1
|
Lyu J, Liu C, Zhang T, Schrecke S, Elam NP, Packianathan C, Hochberg GKA, Russell D, Zhao M, Laganowsky A. Structural basis for lipid and copper regulation of the ABC transporter MsbA. Nat Commun 2022; 13:7291. [PMID: 36435815 PMCID: PMC9701195 DOI: 10.1038/s41467-022-34905-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/10/2022] [Indexed: 11/28/2022] Open
Abstract
A critical step in lipopolysaccharide (LPS) biogenesis involves flipping lipooligosaccharide, an LPS precursor, from the cytoplasmic to the periplasmic leaflet of the inner membrane, an operation carried out by the ATP-binding cassette transporter MsbA. Although LPS binding to the inner cavity of MsbA is well established, the selectivity of MsbA-lipid interactions at other site(s) remains poorly understood. Here we use native mass spectrometry (MS) to characterize MsbA-lipid interactions and guide structural studies. We show the transporter co-purifies with copper(II) and metal binding modulates protein-lipid interactions. A 2.15 Å resolution structure of an N-terminal region of MsbA in complex with copper(II) is presented, revealing a structure reminiscent of the GHK peptide, a high-affinity copper(II) chelator. Our results demonstrate conformation-dependent lipid binding affinities, particularly for the LPS-precursor, 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)2-lipid A (KDL). We report a 3.6 Å-resolution structure of MsbA trapped in an open, outward-facing conformation with adenosine 5'-diphosphate and vanadate, revealing a distinct KDL binding site, wherein the lipid forms extensive interactions with the transporter. Additional studies provide evidence that the exterior KDL binding site is conserved and a positive allosteric modulator of ATPase activity, serving as a feedforward activation mechanism to couple transporter activity with LPS biosynthesis.
Collapse
Affiliation(s)
- Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, 77843, TX, USA
| | - Chang Liu
- Department of Biochemistry and Molecular biology, University of Chicago, Chicago, 60637, IL, USA
| | - Tianqi Zhang
- Department of Chemistry, Texas A&M University, College Station, 77843, TX, USA
| | - Samantha Schrecke
- Department of Chemistry, Texas A&M University, College Station, 77843, TX, USA
| | - Nicklaus P Elam
- Department of Chemistry, Texas A&M University, College Station, 77843, TX, USA
| | - Charles Packianathan
- Department of Chemistry, Texas A&M University, College Station, 77843, TX, USA
- Walter Reed Army Institute of Research, Pilot Bioproduction Facility, Silver Spring, 20910, MD, USA
| | - Georg K A Hochberg
- Max Planck Institute for Terrestrial Microbiology and Department of Chemistry, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Department of Chemistry, University of Marburg, Marburg, Germany
| | - David Russell
- Department of Chemistry, Texas A&M University, College Station, 77843, TX, USA
| | - Minglei Zhao
- Department of Biochemistry and Molecular biology, University of Chicago, Chicago, 60637, IL, USA
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, 77843, TX, USA.
| |
Collapse
|
2
|
He G, Tian W, Qin L, Meng L, Wu D, Huang Y, Li D, Zhao D, He T. Identification of novel heavy metal detoxification proteins in Solanum tuberosum: Insights to improve food security protection from metal ion stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146197. [PMID: 33744586 DOI: 10.1016/j.scitotenv.2021.146197] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/07/2021] [Accepted: 02/25/2021] [Indexed: 05/22/2023]
Abstract
With increasingly serious environmental pollution problems, research has focused on identifying functional genes within plants that can help ensure food security and soil governance. In particular, plants seem to have been able to evolve specific functional genes to respond to environmental changes by losing partial gene functions, thereby representing a novel adaptation mechanism. Herein, a new category of functional genes was identified and investigated, providing new directions for understanding heavy metal detoxification mechanisms. Interestingly, this category of proteins appears to exhibit specific complexing functions for heavy metals. Further, a new approach was established to evaluate ATP-binding cassette (ABC) transporter family functions using microRNA targeted inhibition. Moreover, mutant and functional genes were identified for future research targets. Expression profiling under five heavy metal stress treatments provided an important framework to further study defense responses of plants to metal exposure. In conclusion, the new insights identified here provide a theoretical basis and reference to better understand the mechanisms of heavy metal tolerance in potato plants. Further, these new data provide additional directions and foundations for mining gene resources for heavy metal tolerance genes to improve safe, green crop production and plant treatment of heavy metal soil pollution.
Collapse
Affiliation(s)
- Guandi He
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China.
| | - Weijun Tian
- Agricultural College, Guizhou University, Guiyang 550025, China.
| | - Lijun Qin
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China.
| | - Lulu Meng
- Agricultural College, Guizhou University, Guiyang 550025, China.
| | - Danxia Wu
- Agricultural College, Guizhou University, Guiyang 550025, China.
| | - Yun Huang
- Agricultural College, Guizhou University, Guiyang 550025, China.
| | - Dandan Li
- Agricultural College, Guizhou University, Guiyang 550025, China.
| | - Degang Zhao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China; Guizhou Academy of Agricultural Science, Guiyang 550025, China.
| | - Tengbing He
- Agricultural College, Guizhou University, Guiyang 550025, China; Institute of New Rural Development of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
3
|
Ford RC, Hellmich UA. What monomeric nucleotide binding domains can teach us about dimeric ABC proteins. FEBS Lett 2020; 594:3857-3875. [PMID: 32880928 DOI: 10.1002/1873-3468.13921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/06/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
The classic conceptualization of ATP binding cassette (ABC) transporter function is an ATP-dependent conformational change coupled to transport of a substrate across a biological membrane via the transmembrane domains (TMDs). The binding of two ATP molecules within the transporter's two nucleotide binding domains (NBDs) induces their dimerization. Despite retaining the ability to bind nucleotides, isolated NBDs frequently fail to dimerize. ABC proteins without a TMD, for example ABCE and ABCF, have NBDs tethered via elaborate linkers, further supporting that NBD dimerization does not readily occur for isolated NBDs. Intriguingly, even in full-length transporters, the NBD-dimerized, outward-facing state is not as frequently observed as might be expected. This leads to questions regarding what drives NBD interaction and the role of the TMDs or linkers. Understanding the NBD-nucleotide interaction and the subsequent NBD dimerization is thus pivotal for understanding ABC transporter activity in general. Here, we hope to provide new insights into ABC protein function by discussing the perplexing issue of (missing) NBD dimerization in isolation and in the context of full-length ABC proteins.
Collapse
Affiliation(s)
- Robert C Ford
- Faculty of Biology Medicine and Health, The University of Manchester, UK
| | - Ute A Hellmich
- Department of Chemistry, Johannes Gutenberg-University, Mainz, Germany.,Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Frankfurt, Germany
| |
Collapse
|
4
|
Jung SR, Lee SW, Hohng S. Real-Time Monitoring of the Binding/Dissociation and Redox States of a Single Transition Metal Ions. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Seung-Ryoung Jung
- Department of Physics and Astronomy; Seoul National University; Seoul Republic of Korea
- National Center of Creative Research initiatives, Seoul National University; Seoul Republic of Korea
| | - Sang-Wook Lee
- Department of Physics and Astronomy; Seoul National University; Seoul Republic of Korea
- National Center of Creative Research initiatives, Seoul National University; Seoul Republic of Korea
| | - Sungchul Hohng
- National Center of Creative Research initiatives, Seoul National University; Seoul Republic of Korea
- Institute of Applied Physics, Seoul National University; Seoul Republic of Korea
| |
Collapse
|