1
|
Ozerova I, Fallmann J, Mörl M, Bernt M, Prohaska SJ, Stadler PF. Aberrant Mitochondrial tRNA Genes Appear Frequently in Animal Evolution. Genome Biol Evol 2024; 16:evae232. [PMID: 39437314 PMCID: PMC11571959 DOI: 10.1093/gbe/evae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
Mitochondrial tRNAs have acquired a diverse portfolio of aberrant structures throughout metazoan evolution. With the availability of more than 12,500 mitogenome sequences, it is essential to compile a comprehensive overview of the pattern changes with regard to mitochondrial tRNA repertoire and structural variations. This, of course, requires reanalysis of the sequence data of more than 250,000 mitochondrial tRNAs with a uniform workflow. Here, we report our results on the complete reannotation of all mitogenomes available in the RefSeq database by September 2022 using mitos2. Based on the individual cases of mitochondrial tRNA variants reported throughout the literature, our data pinpoint the respective hotspots of change, i.e. Acanthocephala (Lophotrochozoa), Nematoda, Acariformes, and Araneae (Arthropoda). Less dramatic deviations of mitochondrial tRNAs from the norm are observed throughout many other clades. Loss of arms in animal mitochondrial tRNA clearly is a phenomenon that occurred independently many times, not limited to a small number of specific clades. The summary data here provide a starting point for systematic investigations into the detailed evolutionary processes of structural reduction and loss of mitochondrial tRNAs as well as a resource for further improvements of annotation workflows for mitochondrial tRNA annotation.
Collapse
Affiliation(s)
- Iuliia Ozerova
- Bioinformatics Group, Department of Computer Science & Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, Leipzig D-04107, Germany
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science & Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, Leipzig D-04107, Germany
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, Leipzig D-04103, Germany
| | - Matthias Bernt
- Department of Computational Biology and Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrße 15, Leipzig D-04318, Germany
| | - Sonja J Prohaska
- Computational EvoDevo Group, Department of Computer Science & Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, Leipzig D-04107, Germany
- Complexity Science Hub Vienna, Josefstädter Str. 39, Vienna 1080, Austria
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science & Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, Leipzig D-04107, Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, Leipzig D-04103, Germany
- Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, Vienna A-1090, Austria
- Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, USA
| |
Collapse
|
2
|
Chrzanowska-Lightowlers ZM, Lightowlers RN. Translation in Mitochondrial Ribosomes. Methods Mol Biol 2023; 2661:53-72. [PMID: 37166631 DOI: 10.1007/978-1-0716-3171-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mitochondrial protein synthesis is essential for the life of aerobic eukaryotes. Without it, oxidative phosphorylation cannot be coupled. Evolution has shaped a battery of factors and machinery that are key to production of just a handful of critical proteins. In this general concept chapter, we attempt to briefly summarize our current knowledge of the overall process in mitochondria from a variety of species, breaking this down to the four parts of translation: initiation, elongation, termination, and recycling. Where appropriate, we highlight differences between species and emphasize gaps in our understanding. Excitingly, with the current revolution in cryoelectron microscopy and mitochondrial genome editing, it is highly likely that many of these gaps will be resolved in the near future. However, the absence of a faithful in vitro reconstituted system to study mitochondrial translation is still problematic.
Collapse
Affiliation(s)
- Zofia M Chrzanowska-Lightowlers
- Wellcome Centre for Mitochondrial Research, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK.
| | - Robert N Lightowlers
- Wellcome Centre for Mitochondrial Research, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| |
Collapse
|
3
|
Pons J, Bover P, Bidegaray-Batista L, Arnedo MA. Arm-less mitochondrial tRNAs conserved for over 30 millions of years in spiders. BMC Genomics 2019; 20:665. [PMID: 31438844 PMCID: PMC6706885 DOI: 10.1186/s12864-019-6026-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In recent years, Next Generation Sequencing (NGS) has accelerated the generation of full mitogenomes, providing abundant material for studying different aspects of molecular evolution. Some mitogenomes have been observed to harbor atypical sequences with bizarre secondary structures, which origins and significance could only be fully understood in an evolutionary framework. RESULTS Here we report and analyze the mitochondrial sequences and gene arrangements of six closely related spiders in the sister genera Parachtes and Harpactocrates, which belong to the nocturnal, ground dwelling family Dysderidae. Species of both genera have compacted mitogenomes with many overlapping genes and strikingly reduced tRNAs that are among the shortest described within metazoans. Thanks to the conservation of the gene order and the nucleotide identity across close relatives, we were able to predict the secondary structures even on arm-less tRNAs, which would be otherwise unattainable for a single species. They exhibit aberrant secondary structures with the lack of either DHU or TΨC arms and many miss-pairings in the acceptor arm but this degeneracy trend goes even further since at least four tRNAs are arm-less in the six spider species studied. CONCLUSIONS The conservation of at least four arm-less tRNA genes in two sister spider genera for about 30 myr suggest that these genes are still encoding fully functional tRNAs though they may be post-transcriptionally edited to be fully functional as previously described in other species. We suggest that the presence of overlapping and truncated tRNA genes may be related and explains why spider mitogenomes are smaller than those of other invertebrates.
Collapse
Affiliation(s)
- Joan Pons
- Departamento de Biodiversidad y Conservación, Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), Miquel Marquès, 21, 07190 Esporles, Illes Balears Spain
| | - Pere Bover
- ARAID Foundation – IUCA Grupo-Aragosaurus, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12 -, 50009 Zaragoza, Spain
| | - Leticia Bidegaray-Batista
- Departamento de Biodiversidad y Genética, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600 Montevideo, CP Uruguay
| | - Miquel A. Arnedo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Diagonal 643, E-8028 Barcelona, Catalonia Spain
| |
Collapse
|