, Institute of Neuropharmacology and Department of Toxicology & Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Jean-Paul Thiery
- Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Guangzhou, China
| | - Amir Reza Aref
- Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
| | - Iman Azimi
- Division of Pharmacy, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
12
|
Zhang Y, Li D, Lu Q, Du Y, Lu Y, Zhu X. Proliferative Status in the Aqueous Humor of Eyes With Congenital Cataract. J Pediatr Ophthalmol Strabismus 2020; 57:159-168. [PMID: 32453849 DOI: 10.3928/01913913-20200224-01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/17/2020] [Indexed: 11/20/2022]
Abstract
PURPOSE To measure the concentrations of growth factors in the aqueous humor of patients with congenital cataract and to investigate the biological effects of a selected cytokine (fibroblast growth factor 4 [FGF4]) on cell proliferation, migration, and transformation. METHODS In the aqueous humor obtained from 55 eyes with congenital cataract and 55 eyes with age-related cataract, 40 growth factors were screened and selected cytokines were confirmed with enzyme-linked immunosorbent assays. After the addition of various concentrations of FGF4 (0, 2.5, 15, or 50 ng/mL) to the incubation medium, cellular functions were evaluated. RESULTS The concentration of FGF4 was significantly higher in the aqueous humor of patients with congenital cataract than in that of patients with age-related cataract. The human SRA01/04 lens epithelial cell line was treated with FGF4 and the cell proliferation increased significantly both dose- and time-dependently. The wound healing assay and Transwell migration assay revealed a significant increase in the migration capacity of the SRA01/04 cell line treated with 15 or 50 ng/mL of FGF4 compared with that of control cells. The intensity of immunofluorescent staining for α-smooth muscle actin increased significantly in the SRA01/04 cell line when treated with FGF4. Cytoskeletal protein (F-actin) staining showed that changes of cell morphology were induced in primary lens epithelial cells by FGF4. CONCLUSIONS This study provides a comprehensive profile of growth factors in congenital cataract. FGF4 induced cellular changes, and may have utility as a biomarker to predict the formation of visual axis opacification. [J Pediatr Ophthalmol Strabismus. 2020;57(3):159-168.].
Collapse
|
13
|
Huang X, Wang Y, Zhang P, Zou H. A HGF‑derived peptide suppresses EMT in human lens epithelial cells via the TGF‑β/Smad and Akt/mTOR signaling pathways. Mol Med Rep 2020; 22:551-558. [PMID: 32377724 DOI: 10.3892/mmr.2020.11097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/01/2020] [Indexed: 11/05/2022] Open
Abstract
Posterior capsule opacification (PCO) as a result of proliferation and fibrogenesis of lens epithelial cells (LECs) is the most frequent long‑term complication of modern cataract surgery. LECs may undergo epithelial‑mesenchymal transition (EMT) that resembles the morphological and molecular characteristics of PCO. A pre‑identified novel, hepatocyte growth factor (HGF)‑derived peptide H‑RN, was reported to exhibit anti‑angiogenic activity and anti‑inflammatory effects in ocular cells both in vitro and in vivo. However, the role of H‑RN in the promotion of the development of EMT in LECs is unknown. In the present study, the effects of H‑RN on the development of EMT induced by transforming growth factor (TGF)‑β in human LECs, and the possible signaling pathways participating in this process were investigated. The results showed that H‑RN promoted the expression of the EMT‑associated markers, α‑smooth muscle actin and fibronectin, whereas the expression of E‑cadherin and connexin 43 were reduced. The morphological changes typically associated with EMT seen in LECs induced by TGF‑β2 were inhibited by H‑RN, which was consistent with the effects of a TGF‑β2 inhibitor, SB431542. Smad2 and Smad3 phosphorylation induced by TGF‑β2 were reduced by H‑RN, and phosphorylation of Akt, mTOR and P70S6K induced by TGF‑β2 were also notably reduced by H‑RN in LECs. Therefore, the results of the present study showed that H‑RN treatment significantly suppressed the development of EMT induced by TGF‑β2, at least partially through the TGF‑β/Smad and Akt/mTOR signaling pathways in human LECs. The present study highlights that H‑RN, a novel HGF‑derived peptide, may be a novel therapeutic agent for prevention and treatment of PCO.
Collapse
Affiliation(s)
- Xiaobo Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yulan Wang
- Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai 200040, P.R. China
| | - Pei Zhang
- Department of Ophthalmology, Shanghai Gonghui Hospital, Shanghai 200041, P.R. China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| |
Collapse
|
14
|
Nandi SK, Nahomi RB, Rankenberg J, Glomb MA, Nagaraj RH. Glycation-mediated inter-protein cross-linking is promoted by chaperone-client complexes of α-crystallin: Implications for lens aging and presbyopia. J Biol Chem 2020; 295:5701-5716. [PMID: 32184356 PMCID: PMC7186181 DOI: 10.1074/jbc.ra120.012604] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Lens proteins become increasingly cross-linked through nondisulfide linkages during aging and cataract formation. One mechanism that has been implicated in this cross-linking is glycation through formation of advanced glycation end products (AGEs). Here, we found an age-associated increase in stiffness in human lenses that was directly correlated with levels of protein-cross-linking AGEs. α-Crystallin in the lens binds to other proteins and prevents their denaturation and aggregation through its chaperone-like activity. Using a FRET-based assay, we examined the stability of the αA-crystallin-γD-crystallin complex for up to 12 days and observed that this complex is stable in PBS and upon incubation with human lens-epithelial cell lysate or lens homogenate. Addition of 2 mm ATP to the lysate or homogenate did not decrease the stability of the complex. We also generated complexes of human αA-crystallin or αB-crystallin with alcohol dehydrogenase or citrate synthase by applying thermal stress. Upon glycation under physiological conditions, the chaperone-client complexes underwent greater extents of cross-linking than did uncomplexed protein mixtures. LC-MS/MS analyses revealed that the levels of cross-linking AGEs were significantly higher in the glycated chaperone-client complexes than in glycated but uncomplexed protein mixtures. Mouse lenses subjected to thermal stress followed by glycation lost resilience more extensively than lenses subjected to thermal stress or glycation alone, and this loss was accompanied by higher protein cross-linking and higher cross-linking AGE levels. These results uncover a protein cross-linking mechanism in the lens and suggest that AGE-mediated cross-linking of α-crystallin-client complexes could contribute to lens aging and presbyopia.
Collapse
Affiliation(s)
- Sandip K Nandi
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, Colorado 80045
| | - Rooban B Nahomi
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, Colorado 80045
| | - Johanna Rankenberg
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, Colorado 80045
| | - Marcus A Glomb
- Institute of Chemistry-Food Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Ram H Nagaraj
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, Colorado 80045; Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado 80045.
| |
Collapse
|
15
|
Lin L, Lin Q, Li J, Han Y, Chang P, Lu F, Zhao YE. ROCK inhibitor modified intraocular lens as an approach for inhibiting the proliferation and migration of lens epithelial cells and posterior capsule opacification. Biomater Sci 2020; 7:4208-4217. [PMID: 31389407 DOI: 10.1039/c9bm00787c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lens epithelial cells (LECs) in the capsule play a critical role in posterior capsule opacification (PCO) formation following cataract surgery. Cytoskeleton remodeling and the related ROCK pathway are quite important during cell migration and proliferation, but their role in LECs is still unclear. This study aimed to explore the mechanism of the ROCK pathway in the behavior of LECs and established a drug modified IOL for PCO prevention. We observed that the ROCK pathway inhibitor (Y27632) or cofilin knockdown reduced HLEC-B3 migration and proliferation. Furthermore, we revealed that cofilin could regulate the migration and proliferation of LECs through its phosphorylation. Interestingly, the capping protein CAPZA1 and ERM family also had an effect on the behavior of LECs. In addition, we established Y27632-PLGA modified IOLs, implanted them into rabbit eyes and found them to exhibit good safety and biocompatibility in vivo. Moreover, satisfying PCO prevention results were observed at 28 days post-operation. In summary, the ROCK pathway and the cytoskeleton remodeling protein regulate cell migration and proliferation, and the Y27632-PLGA modified IOL can prevent PCO formation.
Collapse
Affiliation(s)
- Lei Lin
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Wernecke L, Keckeis S, Reichhart N, Strauß O, Salchow DJ. Epithelial-Mesenchymal Transdifferentiation in Pediatric Lens Epithelial Cells. Invest Ophthalmol Vis Sci 2019; 59:5785-5794. [PMID: 30521667 DOI: 10.1167/iovs.18-23789] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Posterior capsule opacification (PCO) is a complication after cataract surgery, particularly in children. Epithelial-mesenchymal transition (EMT) of lens epithelial cells, mediated by transforming growth factor beta (TGFβ), contributes to PCO. However, its pathogenesis in children is poorly understood. We correlated cell growth in culture with patient characteristics, studied gene expression of pediatric lens epithelial cells (pLEC), and examined the effects of TGFβ-2 on these cells in vitro. Methods Clinical characteristics of children with cataracts correlated with growth behavior of pLEC in vitro. mRNA expression of epithelial (αB-crystallin, connexin-43) and mesenchymal (αV-integrin, α-smooth muscle actin, collagen-Iα2, fibronectin-1) markers was quantified in pLEC and in cell line HLE-B3 in the presence and absence of TGFβ-2. Results Fifty-four anterior lens capsules from 40 children aged 1 to 180 months were obtained. Cell outgrowth occurred in 44% of the capsules from patients ≤ 12 months and in 33% of capsules from children aged 13 to 60 months, but in only 6% of capsules from children over 60 months. TGFβ-2 significantly upregulated expression of αB-crystallin (HLE-B3), αV-integrin (HLE-B3), collagen-Iα2, and fibronectin-1 (in pLEC and HLE-B3 cells). Conclusions Patient characteristics correlated with growth behavior of pLEC in vitro, paralleling a higher clinical incidence of PCO in younger children. Gene expression profiles of pLEC and HLE-B3 suggest that upregulation of αV-integrin, collagen-Iα2, and fibronectin-1 are involved in EMT.
Collapse
Affiliation(s)
- Laura Wernecke
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Ophthalmology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Susanne Keckeis
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nadine Reichhart
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Daniel J Salchow
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
17
|
Findlay AR, Bengoechea R, Pittman SK, Chou TF, True HL, Weihl CC. Lithium chloride corrects weakness and myopathology in a preclinical model of LGMD1D. NEUROLOGY-GENETICS 2019; 5:e318. [PMID: 31123706 PMCID: PMC6510529 DOI: 10.1212/nxg.0000000000000318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/04/2019] [Indexed: 12/12/2022]
Abstract
Objective To understand DNAJB6's function in skeletal muscle and identify therapeutic targets for limb-girdle muscular dystrophy 1D (LGMD1D). Methods DNAJB6 knockout (KO) myoblasts were generated with Crispr/cas9 technology, and differentially accumulated proteins were identified using stable isotope labeling, followed by quantitative mass spectrometry. Cultured KO myotubes and mouse muscle from DNAJB6b-WT or DNAJB6b-F93L mice were analyzed using histochemistry, immunohistochemistry, and immunoblot. Mouse functional strength measures included forelimb grip strength and inverted wire hang. Results DNAJB6 inactivation leads to the accumulation of sarcomeric proteins and hypertrophic myotubes with an enhanced fusion index. The increased fusion in DNAJB6 KO myotubes correlates with diminished glycogen synthase kinase-β (GSK3β) activity. In contrast, LGMD1D mutations in DNAJB6 enhance GSK3β activation and suppress β-catenin and NFAT3c signaling. GSK3β inhibition with lithium chloride improves muscle size and strength in an LGMD1D preclinical mouse model. Conclusions Our results suggest that DNAJB6 facilitates protein quality control and negatively regulates myogenic signaling. In addition, LGMD1D-associated DNAJB6 mutations inhibit myogenic signaling through augmented GSK3β activity. GSK3β inhibition with lithium chloride may be a therapeutic option in LGMD1D.
Collapse
Affiliation(s)
- Andrew R Findlay
- Washington University School of Medicine (A.R.F., R.B., S.K.P., H.L.T., C.C.W); Department of Neurology (A.R.F., R.B., S.K.P., C.C.W), Hope Center for Neurological Diseases, St. Louis, MO; Harbor-UCLA Medical Center (T.-F.C.), Department of Pediatrics, Division of Medical Genetics, Torrance, CA; Department of Cell Biology and Physiology (H.L.T.), Saint Louis, MO
| | - Rocio Bengoechea
- Washington University School of Medicine (A.R.F., R.B., S.K.P., H.L.T., C.C.W); Department of Neurology (A.R.F., R.B., S.K.P., C.C.W), Hope Center for Neurological Diseases, St. Louis, MO; Harbor-UCLA Medical Center (T.-F.C.), Department of Pediatrics, Division of Medical Genetics, Torrance, CA; Department of Cell Biology and Physiology (H.L.T.), Saint Louis, MO
| | - Sara K Pittman
- Washington University School of Medicine (A.R.F., R.B., S.K.P., H.L.T., C.C.W); Department of Neurology (A.R.F., R.B., S.K.P., C.C.W), Hope Center for Neurological Diseases, St. Louis, MO; Harbor-UCLA Medical Center (T.-F.C.), Department of Pediatrics, Division of Medical Genetics, Torrance, CA; Department of Cell Biology and Physiology (H.L.T.), Saint Louis, MO
| | - Tsui-Fen Chou
- Washington University School of Medicine (A.R.F., R.B., S.K.P., H.L.T., C.C.W); Department of Neurology (A.R.F., R.B., S.K.P., C.C.W), Hope Center for Neurological Diseases, St. Louis, MO; Harbor-UCLA Medical Center (T.-F.C.), Department of Pediatrics, Division of Medical Genetics, Torrance, CA; Department of Cell Biology and Physiology (H.L.T.), Saint Louis, MO
| | - Heather L True
- Washington University School of Medicine (A.R.F., R.B., S.K.P., H.L.T., C.C.W); Department of Neurology (A.R.F., R.B., S.K.P., C.C.W), Hope Center for Neurological Diseases, St. Louis, MO; Harbor-UCLA Medical Center (T.-F.C.), Department of Pediatrics, Division of Medical Genetics, Torrance, CA; Department of Cell Biology and Physiology (H.L.T.), Saint Louis, MO
| | - Conrad C Weihl
- Washington University School of Medicine (A.R.F., R.B., S.K.P., H.L.T., C.C.W); Department of Neurology (A.R.F., R.B., S.K.P., C.C.W), Hope Center for Neurological Diseases, St. Louis, MO; Harbor-UCLA Medical Center (T.-F.C.), Department of Pediatrics, Division of Medical Genetics, Torrance, CA; Department of Cell Biology and Physiology (H.L.T.), Saint Louis, MO
| |
Collapse
|
18
|
A monoclonal antibody targeted to the functional peptide of αB-crystallin inhibits the chaperone and anti-apoptotic activities. J Immunol Methods 2019; 467:37-47. [PMID: 30738041 DOI: 10.1016/j.jim.2019.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/24/2019] [Accepted: 02/05/2019] [Indexed: 01/18/2023]
Abstract
αB-Crystallin is a member of the small heat shock protein family. It is a molecular chaperone and an anti-apoptotic protein. Previous studies have shown that the peptide (73DRFSVNLDVKHFSPEELKVKV93, hereafter referred to as peptain-1) from the core domain of αB-crystallin exhibits both chaperone and anti-apoptotic properties similar to the parent protein. We developed a mouse monoclonal antibody against peptain-1 with the aim of blocking the functions of αB-crystallin. The antibody reacted with peptain-1, it did not react with the chaperone peptide of αA-crystallin. The antibody strongly reacted with human recombinant αB-crystallin but weakly with Hsp20; it did not react with αA-crystallin or Hsp27. The antibody specifically reacted with αB-crystallin in human and mouse lens proteins but not with αA-crystallin. The antibody reacted with αB-crystallin in human lens epithelial cells, human retinal endothelial cells, and with peptain-1 in peptain-1-transduced cells. Unlike the commercial antibodies against αB-crystallin, the antibody against peptain-1 inhibited the chaperone and anti-apoptotic activities of peptain-1. The antibody might find use in inhibiting αB-crystallin's chaperone and anti-apoptotic activities in diseases where αB-crystallin is a causative or contributing factor.
Collapse
|
19
|
Effect of Exogenous Alpha-B Crystallin on the Structures and Functions of Trabecular Meshwork Cells. J Ophthalmol 2018; 2018:7875318. [PMID: 29850213 PMCID: PMC5932433 DOI: 10.1155/2018/7875318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/11/2018] [Accepted: 03/27/2018] [Indexed: 11/17/2022] Open
Abstract
Purpose Secondary open-angle glaucoma may develop as a postoperative complication of early childhood cataract surgery. Its mechanism is poorly understood. Surgical removal of cataracts is typically incomplete, and we estimate that this disease is associated with alpha-B crystallin (CRYAB) secreted from the retained lens material. This study, for the first time, focused on the role of CRYAB in undesired changes of the structures and functions in trabecular meshwork (TM) cells. Methods Cell proliferation and migration were assessed using a cell counting kit-8 (CCK8) and transwell assay analysis, respectively. Immunofluorescence (IF), quantitative real-time PCR (Rt-qPCR), and Western blot were performed to determine the effect of CRYAB on F-actin, tight junctions, and the expression of epithelial to mesenchymal transition- (EMT-) associated proteins in TM cells. Results CRYAB promoted proliferation (p < 0.0001), migration (p < 0.001), and F-actin reorganization in TM cells. There were statistically significant increases in the mRNA and protein levels of zo-1, cadherin-N, and vimentin (all p < 0.0001) and cadherin-E decreased (p < 0.0001) and the mRNA level of claudin-1 increased (p < 0.0001) compared to those of the control group. Conclusion All of the changes in structures and functions first observed in the TM cells after exposure to CRYAB resembled alterations seen in primary open-angle glaucoma, suggesting that CRYAB might be related to the pathogenesis of secondary open-angle glaucoma after congenital cataract surgery.
Collapse
|
20
|
Chen B, Ma J, Li C, Wang Y. Long noncoding RNA KCNQ1OT1 promotes proliferation and epithelial‑mesenchymal transition by regulation of SMAD4 expression in lens epithelial cells. Mol Med Rep 2018; 18:16-24. [PMID: 29749509 PMCID: PMC6059665 DOI: 10.3892/mmr.2018.8987] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/16/2018] [Indexed: 12/17/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are associated with various diseases including cataracts. The role of lncRNA potassium voltage-gated channel subfamily Q member 1 opposite strand/antisense transcript 1 (KCNQ1OT1) on lens epithelial cell (LEC) proliferation and epithelial-mesenchymal transition (EMT) in cataracts disease remains unclear. In the present study, KCNQ1OT1 and mothers against decapentaplegic homolog (SMAD)4 expression levels were upregulated in human cataract lens posterior capsular samples and in transforming growth factor (TGF)-β2-treated SRA01/04 cells, as demonstrated by reverse transcription-quantitative polymerase chain reaction, immunohistochemical staining and western blot analyses. A further loss of function test revealed that suppression of KCNQ1OT1 inhibited the proliferation and EMT of TGF-β2-treated SRA01/04 cells. Additionally, the present study reported that increase and decrease of KCNQ1OT1 regulated SMAD4 expression, which indicated that SMAD4 may be a downstream gene of KCNQ1OT1. Finally, a constructed SMAD4 RNA interference experiment confirmed that the function of KCNQ1OT1 was to act on LEC proliferation and EMT, and this was achieved via the SMAD4 signaling pathway. The findings of the present study may provide a novel target for molecular therapy of cataracts disease.
Collapse
Affiliation(s)
- Bin Chen
- The Sixth Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang, Liaoning 110031, P.R. China
| | - Jian Ma
- Research Office, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Chunwei Li
- Department of Ophthalmology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Yong Wang
- The Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| |
Collapse
|
21
|
Matrix-bound AGEs enhance TGFβ2-mediated mesenchymal transition of lens epithelial cells via the noncanonical pathway: implications for secondary cataract formation. Biochem J 2018; 475:1427-1440. [PMID: 29588342 DOI: 10.1042/bcj20170856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/19/2018] [Accepted: 03/27/2018] [Indexed: 12/28/2022]
Abstract
Advanced glycation end products (AGEs) are post-translational modifications formed from the reaction of reactive carbonyl compounds with amino groups in proteins. Our laboratory has previously shown that AGEs in extracellular matrix (ECM) proteins promote TGFβ2 (transforming growth factor-beta 2)-mediated epithelial-to-mesenchymal transition (EMT) of lens epithelial cells (LECs), which could play a role in fibrosis associated with posterior capsule opacification. We have also shown that αB-crystallin plays an important role in TGFβ2-mediated EMT of LECs. Here, we investigated the signaling mechanisms by which ECM-AGEs enhance TGFβ2-mediated EMT in LECs. We found that in LECs cultured on AGE-modified basement protein extract (AGE-BME), TGFβ2 treatment up-regulated the mesenchymal markers α-SMA (α-smooth muscle actin) and αB-crystallin and down-regulated the epithelial marker E-cadherin more than LECs cultured on unmodified BME and treated with TGFβ2. Using a Multiplex Assay, we found that AGE-BME significantly up-regulated the noncanonical pathway by promoting phosphorylation of ERK (extracellular signal-regulated kinases), AKT, and p38 MAPK (mitogen-activated protein kinases) during TGFβ2-mediated EMT. This EMT response was strongly suppressed by inhibition of AKT and p38 MAPK phosphorylation. The AKT inhibitor LY294002 also suppressed TGFβ2-induced up-regulation of nuclear Snail and reduced phosphorylation of GSK3β. Inhibition of Snail expression suppressed TGFβ2-mediated α-SMA expression. αB-Crystallin was up-regulated in an AKT-dependent manner during AGE-BME/TGFβ2-mediated EMT in LECs. The absence of αB-crystallin in LECs suppressed TGFβ2-induced GSK3β phosphorylation, resulting in lower Snail levels. Taken together, these results show that ECM-AGEs enhance the TGFβ2-mediated EMT response through activation of the AKT/Snail pathway, in which αB-crystallin plays an important role as a linker between the TGFβ2 and AGE-mediated signaling pathways.
Collapse
|
22
|
Chang KC, Shieh B, Petrash JM. Influence of aldose reductase on epithelial-to-mesenchymal transition signaling in lens epithelial cells. Chem Biol Interact 2017; 276:149-154. [PMID: 28137510 DOI: 10.1016/j.cbi.2017.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/04/2017] [Accepted: 01/26/2017] [Indexed: 12/25/2022]
Abstract
Cataract is the most frequent cause of blindness worldwide and is treated by surgical removal of the opaque lens to restore the light path to the retina. While cataract surgery is a safe procedure, some patients develop a complication of the surgery involving opacification and wrinkling of the posterior lens capsule. This process, called posterior capsule opacification (PCO), requires a second clinical treatment that can in turn lead to additional complications. Prevention of PCO is a current unmet need in the vision care enterprise. The pathogenesis of PCO involves the transition of lens epithelial cells to a mesenchymal phenotype, designated epithelial-to-mesenchymal transition (EMT). Our previous studies showed that transgenic mice designed for overexpression of human aldose reductase developed lens defects reminiscent of PCO. In the current study, we evaluated the impact of aldose reductase (AR) on expression of expression of EMT markers in the lens. Primary lens epithelial cells from AR-transgenic mice showed downregulated expression of Foxe3 and Pax6 and increased expression of α-SMA, fibronectin and snail, a pattern of gene expression typical of cells undergoing EMT. A role for AR in these changes was further confirmed when we observed that they could be normalized by treatment of cells with Sorbinil, an AR inhibitor. Smad-dependent and Smad-independent pathways are known to contribute to EMT. Interestingly, AR overexpression induced ERK but not Smad-2 activation. These results suggest that elevation of AR may lead to activation of ERK signaling and thus play a role in TGF-β/Smad independent induction of EMT in lens epithelial cells.
Collapse
Affiliation(s)
- Kun-Che Chang
- Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Biehuoy Shieh
- Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - J Mark Petrash
- Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
23
|
Tan X, Zhu Y, Chen C, Chen X, Qin Y, Qu B, Luo L, Lin H, Wu M, Chen W, Liu Y. Sprouty2 Suppresses Epithelial-Mesenchymal Transition of Human Lens Epithelial Cells through Blockade of Smad2 and ERK1/2 Pathways. PLoS One 2016; 11:e0159275. [PMID: 27415760 PMCID: PMC4944964 DOI: 10.1371/journal.pone.0159275] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/29/2016] [Indexed: 01/06/2023] Open
Abstract
Transforming growth factor β (TGFβ)-induced epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) plays a key role in the pathogenesis of anterior subcapsular cataract (ASC) and capsule opacification. In mouse lens, Sprouty2 (Spry2) has a negative regulatory role on TGFβ signaling. However, the regulation of Spry2 during ASC development and how Spry2 modulates TGFβ signaling pathway in human LECs have not been characterized. Here, we demonstrate that Spry2 expression level is decreased in anterior capsule LECs of ASC patients. Spry2 negatively regulates TGFβ2-induced EMT and migration of LECs through inhibition of Smad2 and ERK1/2 phosphorylation. Also, blockade of Smad2 or ERK1/2 activation suppresses EMT caused by Spry2 downregulation. Collectively, our results for the first time show in human LECs that Spry2 has an inhibitory role in TGFβ signaling pathway. Our findings in human lens tissue and epithelial cells suggest that Spry2 may become a novel therapeutic target for the prevention and treatment of ASC and capsule opacification.
Collapse
Affiliation(s)
- Xuhua Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoyun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingyan Qin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bo Qu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lixia Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mingxing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Sarkar A, Barui A, Ghosh B, Mukherjee A, Sarkar R, Sengupta S, Chatterjee J. Autofluorescence signatures for classifying lung cells during epithelial mesenchymal transition. RSC Adv 2016. [DOI: 10.1039/c6ra16866c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Morphological and autofluorescence (blue, green, red) patterns in lung normal cells during EMT progression.
Collapse
Affiliation(s)
- Atasi Sarkar
- School of Medical Science and Technology
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Ananya Barui
- Centre for Healthcare Education
- Science and Technology
- Indian Institute of Engineering Science and Technology
- Shibpur-711103
- India
| | - Biswajoy Ghosh
- School of Medical Science and Technology
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Anirban Mukherjee
- Department of Electrical Engineering
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Ripon Sarkar
- Centre for Healthcare Education
- Science and Technology
- Indian Institute of Engineering Science and Technology
- Shibpur-711103
- India
| | | | - Jyotirmoy Chatterjee
- School of Medical Science and Technology
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| |
Collapse
|