1
|
Jeanne X, Török Z, Vigh L, Prodromou C. The role of the FKBP51-Hsp90 complex in Alzheimer's disease: An emerging new drug target. Cell Stress Chaperones 2024; 29:792-804. [PMID: 39615785 DOI: 10.1016/j.cstres.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
With increasing age comes the inevitable decline in proteostasis, where chaperone and co-chaperone activity becomes imbalanced. These changes lead to global disturbances and pathogenic rewiring of the chaperone system into epichaperones consisting of protein networks that are ultimately dysfunctional. Such imbalances in proteostasis may favor mechanisms that can lead to neurological diseases, such as Alzheimer's disease (AD). Consequently, there has been an increase in research activity toward finding small molecules that can re-balance the chaperone and co-chaperone machinery to counter the effects of disease resulting from old age. The Hsp90 co-chaperone FKBP51 has recently been identified as a protein whose induction not only increases with age but is elevated further in AD cells. Significantly, FKBP51 plays a role in the Hsp90-dependent isomerization of tau, which in turn influences its phosphorylation and susceptibility to aggregation. We hypothesize that FKBP51 is a major player that is able to elicit tauopathy in response to amyloid-beta senile plaques that damage the brain. We propose that elevated FKBP51 levels result in an abnormal FKBP51-Hsp90 activity that alters the normal processing of tau, which manifests as hyperphosphorylation and oligomerization of tau. Thus, the Hsp90-FKBP51 complex is emerging as a drug target against AD. In support of this idea, the structure of the FKBP51-Hsp90 complex was recently described, and significantly, the small-molecule dihydropyridine LA1011 was shown to be able to disrupt the Hsp90-FKBP51 complex. LA1011 was previously shown to effectively prevent neurodegeneration in the APPxPS1 AD transgenic mouse model. This review looks at the role of Hsp90 and its co-chaperones in AD with a focus on FKBP51.
Collapse
Affiliation(s)
- Xavier Jeanne
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, Falmer BN1 9QG, UK
| | - Zsolt Török
- LipidArt Research and Development Ltd, Szeged, Temesvári Street 62, H-6726, Hungary
| | - László Vigh
- LipidArt Research and Development Ltd, Szeged, Temesvári Street 62, H-6726, Hungary
| | - Chrisostomos Prodromou
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, Falmer BN1 9QG, UK.
| |
Collapse
|
2
|
Zgajnar N, Lagadari M, Gallo LI, Piwien-Pilipuk G, Galigniana MD. Mitochondrial-nuclear communication by FKBP51 shuttling. J Cell Biochem 2024; 125:e30386. [PMID: 36815347 DOI: 10.1002/jcb.30386] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
The HSP90-binding immunophilin FKBP51 is a soluble protein that shows high homology and structural similarity with FKBP52. Both immunophilins are functionally divergent and often show antagonistic actions. They were first described in steroid receptor complexes, their exchange in the complex being the earliest known event in steroid receptor activation upon ligand binding. In addition to steroid-related events, several pleiotropic actions of FKBP51 have emerged during the last years, ranging from cell differentiation and apoptosis to metabolic and psychiatric disorders. On the other hand, mitochondria play vital cellular roles in maintaining energy homeostasis, responding to stress conditions, and affecting cell cycle regulation, calcium signaling, redox homeostasis, and so forth. This is achieved by proteins that are encoded in both the nuclear genome and mitochondrial genes. This implies active nuclear-mitochondrial communication to maintain cell homeostasis. Such communication involves factors that regulate nuclear and mitochondrial gene expression affecting the synthesis and recruitment of mitochondrial and nonmitochondrial proteins, and/or changes in the functional state of the mitochondria itself, which enable mitochondria to recover from stress. FKBP51 has emerged as a serious candidate to participate in these regulatory roles since it has been unexpectedly found in mitochondria showing antiapoptotic effects. Such localization involves the tetratricopeptide repeats domains of the immunophilin and not its intrinsic enzymatic activity of peptidylprolyl-isomerase. Importantly, FKBP51 abandons the mitochondria and accumulates in the nucleus upon cell differentiation or during the onset of stress. Nuclear FKBP51 enhances the enzymatic activity of telomerase. The mitochondrial-nuclear trafficking is reversible, and certain situations such as viral infections promote the opposite trafficking, that is, FKBP51 abandons the nucleus and accumulates in mitochondria. In this article, we review the latest findings related to the mitochondrial-nuclear communication mediated by FKBP51 and speculate about the possible implications of this phenomenon.
Collapse
Affiliation(s)
- Nadia Zgajnar
- Instituto de Biología y Medicina Experimental (IBYME)/CONICET, Buenos Aires, Argentina
| | - Mariana Lagadari
- Instituto de Ciencia y Tecnología de Alimentos de Entre Ríos, Concordia, Argentina
| | - Luciana I Gallo
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFYBYNE)/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Mario D Galigniana
- Instituto de Biología y Medicina Experimental (IBYME)/CONICET, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Xu S, Tang L, Xu H, Yang Y, Cao M, Chen S, Jiang X, Li J, Lin Y, Che L, Fang Z, Feng B, Zhuo Y, Wang J, Wu D. Effects of Energy and Dietary Fiber on the Breast Development in Gilt. Front Vet Sci 2022; 9:830392. [PMID: 35359671 PMCID: PMC8960423 DOI: 10.3389/fvets.2022.830392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
To study the effects of energy and dietary fiber on breast development in gilts and its possible mechanisms, 32 gilts (Landrace × Yorkshire) were randomly allocated into a 2 × 2 factorial design to receive a diet with low or high energy [LE: 33.37 MJ/d digestible energy (DE); HE: 41.87 MJ/d DE] and low or high fiber (LF: 0.3 kg/d dietary fiber, HF: 0.6 kg/d dietary fiber). The weight of breast tissue was recorded. The mammary glands were collected for further analyses. The high energy intake increased the relative weight of breast tissue (p < 0.05) and the content of breast fat (p < 0.05). At the same time, the oil red staining of breast slices also showed an increase in breast fat content in high-energy treatment. High energy intake increased the DNA concentration in breast tissues (p < 0.05). In addition, high energy intake increased the concentration of triglycerides, free fatty acids, and total cholesterol in the blood of gilts (p < 0.05), and the supplementation of high fiber tended to reduce free fatty acids, total cholesterol, and estradiol (p < 0.1). Proteomic analysis suggested that there were notable differences in the cytoskeleton, intracellular non–membrane-bounded organelle, apoptosis, receptor activity, and endopeptidase inhibitor activity in molecular function between the energy and fiber effects (p < 0.05). High fiber intake also decreased the mRNA expression of 5-HT7, Bax, and caspase-3 in the breast tissue of gilts (p < 0.05), which further confirmed the importance of fiber in regulating breast development in gilt. Our results indicate that increasing gilt energy intake improved breast weight and fat deposition and increased breast cell apoptosis. Increased fiber intake reduced breast fat deposition and breast cell apoptosis at high energy intake in gilts. These results provide a potential strategy for dietary intervention against high energy intake in gilts and even in humans.
Collapse
Affiliation(s)
- Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
- *Correspondence: Shengyu Xu
| | - Lianchao Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Haitao Xu
- Animal Husbandry Development Center of Changyi City, Changyi, China
| | - Yi Yang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Meng Cao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Sirun Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
- De Wu
| |
Collapse
|
4
|
Baudier J, Deloulme JC, Shaw GS. The Zn 2+ and Ca 2+ -binding S100B and S100A1 proteins: beyond the myths. Biol Rev Camb Philos Soc 2020; 95:738-758. [PMID: 32027773 DOI: 10.1111/brv.12585] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 01/06/2020] [Accepted: 01/20/2020] [Indexed: 12/17/2022]
Abstract
The S100 genes encode a conserved group of 21 vertebrate-specific EF-hand calcium-binding proteins. Since their discovery in 1965, S100 proteins have remained enigmatic in terms of their cellular functions. In this review, we summarize the calcium- and zinc-binding properties of the dimeric S100B and S100A1 proteins and highlight data that shed new light on the extracellular and intracellular regulation and functions of S100B. We point out that S100B and S100A1 homodimers are not functionally interchangeable and that in a S100A1/S100B heterodimer, S100A1 acts as a negative regulator for the ability of S100B to bind Zn2+ . The Ca2+ and Zn2+ -dependent interactions of S100B with a wide array of proteins form the basis of its activities and have led to the derivation of some initial rules for S100B recognition of protein targets. However, recent findings have strongly suggested that these rules need to be revisited. Here, we describe a new consensus S100B binding motif present in intracellular and extracellular vertebrate-specific proteins and propose a new model for stable interactions of S100B dimers with full-length target proteins. A chaperone-associated function for intracellular S100B in adaptive cellular stress responses is also discussed. This review may help guide future studies on the functions of S100 proteins in general.
Collapse
Affiliation(s)
- Jacques Baudier
- Institut de Biologie du Développement de Marseille-UMR CNRS 7288, Aix Marseille Université, 13288, Marseille Cedex 9, France
| | - Jean Christophe Deloulme
- Grenoble Institut des Neurosciences, INSERM U1216, Université Grenoble Alpes, 38000, Grenoble, France
| | - Gary S Shaw
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A5C1, Canada
| |
Collapse
|
5
|
Cristóvão JS, Gomes CM. S100 Proteins in Alzheimer's Disease. Front Neurosci 2019; 13:463. [PMID: 31156365 PMCID: PMC6532343 DOI: 10.3389/fnins.2019.00463] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/24/2019] [Indexed: 01/05/2023] Open
Abstract
S100 proteins are calcium-binding proteins that regulate several processes associated with Alzheimer's disease (AD) but whose contribution and direct involvement in disease pathophysiology remains to be fully established. Due to neuroinflammation in AD patients, the levels of several S100 proteins are increased in the brain and some S100s play roles related to the processing of the amyloid precursor protein, regulation of amyloid beta peptide (Aβ) levels and Tau phosphorylation. S100 proteins are found associated with protein inclusions, either within plaques or as isolated S100-positive puncta, which suggests an active role in the formation of amyloid aggregates. Indeed, interactions between S100 proteins and aggregating Aβ indicate regulatory roles over the aggregation process, which may either delay or aggravate aggregation, depending on disease stage and relative S100 and Aβ levels. Additionally, S100s are also known to influence AD-related signaling pathways and levels of other cytokines. Recent evidence also suggests that metal-ligation by S100 proteins influences trace metal homeostasis in the brain, particularly of zinc, which is also a major deregulated process in AD. Altogether, this evidence strongly suggests a role of S100 proteins as key players in several AD-linked physiopathological processes, which we discuss in this review.
Collapse
Affiliation(s)
- Joana S. Cristóvão
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudio M. Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|