1
|
Hayashida M, Nomura W, Shiojiri A, Inoue Y. Activation of the DNA damage checkpoint perturbs asymmetric localization of Kar9 to spindle pole bodies in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2023; 685:149157. [PMID: 37918324 DOI: 10.1016/j.bbrc.2023.149157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
During cell cycle progression in Saccharomyces cerevisiae, spindle pole bodies (SPBs) are duplicated during the G1/S-phase transition. SPBs are crucial for the organization of both the spindle and astral microtubules, and their orientation defines the direction of nuclear division. In this process, an old SPB, which serves as the template SPB during the duplication process, is oriented toward the bud side. The patterning microtubule plus-end tracking protein, Kar9, plays an important role in the orientation of SPBs by asymmetrically localizing to the old SPB. Here, methylglyoxal (MG), a metabolite derived from glycolysis, was found to perturb asymmetric Kar9 localization and influence proper positioning of the old SPB. MG activated the DNA damage checkpoint pathway, and MG-induced perturbation of asymmetric Kar9 localization was abolished by the deletion of MEC1, a sensor for the DNA damage checkpoint pathway. Methyl methanesulfonate, a DNA-alkylating agent, also perturbed asymmetric Kar9 localization. Our results suggest that activation of the DNA damage checkpoint pathway perturbs the asymmetric Kar9 localization required for proper positioning of SPBs.
Collapse
Affiliation(s)
- Momoko Hayashida
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Wataru Nomura
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, 606-8501, Japan.
| | - Atsushi Shiojiri
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yoshiharu Inoue
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
2
|
García-Torres I, De la Mora-De la Mora I, López-Velázquez G, Cabrera N, Flores-López LA, Becker I, Herrera-López J, Hernández R, Pérez-Montfort R, Enríquez-Flores S. Repurposing of rabeprazole as an anti- Trypanosoma cruzi drug that targets cellular triosephosphate isomerase. J Enzyme Inhib Med Chem 2023; 38:2231169. [PMID: 37401012 PMCID: PMC10351538 DOI: 10.1080/14756366.2023.2231169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023] Open
Abstract
Trypanosoma cruzi is the causative agent of American trypanosomiasis, which mainly affects populations in Latin America. Benznidazole is used to control the disease, with severe effects in patients receiving this chemotherapy. Previous studies have demonstrated the inhibition of triosephosphate isomerase from T. cruzi, but cellular enzyme inhibition has yet to be established. This study demonstrates that rabeprazole inhibits both cell viability and triosephosphate isomerase activity in T. cruzi epimastigotes. Our results show that rabeprazole has an IC50 of 0.4 µM, which is 14.5 times more effective than benznidazole. Additionally, we observed increased levels of methyl-glyoxal and advanced glycation end products after the inhibition of cellular triosephosphate isomerase by rabeprazole. Finally, we demonstrate that the inactivation mechanisms of rabeprazole on triosephosphate isomerase of T. cruzi can be achieved through the derivatization of three of its four cysteine residues. These results indicate that rabeprazole is a promising candidate against American trypanosomiasis.
Collapse
Affiliation(s)
- Itzhel García-Torres
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, CDMX, México
| | | | | | - Nallely Cabrera
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CDMX, México
| | - Luis Antonio Flores-López
- CONAHCYT Instituto Nacional de Pediatría, Laboratorio de Biomoléculas y Salud Infantil, CDMX, México
| | - Ingeborg Becker
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México
| | - Juliana Herrera-López
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, México
| | - Roberto Hernández
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, México
| | - Ruy Pérez-Montfort
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CDMX, México
| | - Sergio Enríquez-Flores
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, CDMX, México
| |
Collapse
|
3
|
Ng SP, Nomura W, Takahashi H, Inoue K, Kawada T, Goto T. Methylglyoxal attenuates isoproterenol-induced increase in uncoupling protein 1 expression through activation of JNK signaling pathway in beige adipocytes. Biochem Biophys Rep 2021; 28:101127. [PMID: 34527816 PMCID: PMC8430270 DOI: 10.1016/j.bbrep.2021.101127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Methylglyoxal (MG) is a metabolite derived from glycolysis whose levels in the blood and tissues of patients with diabetes are higher than those of healthy individuals, suggesting that MG is associated with the development of diabetic complications. However, it remains unknown whether high levels of MG are a cause or consequence of diabetes. Here, we show that MG negatively affects the expression of uncoupling protein 1 (UCP1), which is involved in thermogenesis and the regulation of systemic metabolism. Decreased Ucp1 expression is associated with obesity and type 2 diabetes. We found that MG attenuated the increase in Ucp1 expression following treatment with isoproterenol in beige adipocytes. However, MG did not affect protein kinase A signaling, the core coordinator of isoproterenol-induced Ucp1 expression. Instead, MG activated c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases. We found that JNK inhibition, but not p38, recovered isoproterenol-stimulated Ucp1 expression under MG treatment. Altogether, these results suggest an inhibitory role of MG on the thermogenic function of beige adipocytes through the JNK signaling pathway.
Collapse
Key Words
- BBGC, S-p-bromobenzylglutathione cyclopentyl diester
- Beige adipocytes
- CREB, cAMP response element-binding protein
- ERK, extracellular receptor kinase
- HSL, hormone-sensitive lipase
- JNK
- JNK, c-Jun N-terminal kinase
- MG, methylglyoxal
- Methylglyoxal
- NAC, N-acetyl-l-cysteine
- NEFA, non-esterified fatty acids
- PKA, protein kinase A
- SEM, standard error of the mean
- Ucp1
- iWAT, inguinal white adipose tissue
Collapse
Affiliation(s)
- Su-Ping Ng
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wataru Nomura
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8317, Japan
- Corresponding author. Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Haruya Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kazuo Inoue
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8317, Japan
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8317, Japan
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8317, Japan
- Corresponding author. Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
4
|
Nomura W, Aoki M, Inoue Y. Methylglyoxal inhibits nuclear division through alterations in vacuolar morphology and accumulation of Atg18 on the vacuolar membrane in Saccharomyces cerevisiae. Sci Rep 2020; 10:13887. [PMID: 32807835 PMCID: PMC7431575 DOI: 10.1038/s41598-020-70802-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/03/2020] [Indexed: 12/27/2022] Open
Abstract
Methylglyoxal (MG) is a natural metabolite derived from glycolysis, and it inhibits the growth of cells in all kinds of organisms. We recently reported that MG inhibits nuclear division in Saccharomyces cerevisiae. However, the mechanism by which MG blocks nuclear division remains unclear. Here, we show that increase in the levels of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) is crucial for the inhibitory effects of MG on nuclear division, and the deletion of PtdIns(3,5)P2-effector Atg18 alleviated the MG-mediated inhibitory effects. Previously, we reported that MG altered morphology of the vacuole to a single swelling form, where PtdIns(3,5)P2 accumulates. The changes in the vacuolar morphology were also needed by MG to exert its inhibitory effects on nuclear division. The known checkpoint machinery, including the spindle assembly checkpoint and morphological checkpoint, are not involved in the blockade of nuclear division by MG. Our results suggest that both the accumulation of Atg18 on the vacuolar membrane and alterations in vacuolar morphology are necessary for the MG-induced inhibition of nuclear division.
Collapse
Affiliation(s)
- Wataru Nomura
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan. .,Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| | - Miho Aoki
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yoshiharu Inoue
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
5
|
Scheckhuber CQ. Studying the mechanisms and targets of glycation and advanced glycation end-products in simple eukaryotic model systems. Int J Biol Macromol 2019; 127:85-94. [DOI: 10.1016/j.ijbiomac.2019.01.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/20/2022]
|