1
|
Puzanov GA, Senchenko VN. SCP Phosphatases and Oncogenesis. Mol Biol 2021. [DOI: 10.1134/s0026893321030092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Molina MA, Carosi Diatricch L, Castany Quintana M, Melchers WJ, Andralojc KM. Cervical cancer risk profiling: molecular biomarkers predicting the outcome of hrHPV infection. Expert Rev Mol Diagn 2020; 20:1099-1120. [PMID: 33044104 DOI: 10.1080/14737159.2020.1835472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Cervical cancer affects half a million women worldwide annually. Given the association between high-risk human papillomavirus (hrHPV) infection and carcinogenesis, hrHPV DNA testing became an essential diagnostic tool. However, hrHPV alone does not cause the disease, and, most importantly, many cervical lesions regress to normal in a year because of the host immune system. Hence, the low specificity of hrHPV DNA tests and their inability to predict the outcome of infections have triggered a further search for biomarkers. AREAS COVERED We evaluated the latest viral and cellular biomarkers validated for clinical use as primary screening or triage for cervical cancer and assessed their promise for prevention as well as potential use in the future. The literature search focused on effective biomarkers for different stages of the disease, aiming to determine their significance in predicting the outcome of hrHPV infections. EXPERT OPINION Biomarkers such as p16/Ki-67, hrHPV genotyping, hrHPV transcriptional status, and methylation patterns have demonstrated promising results. Their eventual implementation in the screening programs may support the prompt diagnosis of hrHPV infection and its progression to cancer. These biomarkers will help in making clinical management decisions on time, thus, saving the lives of hrHPV-infected women, particularly in developing countries.
Collapse
Affiliation(s)
- Mariano A Molina
- Department of Microbiology, Faculty of Science, Radboud University , Nijmegen, The Netherlands.,Department of Medical Microbiology, Radboud university medical center , Nijmegen, The Netherlands
| | | | - Marina Castany Quintana
- Department of Medical Microbiology, Radboud university medical center , Nijmegen, The Netherlands
| | - Willem Jg Melchers
- Department of Medical Microbiology, Radboud university medical center , Nijmegen, The Netherlands
| | - Karolina M Andralojc
- Department of Medical Microbiology, Radboud university medical center , Nijmegen, The Netherlands.,Department of Biochemistry, Radboud Institute for Molecular Life Sciences , Nijmegen, The Netherlands
| |
Collapse
|
3
|
Chakraborty C, Mitra S, Roychowdhury A, Samadder S, Dutta S, Roy A, Das P, Mandal RK, Sharp TV, Roychoudhury S, Panda CK. Deregulation of LIMD1-VHL-HIF-1α-VEGF pathway is associated with different stages of cervical cancer. Biochem J 2018; 475:1793-1806. [PMID: 29654110 DOI: 10.1042/bcj20170649] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 04/05/2018] [Accepted: 04/12/2018] [Indexed: 03/25/2024]
Abstract
To understand the mechanism of cellular stress in basal-parabasal layers of normal cervical epithelium and during different stages of cervical carcinoma, we analyzed the alterations (expression/methylation/copy number variation/mutation) of HIF-1α and its associated genes LIMD1, VHL and VEGF in disease-free normal cervix (n = 9), adjacent normal cervix of tumors (n = 70), cervical intraepithelial neoplasia (CIN; n = 32), cancer of uterine cervix (CACX; n = 174) samples and two CACX cell lines. In basal-parabasal layers of normal cervical epithelium, LIMD1 showed high protein expression, while low protein expression of VHL was concordant with high expression of HIF-1α and VEGF irrespective of HPV-16 (human papillomavirus 16) infection. This was in concordance with the low promoter methylation of LIMD1 and high in VHL in the basal-parabasal layers of normal cervix. LIMD1 expression was significantly reduced while VHL expression was unchanged during different stages of cervical carcinoma. This was in concordance with their frequent methylation during different stages of this tumor. In different stages of cervical carcinoma, the expression pattern of HIF-1α and VEGF was high as seen in basal-parabasal layers and inversely correlated with the expression of LIMD1 and VHL. This was validated by demethylation experiments using 5-aza-2'-deoxycytidine in CACX cell lines. Additional deletion of LIMD1 and VHL in CIN/CACX provided an additional growth advantage during cervical carcinogenesis through reduced expression of genes and associated with poor prognosis of patients. Our data showed that overexpression of HIF-1α and its target gene VEGF in the basal-parabasal layers of normal cervix was due to frequent inactivation of VHL by its promoter methylation. This profile was maintained during different stages of cervical carcinoma with additional methylation/deletion of VHL and LIMD1.
Collapse
Affiliation(s)
| | - Sraboni Mitra
- Department of Systems Biology, MD Anderson Cancer Center, Houston, TX, U.S.A
| | - Anirban Roychowdhury
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sudip Samadder
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sankhadeep Dutta
- Infections and Cancer Biology Division, International Agency for Research on Cancer, Lyon, France
| | - Anup Roy
- Department of Pathology, Nil Ratan Sircar Medical College and Hospital, Kolkata, India
| | - Pradip Das
- Department of Gynaecologic Oncology, Chittaranjan National Cancer Institute, Kolkata, India
| | - Ranajit Kumar Mandal
- Department of Gynaecologic Oncology, Chittaranjan National Cancer Institute, Kolkata, India
| | - Tyson V Sharp
- Barts Cancer Institute, Queen Mary University of London, London, U.K
| | - Susanta Roychoudhury
- Saroj Gupta Cancer Centre and Research Institute, MG Road, Thakurpukur, Kolkata, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
4
|
Sarkar S, Alam N, Mandal SS, Chatterjee K, Ghosh S, Roychoudhury S, Panda CK. Differential transmission of the molecular signature of RBSP3, LIMD1 and CDC25A in basal/ parabasal versus spinous of normal epithelium during head and neck tumorigenesis: A mechanistic study. PLoS One 2018; 13:e0195937. [PMID: 29672635 PMCID: PMC5909606 DOI: 10.1371/journal.pone.0195937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/03/2018] [Indexed: 12/16/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a global disease and mortality burden, necessitating the elucidation of its molecular progression for effective disease management. The study aims to understand the molecular profile of three candidate cell cycle regulatory genes, RBSP3, LIMD1 and CDC25A in the basal/ parabasal versus spinous layer of normal oral epithelium and during head and neck tumorigenesis. Immunohistochemical expression and promoter methylation was used to determine the molecular signature in normal oral epithelium. The mechanism of alteration transmission of this profile during tumorigenesis was then explored through additional deletion and mutation in HPV/ tobacco etiological groups, followed byclinico-pathological correlation. In basal/parabasal layer, the molecular signature of the genes was low protein expression/ high promoter methylation of RBSP3, high expression/ low methylation of LIMD1 and high expression of CDC25A. Dysplastic epithelium maintained the signature of RBSP3 through high methylation/ additional deletion with loss of the signatures of LIMD1 and CDC25A via deletion/ additional methylation. Similarly, maintenance and / or loss of signature in invasive tumors was by recurrent deletion/ methylation. Thus, differential patterns of alteration of the genes might be pre-requisite for the development of dysplastic and invasive lesions. Etiological factors played a key role in promoting genetic alterations and determining prognosis. Tobacco negative HNSCC patients had significantly lower alterations of LIMD1 and CDC25A, along with better survival among tobacco negative/ HPV positive patients. Our data suggests the necessity for perturbation of normal molecular profile of RBSP3, LIMD1 and CDC25A in conjunction with etiological factors for head and neck tumorigenesis, implying their diagnostic and prognostic significance.
Collapse
Affiliation(s)
- Shreya Sarkar
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Neyaz Alam
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, Kolkata, India
| | - Syam Sundar Mandal
- Department of Epidemiology and Biostatistics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Kabita Chatterjee
- Department of Oral and Maxillofacial Pathology, Buddha Institute of Dental Sciences and Hospital, Patna, India
| | - Supratim Ghosh
- Department of Oral and Maxillofacial Pathology, Burdwan Dental College and Hospital, Burdwan, India
| | - Susanta Roychoudhury
- Basic Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
- * E-mail:
| |
Collapse
|
5
|
Chakraborty C, Samadder S, Roychowdhury A, Roy A, Das P, Mandal RK, Roychoudhury S, Panda CK. Activation of Wnt-β-catenin pathway in basal-parabasal layers of normal cervical epithelium comparable during development of uterine cervical carcinoma. Mol Cell Biochem 2017; 443:121-130. [PMID: 29079964 DOI: 10.1007/s11010-017-3216-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/20/2017] [Indexed: 01/18/2023]
Abstract
In this study, importance of Wnt-β-catenin pathway in the development of uterine cervical carcinoma was evaluated. For this purpose, the profiles (expression/methylation/deletion) of β-catenin, p-β-catenin (Y654), Wnt3a, and APC were studied in disease free normal cervical epithelium (n = 9), adjacent normal cervical epithelium of primary tumors (n = 70), CIN (n = 28), CACX (n = 102) samples, and two CACX cell lines (HeLa and SiHa). Immunohistochemical analysis revealed high/medium (74-95%) expression of β-catenin/p-β-catenin (Y654) and Wnt3a and low expression (23-26%) of APC in proliferating basal-parabasal layers contrary to differentiated spinous layer in normal cervix irrespective of HPV16 infection. The expression profile of the genes in the basal-parabasal layers did not change significantly during development of CACX. High (66%) promoter methylation of APC was seen in basal-parabasal layers and the cervical lesions (42-69%), unlike in spinous layers (25%). The promoter methylation status of APC was validated by in vitro demethylation experiments using 5-aza-dC in CACX cell lines. However, additional deletion of APC was significantly increased from CIN (12%) to stage I/II (40%) and became comparable in stage III/IV (48%) of the tumor. Patients with alterations (deletion/methylation) of APC and high/medium expression of Wnt3a/β-catenin/p-β-catenin (Y654) showed significantly poor survival. Thus our data indicate that cumulative effect of Wnt3a overexpression and APC inactivation are needed for overexpression of β-catenin during the development of CACX.
Collapse
Affiliation(s)
- Chandraditya Chakraborty
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India
| | - Sudip Samadder
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India
| | - Anirban Roychowdhury
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India
| | - Anup Roy
- Department of Pathology, Nil Ratan Sircar Medical College and Hospital, Kolkata, West Bengal, India
| | - Pradip Das
- Department of Gynecologic Oncology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India
| | - Ranajit Kumar Mandal
- Department of Gynecologic Oncology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India
| | - Susanta Roychoudhury
- Saroj Gupta Cancer Centre & Research Institute, MG Road, Thakurpukur, Kolkata, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India.
| |
Collapse
|