1
|
Qi X, Wang Z, Lin Y, Guo Y, Dai Z, Wang Q. Elucidation and engineering mitochondrial respiratory-related genes for improving bioethanol production at high temperature in Saccharomyces cerevisiae. ENGINEERING MICROBIOLOGY 2024; 4:100108. [PMID: 39629328 PMCID: PMC11610969 DOI: 10.1016/j.engmic.2023.100108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 12/07/2024]
Abstract
Industrial manufacturing of bioproducts, especially bioethanol, can benefit from high-temperature fermentation, which requires the use of thermotolerant yeast strains. Mitochondrial activity in yeast is closely related to its overall metabolism. However, the mitochondrial respiratory changes in response to adaptive thermotolerance are still poorly understood and have been rarely utilized for developing thermotolerant yeast cell factories. Here, adaptive evolution and transcriptional sequencing, as well as whole-genome-level gene knockout, were used to obtain a thermotolerant strain of Saccharomyces cerevisiae. Furthermore, thermotolerance and bioethanol production efficiency of the engineered strain were examined. Physiological evaluation showed the boosted fermentation capacity and suppressed mitochondrial respiratory activity in the thermotolerant strain. The improved fermentation produced an increased supply of adenosine triphosphate required for more active energy-consuming pathways. Transcriptome analysis revealed significant changes in the expression of the genes involved in the mitochondrial respiratory chain. Evaluation of mitochondria-associated gene knockout confirmed that ADK1, DOC1, or MET7 were the key factors for the adaptive evolution of thermotolerance in the engineered yeast strain. Intriguingly, overexpression of DOC1 with TEF1 promoter regulation led to a 10.1% increase in ethanol production at 42 °C. The relationships between thermotolerance, mitochondrial activity, and respiration were explored, and a thermotolerant yeast strain was developed by altering the expression of mitochondrial respiration-related genes. This study provides a better understanding on the physiological mechanism of adaptive evolution of thermotolerance in yeast.
Collapse
Affiliation(s)
- Xianni Qi
- Key Laboratory of Engineering Biology for Low-carbon Biosynthesis, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Zhen Wang
- Key Laboratory of Engineering Biology for Low-carbon Biosynthesis, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- College of Science & Technology, Hebei Agricultural University, Cangzhou 061100, China
| | - Yuping Lin
- Key Laboratory of Engineering Biology for Low-carbon Biosynthesis, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Yufeng Guo
- Key Laboratory of Engineering Biology for Low-carbon Biosynthesis, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Zongjie Dai
- Key Laboratory of Engineering Biology for Low-carbon Biosynthesis, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low-carbon Biosynthesis, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
2
|
Vogelsang L, Eirich J, Finkemeier I, Dietz KJ. Specificity and dynamics of H 2O 2 detoxification by the cytosolic redox regulatory network as revealed by in vitro reconstitution. Redox Biol 2024; 72:103141. [PMID: 38599017 PMCID: PMC11022108 DOI: 10.1016/j.redox.2024.103141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
The thiol redox state is a decisive functional characteristic of proteins in cell biology. Plasmatic cell compartments maintain a thiol-based redox regulatory network linked to the glutathione/glutathione disulfide couple (GSH/GSSG) and the NAD(P)H system. The basic network constituents are known and in vivo cell imaging with gene-encoded probes have revealed insight into the dynamics of the [GSH]2/[GSSG] redox potential, cellular H2O2 and NAD(P)H+H+ amounts in dependence on metabolic and environmental cues. Less understood is the contribution and interaction of the network components, also because of compensatory reactions in genetic approaches. Reconstituting the cytosolic network of Arabidopsis thaliana in vitro from fifteen recombinant proteins at in vivo concentrations, namely glutathione peroxidase-like (GPXL), peroxiredoxins (PRX), glutaredoxins (GRX), thioredoxins, NADPH-dependent thioredoxin reductase A and glutathione reductase and applying Grx1-roGFP2 or roGFP2-Orp1 as dynamic sensors, allowed for monitoring the response to a single H2O2 pulse. The major change in thiol oxidation as quantified by mass spectrometry-based proteomics occurred in relevant peptides of GPXL, and to a lesser extent of PRX, while other Cys-containing peptides only showed small changes in their redox state and protection. Titration of ascorbate peroxidase (APX) into the system together with dehydroascorbate reductase lowered the oxidation of the fluorescent sensors in the network but was unable to suppress it. The results demonstrate the power of the network to detoxify H2O2, the partially independent branches of electron flow with significance for specific cell signaling and the importance of APX to modulate the signaling without suppressing it and shifting the burden to glutathione oxidation.
Collapse
Affiliation(s)
- Lara Vogelsang
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany; CeBiTec, Bielefeld University, 33615, Bielefeld, Germany.
| | - Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, 48149, Münster, Germany.
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, 48149, Münster, Germany.
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany; CeBiTec, Bielefeld University, 33615, Bielefeld, Germany.
| |
Collapse
|
3
|
|
4
|
Chia SB, Elko EA, Aboushousha R, Manuel AM, van de Wetering C, Druso JE, van der Velden J, Seward DJ, Anathy V, Irvin CG, Lam YW, van der Vliet A, Janssen-Heininger YMW. Dysregulation of the glutaredoxin/ S-glutathionylation redox axis in lung diseases. Am J Physiol Cell Physiol 2019; 318:C304-C327. [PMID: 31693398 DOI: 10.1152/ajpcell.00410.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutathione is a major redox buffer, reaching millimolar concentrations within cells and high micromolar concentrations in airways. While glutathione has been traditionally known as an antioxidant defense mechanism that protects the lung tissue from oxidative stress, glutathione more recently has become recognized for its ability to become covalently conjugated to reactive cysteines within proteins, a modification known as S-glutathionylation (or S-glutathiolation or protein mixed disulfide). S-glutathionylation has the potential to change the structure and function of the target protein, owing to its size (the addition of three amino acids) and charge (glutamic acid). S-glutathionylation also protects proteins from irreversible oxidation, allowing them to be enzymatically regenerated. Numerous enzymes have been identified to catalyze the glutathionylation/deglutathionylation reactions, including glutathione S-transferases and glutaredoxins. Although protein S-glutathionylation has been implicated in numerous biological processes, S-glutathionylated proteomes have largely remained unknown. In this paper, we focus on the pathways that regulate GSH homeostasis, S-glutathionylated proteins, and glutaredoxins, and we review methods required toward identification of glutathionylated proteomes. Finally, we present the latest findings on the role of glutathionylation/glutaredoxins in various lung diseases: idiopathic pulmonary fibrosis, asthma, and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Shi B Chia
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Evan A Elko
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Reem Aboushousha
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Allison M Manuel
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Cheryl van de Wetering
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Joseph E Druso
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Jos van der Velden
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - David J Seward
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Charles G Irvin
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Ying-Wai Lam
- Department of Biology, University of Vermont, Burlington, Vermont
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | | |
Collapse
|
5
|
Wohua Z, Weiming X. Glutaredoxin 2 (GRX2) deficiency exacerbates high fat diet (HFD)-induced insulin resistance, inflammation and mitochondrial dysfunction in brain injury: A mechanism involving GSK-3β. Biomed Pharmacother 2019; 118:108940. [DOI: 10.1016/j.biopha.2019.108940] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/28/2022] Open
|
6
|
Zaffagnini M, Fermani S, Marchand CH, Costa A, Sparla F, Rouhier N, Geigenberger P, Lemaire SD, Trost P. Redox Homeostasis in Photosynthetic Organisms: Novel and Established Thiol-Based Molecular Mechanisms. Antioxid Redox Signal 2019; 31:155-210. [PMID: 30499304 DOI: 10.1089/ars.2018.7617] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Redox homeostasis consists of an intricate network of reactions in which reactive molecular species, redox modifications, and redox proteins act in concert to allow both physiological responses and adaptation to stress conditions. Recent Advances: This review highlights established and novel thiol-based regulatory pathways underlying the functional facets and significance of redox biology in photosynthetic organisms. In the last decades, the field of redox regulation has largely expanded and this work is aimed at giving the right credit to the importance of thiol-based regulatory and signaling mechanisms in plants. Critical Issues: This cannot be all-encompassing, but is intended to provide a comprehensive overview on the structural/molecular mechanisms governing the most relevant thiol switching modifications with emphasis on the large genetic and functional diversity of redox controllers (i.e., redoxins). We also summarize the different proteomic-based approaches aimed at investigating the dynamics of redox modifications and the recent evidence that extends the possibility to monitor the cellular redox state in vivo. The physiological relevance of redox transitions is discussed based on reverse genetic studies confirming the importance of redox homeostasis in plant growth, development, and stress responses. Future Directions: In conclusion, we can firmly assume that redox biology has acquired an established significance that virtually infiltrates all aspects of plant physiology.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | - Simona Fermani
- 2 Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Christophe H Marchand
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Alex Costa
- 4 Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Sparla
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | | | - Peter Geigenberger
- 6 Department Biologie I, Ludwig-Maximilians-Universität München, LMU Biozentrum, Martinsried, Germany
| | - Stéphane D Lemaire
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Paolo Trost
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Scheuermann MJ, Forbes CR, Zondlo NJ. Redox-Responsive Protein Design: Design of a Small Protein Motif Dependent on Glutathionylation. Biochemistry 2018; 57:6956-6963. [PMID: 30511831 DOI: 10.1021/acs.biochem.8b00973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cysteine S-glutathionylation is a protein post-translational modification that promotes cellular responses to changes in oxidative conditions. The design of protein motifs that directly depend on defined changes to protein side chains provides new methods for probing diverse protein post-translational modifications. A canonical, 12-residue EF-hand motif was redesigned to be responsive to cysteine glutathionylation. The key design principle was the replacement of the metal-binding Glu12 carboxylate of an EF-hand with a motif capable of metal binding via a free carboxylate in the glutathione-conjugated peptide. In the optimized peptide (DKDADGWCG), metal binding and terbium luminescence were dependent on glutathionylation, with weaker metal binding in the presence of reduced cysteine but increased metal affinity and a 3.5-fold increase in terbium luminescence at 544 nm when cysteine was glutathionylated. Nuclear magnetic resonance spectroscopy indicated that the structure at all residues of the glutathionylated peptide changed in the presence of metal, with chemical shift changes consistent with the adoption of an EF-hand-like structure in the metal-bound glutathionylated peptide. This small protein motif consists of canonical amino acids and is thus genetically encodable, for its potential use as a localized tag to probe protein glutathionylation.
Collapse
Affiliation(s)
- Michael J Scheuermann
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Christina R Forbes
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Neal J Zondlo
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| |
Collapse
|
8
|
Young A, Gill R, Mailloux RJ. Protein S-glutathionylation: The linchpin for the transmission of regulatory information on redox buffering capacity in mitochondria. Chem Biol Interact 2018; 299:151-162. [PMID: 30537466 DOI: 10.1016/j.cbi.2018.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/08/2018] [Accepted: 12/07/2018] [Indexed: 01/01/2023]
Abstract
Protein S-glutathionylation reactions are a ubiquitous oxidative modification required to control protein function in response to changes in redox buffering capacity. These reactions are rapid and reversible and are, for the most part, enzymatically mediated by glutaredoxins (GRX) and glutathione S-transferases (GST). Protein S-glutathionylation has been found to control a range of cell functions in response to different physiological cues. Although these reactions occur throughout the cell, mitochondrial proteins seem to be highly susceptible to reversible S-glutathionylation, a feature attributed to the unique physical properties of this organelle. Indeed, mitochondria contain a number of S-glutathionylation targets which includes proteins involved in energy metabolism, solute transport, reactive oxygen species (ROS) production, proton leaks, apoptosis, antioxidant defense, and mitochondrial fission and fusion. Moreover, it has been found that conjugation and removal of glutathione from proteins in mitochondria fulfills a number of important physiological roles and defects in these reactions can have some dire pathological consequences. Here, we provide an updated overview on mitochondrial protein S-glutathionylation reactions and their importance in cell functions and physiology.
Collapse
Affiliation(s)
- Adrian Young
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Robert Gill
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ryan J Mailloux
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
9
|
Chalker J, Gardiner D, Kuksal N, Mailloux RJ. Characterization of the impact of glutaredoxin-2 (GRX2) deficiency on superoxide/hydrogen peroxide release from cardiac and liver mitochondria. Redox Biol 2018; 15:216-227. [PMID: 29274570 PMCID: PMC5773472 DOI: 10.1016/j.redox.2017.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/07/2017] [Accepted: 12/13/2017] [Indexed: 01/30/2023] Open
Abstract
Mitochondria are critical sources of hydrogen peroxide (H2O2), an important secondary messenger in mammalian cells. Recent work has shown that O2•-/H2O2 emission from individual sites of production in mitochondria is regulated by protein S-glutathionylation. Here, we conducted the first examination of O2•-/H2O2 release rates from cardiac and liver mitochondria isolated from mice deficient for glutaredoxin-2 (GRX2), a matrix-associated thiol oxidoreductase that facilitates the S-glutathionylation and deglutathionylation of proteins. Liver mitochondria isolated from mice heterozygous (GRX2+/-) and homozygous (GRX2-/-) for glutaredoxin-2 displayed a significant decrease in O2•-/H2O2 release when oxidizing pyruvate or 2-oxoglutarate. The genetic deletion of the Grx2 gene was associated with increased protein expression of pyruvate dehydrogenase (PDH) but not 2-oxoglutarate dehydrogenase (OGDH). By contrast, O2•-/H2O2 production was augmented in cardiac mitochondria from GRX2+/- and GRX2-/- mice metabolizing pyruvate or 2-oxoglutarate which was associated with decreased PDH and OGDH protein levels. ROS production was augmented in liver and cardiac mitochondria metabolizing succinate. Inhibitor studies revealed that OGDH and Complex III served as high capacity ROS release sites in liver mitochondria. By contrast, Complex I and Complex III were found to be the chief O2•-/H2O2 emitters in cardiac mitochondria. These findings identify an essential role for GRX2 in regulating O2•-/H2O2 release from mitochondria in liver and cardiac tissue. Our results demonstrate that the GRX2-mediated regulation of O2•-/H2O2 release through the S-glutathionylation of mitochondrial proteins may play an integral role in controlling cellular ROS signaling.
Collapse
Affiliation(s)
- Julia Chalker
- Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland, Canada
| | - Danielle Gardiner
- Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland, Canada
| | - Nidhi Kuksal
- Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland, Canada
| | - Ryan J Mailloux
- Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland, Canada.
| |
Collapse
|
10
|
Kuksal N, Chalker J, Mailloux RJ. Progress in understanding the molecular oxygen paradox - function of mitochondrial reactive oxygen species in cell signaling. Biol Chem 2017; 398:1209-1227. [PMID: 28675747 DOI: 10.1515/hsz-2017-0160] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/27/2017] [Indexed: 11/15/2022]
Abstract
The molecular oxygen (O2) paradox was coined to describe its essential nature and toxicity. The latter characteristic of O2 is associated with the formation of reactive oxygen species (ROS), which can damage structures vital for cellular function. Mammals are equipped with antioxidant systems to fend off the potentially damaging effects of ROS. However, under certain circumstances antioxidant systems can become overwhelmed leading to oxidative stress and damage. Over the past few decades, it has become evident that ROS, specifically H2O2, are integral signaling molecules complicating the previous logos that oxyradicals were unfortunate by-products of oxygen metabolism that indiscriminately damage cell structures. To avoid its potential toxicity whilst taking advantage of its signaling properties, it is vital for mitochondria to control ROS production and degradation. H2O2 elimination pathways are well characterized in mitochondria. However, less is known about how H2O2 production is controlled. The present review examines the importance of mitochondrial H2O2 in controlling various cellular programs and emerging evidence for how production is regulated. Recently published studies showing how mitochondrial H2O2 can be used as a secondary messenger will be discussed in detail. This will be followed with a description of how mitochondria use S-glutathionylation to control H2O2 production.
Collapse
|
11
|
Young A, Gardiner D, Brosnan ME, Brosnan JT, Mailloux RJ. Physiological levels of formate activate mitochondrial superoxide/hydrogen peroxide release from mouse liver mitochondria. FEBS Lett 2017; 591:2426-2438. [PMID: 28771687 DOI: 10.1002/1873-3468.12777] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 11/11/2022]
Abstract
Here, we found that formate, an essential one-carbon metabolite, activates superoxide (O2·-)/hydrogen peroxide (H2 O2 ) release from mitochondria. Sodium formate (30 μm) induces a significant increase in O2·-/H2 O2 production in liver mitochondria metabolizing pyruvate (50 μm). At concentrations deemed to be toxic, formate does not increase O2·-/H2 O2 production further. It was observed that the formate-mediated increase in O2·-/H2 O2 production is not associated with cytochrome c oxidase (COX) inhibition or changes in membrane potential and NAD(P)H levels. Sodium formate supplementation increases phosphorylating respiration without altering proton leaks. Finally, it was observed that the 2-oxoglutarate dehydrogenase (OGDH) inhibitors 3-methyl-2-oxovaleric acid (KMV) and CPI-613 inhibit the formate-induced increase in pyruvate-driven ROS production. The importance of these findings in one-carbon metabolism and physiology are discussed herein.
Collapse
Affiliation(s)
- Adrian Young
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Danielle Gardiner
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Margaret E Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - John T Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Ryan J Mailloux
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|