1
|
Mihaylova-Garnizova R, Davidova S, Hodzhev Y, Satchanska G. Antimicrobial Peptides Derived from Bacteria: Classification, Sources, and Mechanism of Action against Multidrug-Resistant Bacteria. Int J Mol Sci 2024; 25:10788. [PMID: 39409116 PMCID: PMC11476732 DOI: 10.3390/ijms251910788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 10/20/2024] Open
Abstract
Antimicrobial peptides (AMPs) are short, usually cationic peptides with an amphiphilic structure, which allows them to easily bind and interact with the cellular membranes of viruses, bacteria, fungi, and other pathogens. Bacterial AMPs, or bacteriocins, can be produced from Gram-negative and Gram-positive bacteria via ribosomal synthesis to eliminate competing organisms. Bacterial AMPs are vital in addressing the increasing antibiotic resistance of various pathogens, potentially serving as an alternative to ineffective antibiotics. Bacteriocins have a narrow spectrum of action, making them highly specific antibacterial compounds that target particular bacterial pathogens. This review covers the two main groups of bacteriocins produced by Gram-negative and Gram-positive bacteria, their modes of action, classification, sources of positive effects they can play on the human body, and their limitations and future perspectives as an alternative to antibiotics.
Collapse
Affiliation(s)
- Raynichka Mihaylova-Garnizova
- Department of Natural Sciences, New Bulgarian University, Montevideo Blvd. 21, 1618 Sofia, Bulgaria; (R.M.-G.); (S.D.); (Y.H.)
- Department of Infectious Diseases, Military Academy, George Sofiiski Str. 3, 1606 Sofia, Bulgaria
| | - Slavena Davidova
- Department of Natural Sciences, New Bulgarian University, Montevideo Blvd. 21, 1618 Sofia, Bulgaria; (R.M.-G.); (S.D.); (Y.H.)
| | - Yordan Hodzhev
- Department of Natural Sciences, New Bulgarian University, Montevideo Blvd. 21, 1618 Sofia, Bulgaria; (R.M.-G.); (S.D.); (Y.H.)
| | - Galina Satchanska
- Department of Natural Sciences, New Bulgarian University, Montevideo Blvd. 21, 1618 Sofia, Bulgaria; (R.M.-G.); (S.D.); (Y.H.)
| |
Collapse
|
2
|
Giovannercole F, Gafeira Gonçalves L, Armengaud J, Varela Coelho A, Khomutov A, De Biase D. Integrated multi-omics unveil the impact of H-phosphinic analogs of glutamate and α-ketoglutarate on Escherichia coli metabolism. J Biol Chem 2024; 300:107803. [PMID: 39307306 DOI: 10.1016/j.jbc.2024.107803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/21/2024] Open
Abstract
Desmethylphosphinothricin (L-Glu-γ-PH) is the H-phosphinic analog of glutamate with carbon-phosphorus-hydrogen (C-P-H) bonds. In L-Glu-γ-PH the phosphinic group acts as a bioisostere of the glutamate γ-carboxyl group allowing the molecule to be a substrate of Escherichia coli glutamate decarboxylase, a pyridoxal 5'-phosphate-dependent α-decarboxylase. In addition, the L-Glu-γ-PH decarboxylation product, GABA-PH, is further metabolized by bacterial GABA-transaminase, another pyridoxal 5'-phosphate-dependent enzyme, and succinic semialdehyde dehydrogenase, a NADP+-dependent enzyme. The product of these consecutive reactions, the so-called GABA shunt, is succinate-PH, the H-phosphinic analog of succinate, a tricarboxylic acid cycle intermediate. Notably, L-Glu-γ-PH displays antibacterial activity in the same concentration range of well-established antibiotics in E. coli. The dipeptide L-Leu-Glu-γ-PH was shown to display an even higher efficacy, likely as a consequence of an improved penetration into the bacteria. Herein, to further understand the intracellular effects of L-Glu-γ-PH, 1H NMR-based metabolomics, and LC-MS-based shotgun proteomics were used. This study included also the keto-derivative of L-Glu-γ-PH, α-ketoglutarate-γ-PH (α-KG-γ-PH), which also exhibits antimicrobial activity. L-Glu-γ-PH and α-KG-γ-PH are found to similarly impact bacterial metabolism, although the overall effect of α-KG-γ-PH is more pervasive. Notably, α-KG-γ-PH is converted intracellularly into L-Glu-γ-PH, but the opposite was not found. In general, both molecules impact the pathways where aspartate, glutamate, and glutamine are used as precursors for the biosynthesis of related metabolites, activate the acid stress response, and deprive cells of nitrogen. This work highlights the multi-target drug potential of L-Glu-γ-PH and α-KG-γ-PH and paves the way for their exploitation as antimicrobials.
Collapse
Affiliation(s)
- Fabio Giovannercole
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Luís Gafeira Gonçalves
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-sur-Ceze, France
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Alex Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.
| |
Collapse
|
3
|
Avizemer Z, Martí-Gómez C, Hoch SY, McCandlish DM, Fleishman SJ. Evolutionary paths that link orthogonal pairs of binding proteins. RESEARCH SQUARE 2023:rs.3.rs-2836905. [PMID: 37131620 PMCID: PMC10153392 DOI: 10.21203/rs.3.rs-2836905/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Some protein binding pairs exhibit extreme specificities that functionally insulate them from homologs. Such pairs evolve mostly by accumulating single-point mutations, and mutants are selected if their affinity exceeds the threshold required for function1-4. Thus, homologous and high-specificity binding pairs bring to light an evolutionary conundrum: how does a new specificity evolve while maintaining the required affinity in each intermediate5,6? Until now, a fully functional single-mutation path that connects two orthogonal pairs has only been described where the pairs were mutationally close thus enabling experimental enumeration of all intermediates2. We present an atomistic and graph-theoretical framework for discovering low molecular strain single-mutation paths that connect two extant pairs, enabling enumeration beyond experimental capability. We apply it to two orthogonal bacterial colicin endonuclease-immunity pairs separated by 17 interface mutations7. We were not able to find a strain-free and functional path in the sequence space defined by the two extant pairs. But including mutations that bridge amino acids that cannot be exchanged through single-nucleotide mutations led us to a strain-free 19-mutation trajectory that is completely viable in vivo. Our experiments show that the specificity switch is remarkably abrupt, resulting from only one radical mutation on each partner. Furthermore, each of the critical specificity-switch mutations increases fitness, demonstrating that functional divergence could be driven by positive Darwinian selection. These results reveal how even radical functional changes in an epistatic fitness landscape may evolve.
Collapse
Affiliation(s)
- Ziv Avizemer
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Carlos Martí-Gómez
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Shlomo Yakir Hoch
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - David M. McCandlish
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Sarel J. Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| |
Collapse
|
4
|
Budiardjo SJ, Stevens JJ, Calkins AL, Ikujuni AP, Wimalasena VK, Firlar E, Case DA, Biteen JS, Kaelber JT, Slusky JSG. Colicin E1 opens its hinge to plug TolC. eLife 2022; 11:73297. [PMID: 35199644 PMCID: PMC9020818 DOI: 10.7554/elife.73297] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/21/2022] [Indexed: 12/02/2022] Open
Abstract
The double membrane architecture of Gram-negative bacteria forms a barrier that is impermeable to most extracellular threats. Bacteriocin proteins evolved to exploit the accessible, surface-exposed proteins embedded in the outer membrane to deliver cytotoxic cargo. Colicin E1 is a bacteriocin produced by, and lethal to, Escherichia coli that hijacks the outer membrane proteins (OMPs) TolC and BtuB to enter the cell. Here, we capture the colicin E1 translocation domain inside its membrane receptor, TolC, by high-resolution cryo-electron microscopy to obtain the first reported structure of a bacteriocin bound to TolC. Colicin E1 binds stably to TolC as an open hinge through the TolC pore—an architectural rearrangement from colicin E1’s unbound conformation. This binding is stable in live E. coli cells as indicated by single-molecule fluorescence microscopy. Finally, colicin E1 fragments binding to TolC plug the channel, inhibiting its native efflux function as an antibiotic efflux pump, and heightening susceptibility to three antibiotic classes. In addition to demonstrating that these protein fragments are useful starting points for developing novel antibiotic potentiators, this method could be expanded to other colicins to inhibit other OMP functions. Bacteria are constantly warring with each other for space and resources. As a result, they have developed a range of molecular weapons to poison, damage or disable other cells. For instance, bacteriocins are proteins that can latch onto structures at the surface of enemy bacteria and push toxins through their outer membrane. Bacteria are increasingly resistant to antibiotics, representing a growing concern for modern healthcare. One way that they are able to survive is by using ‘efflux pumps’ studded through their external membranes to expel harmful drugs before these can cause damage. Budiardjo et al. wanted to test whether bacteriocins could interfere with this defence mechanism by blocking efflux pumps. Bacteriocins are usually formed of binding elements (which recognise specific target proteins) and of a ‘killer tail’ that can stab the cell. Experiments showed that the binding parts of a bacteriocin could effectively ‘plug’ efflux pumps in Escherichia coli bacteria: high-resolution molecular microscopy revealed how the bacteriocin fragment binds to the pump, while fluorescent markers showed that it attached to the surface of E. coli and stopped the efflux pumps from working. As a result, lower amounts of antibiotics were necessary to kill the bacteria when bacteriocins were present. The work by Budiardjo et al. could lead to new ways to combat bacteria that will reduce the need for current antibiotics. In the future, bacteriocins could also be harnessed to target other proteins than efflux pumps, allowing scientists to manipulate a range of bacterial processes.
Collapse
Affiliation(s)
- S Jimmy Budiardjo
- Center for Computational Biology, University of Kansas, Lawrence, United States
| | - Jacqueline J Stevens
- Department of Molecular Biosciences, University of Kansas, Lawrence, United States
| | - Anna L Calkins
- Department of Chemistry, University of Michigan, Ann Arbor, United States
| | - Ayotunde P Ikujuni
- Department of Molecular Biosciences, University of Kansas, Lawrence, United States
| | | | - Emre Firlar
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, United States
| | - David A Case
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, United States
| | - Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, United States
| | - Jason T Kaelber
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, United States
| | - Joanna S G Slusky
- Center for Computational Biology, University of Kansas, Lawrence, United States
| |
Collapse
|
5
|
Pareek V, Gupta R, Devineau S, Sivasankaran SK, Bhargava A, Khan MA, Srikumar S, Fanning S, Panwar J. Does Silver in Different Forms Affect Bacterial Susceptibility and Resistance? A Mechanistic Perspective. ACS APPLIED BIO MATERIALS 2022; 5:801-817. [PMID: 35073697 DOI: 10.1021/acsabm.1c01179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The exceptional increase in antibiotic resistance in past decades motivated the scientific community to use silver as a potential antibacterial agent. However, due to its unknown antibacterial mechanism and the pattern of bacterial resistance to silver species, it has not been revolutionized in the health sector. This study deciphers mechanistic aspects of silver species, i.e., ions and lysozyme-coated silver nanoparticles (L-Ag NPs), against E. coli K12 through RNA sequencing analysis. The obtained results support the reservoir nature of nanoparticles for the controlled release of silver ions into bacteria. This study differentiates between the antibacterial mechanism of silver species by discussing the pathway of their entry in bacteria, sequence of events inside cells, and response of bacteria to overcome silver stress. Controlled release of ions from L-Ag NPs not only reduces bacterial growth but also reduces the likelihood of resistance development. Conversely, direct exposure of silver ions, leads to rapid activation of the bacterial defense system leading to development of resistance against silver ions, like the well-known antibiotic resistance problem. These findings provide valuable insight on the mechanism of silver resistance and antibacterial strategies deployed by E. coli K12, which could be a potential target for the generation of aim-based and effective nanoantibiotics.
Collapse
Affiliation(s)
- Vikram Pareek
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, India.,School of Public Health, Physiotherapy and Sports Science, Centre for Food Safety, Science Centre South, University College Dublin, Dublin 4, Ireland
| | - Rinki Gupta
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, India
| | | | | | - Arpit Bhargava
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, India
| | - Mohd Azeem Khan
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, India
| | - Shabrinath Srikumar
- Department of Food, Nutrition and Health, College of Food and Agriculture, UAE University, Al Ain 15551, UAE
| | - Séamus Fanning
- School of Public Health, Physiotherapy and Sports Science, Centre for Food Safety, Science Centre South, University College Dublin, Dublin 4, Ireland.,Institute for Global Food Security, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Jitendra Panwar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, India
| |
Collapse
|
6
|
Francis MLR, Webby MN, Housden NG, Kaminska R, Elliston E, Chinthammit B, Lukoyanova N, Kleanthous C. Porin threading drives receptor disengagement and establishes active colicin transport through Escherichia coli OmpF. EMBO J 2021; 40:e108610. [PMID: 34515361 PMCID: PMC8561637 DOI: 10.15252/embj.2021108610] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 11/24/2022] Open
Abstract
Bacteria deploy weapons to kill their neighbours during competition for resources and to aid survival within microbiomes. Colicins were the first such antibacterial system identified, yet how these bacteriocins cross the outer membrane (OM) of Escherichia coli is unknown. Here, by solving the structures of translocation intermediates via cryo‐EM and by imaging toxin import, we uncover the mechanism by which the Tol‐dependent nuclease colicin E9 (ColE9) crosses the bacterial OM. We show that threading of ColE9’s disordered N‐terminal domain through two pores of the trimeric porin OmpF causes the colicin to disengage from its primary receptor, BtuB, and reorganises the translocon either side of the membrane. Subsequent import of ColE9 through the lumen of a single OmpF subunit is driven by the proton‐motive force, which is delivered by the TolQ‐TolR‐TolA‐TolB assembly. Our study answers longstanding questions, such as why OmpF is a better translocator than OmpC, and reconciles the mechanisms by which both Tol‐ and Ton‐dependent bacteriocins cross the bacterial outer membrane.
Collapse
Affiliation(s)
| | - Melissa N Webby
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Renata Kaminska
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Emma Elliston
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
7
|
Abstract
Bacteria often secrete diffusible protein toxins (bacteriocins) to kill bystander cells during interbacterial competition. Here, we use biochemical, biophysical and structural analyses to show how a bacteriocin exploits TolC, a major outer-membrane antibiotic efflux channel in Gram-negative bacteria, to transport itself across the outer membrane of target cells. Klebicin C (KlebC), a rRNase toxin produced by Klebsiella pneumoniae, binds TolC of a related species (K. quasipneumoniae) with high affinity through an N-terminal, elongated helical hairpin domain common amongst bacteriocins. The KlebC helical hairpin opens like a switchblade to bind TolC. A cryo-EM structure of this partially translocated state, at 3.1 Å resolution, reveals that KlebC associates along the length of the TolC channel. Thereafter, the unstructured N-terminus of KlebC protrudes beyond the TolC iris, presenting a TonB-box sequence to the periplasm. Association with proton-motive force-linked TonB in the inner membrane drives toxin import through the channel. Finally, we demonstrate that KlebC binding to TolC blocks drug efflux from bacteria. Our results indicate that TolC, in addition to its known role in antibiotic export, can function as a protein import channel for bacteriocins. Bacteria can secrete diffusible protein toxins that kill competing bacteria. Here, the authors use biochemical, biophysical and structural analyses to show how one of these toxins exploits TolC (a major antibiotic efflux channel) to transport itself across the outer membrane of target cells.
Collapse
|
8
|
Kell DB. A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation. Adv Microb Physiol 2021; 78:1-177. [PMID: 34147184 DOI: 10.1016/bs.ampbs.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Textbooks of biochemistry will explain that the otherwise endergonic reactions of ATP synthesis can be driven by the exergonic reactions of respiratory electron transport, and that these two half-reactions are catalyzed by protein complexes embedded in the same, closed membrane. These views are correct. The textbooks also state that, according to the chemiosmotic coupling hypothesis, a (or the) kinetically and thermodynamically competent intermediate linking the two half-reactions is the electrochemical difference of protons that is in equilibrium with that between the two bulk phases that the coupling membrane serves to separate. This gradient consists of a membrane potential term Δψ and a pH gradient term ΔpH, and is known colloquially as the protonmotive force or pmf. Artificial imposition of a pmf can drive phosphorylation, but only if the pmf exceeds some 150-170mV; to achieve in vivo rates the imposed pmf must reach 200mV. The key question then is 'does the pmf generated by electron transport exceed 200mV, or even 170mV?' The possibly surprising answer, from a great many kinds of experiment and sources of evidence, including direct measurements with microelectrodes, indicates it that it does not. Observable pH changes driven by electron transport are real, and they control various processes; however, compensating ion movements restrict the Δψ component to low values. A protet-based model, that I outline here, can account for all the necessary observations, including all of those inconsistent with chemiosmotic coupling, and provides for a variety of testable hypotheses by which it might be refined.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative, Biology, University of Liverpool, Liverpool, United Kingdom; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
9
|
Pangeni S, Prajapati JD, Bafna J, Nilam M, Nau WM, Kleinekathöfer U, Winterhalter M. Permeation eines 5.1‐kDa‐Peptides durch einen Proteinkanal: Molekulare Basis der Translokation von Protamin durch CymA aus
Klebsiella Oxytoca
**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sushil Pangeni
- Department of Life Sciences and Chemistry Jacobs University 28759 Bremen Deutschland
| | | | - Jayesh Bafna
- Department of Life Sciences and Chemistry Jacobs University 28759 Bremen Deutschland
| | - Mohamed Nilam
- Department of Life Sciences and Chemistry Jacobs University 28759 Bremen Deutschland
| | - Werner M. Nau
- Department of Life Sciences and Chemistry Jacobs University 28759 Bremen Deutschland
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences Jacobs University Bremen 28759 Bremen Deutschland
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry Jacobs University 28759 Bremen Deutschland
| |
Collapse
|
10
|
Pangeni S, Prajapati JD, Bafna J, Nilam M, Nau WM, Kleinekathöfer U, Winterhalter M. Large-Peptide Permeation Through a Membrane Channel: Understanding Protamine Translocation Through CymA from Klebsiella Oxytoca*. Angew Chem Int Ed Engl 2021; 60:8089-8094. [PMID: 33580541 PMCID: PMC8049027 DOI: 10.1002/anie.202016943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 12/13/2022]
Abstract
Quantifying the passage of the large peptide protamine (Ptm) across CymA, a passive channel for cyclodextrin uptake, is in the focus of this study. Using a reporter-pair-based fluorescence membrane assay we detected the entry of Ptm into liposomes containing CymA. The kinetics of the Ptm entry was independent of its concentration suggesting that the permeation through CymA is the rate-limiting factor. Furthermore, we reconstituted single CymA channels into planar lipid bilayers and recorded the ion current fluctuations in the presence of Ptm. To this end, we were able to resolve the voltage-dependent entry of single Ptm peptide molecules into the channel. Extrapolation to zero voltage revealed about 1-2 events per second and long dwell times, in agreement with the liposome study. Applied-field and steered molecular dynamics simulations added an atomistic view of the permeation events. It can be concluded that a concentration gradient of 1 μm Ptm leads to a translocation rate of about one molecule per second and per channel.
Collapse
Affiliation(s)
- Sushil Pangeni
- Department of Life Sciences and ChemistryJacobs University28759BremenGermany
| | | | - Jayesh Bafna
- Department of Life Sciences and ChemistryJacobs University28759BremenGermany
| | - Mohamed Nilam
- Department of Life Sciences and ChemistryJacobs University28759BremenGermany
| | - Werner M. Nau
- Department of Life Sciences and ChemistryJacobs University28759BremenGermany
| | | | | |
Collapse
|
11
|
Szczepaniak J, Press C, Kleanthous C. The multifarious roles of Tol-Pal in Gram-negative bacteria. FEMS Microbiol Rev 2021; 44:490-506. [PMID: 32472934 PMCID: PMC7391070 DOI: 10.1093/femsre/fuaa018] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
In the 1960s several groups reported the isolation and preliminary genetic mapping of
Escherichia coli strains tolerant towards the
action of colicins. These pioneering studies kick-started two new fields in bacteriology;
one centred on how bacteriocins like colicins exploit the Tol (or more commonly Tol-Pal)
system to kill bacteria, the other on the physiological role of this cell
envelope-spanning assembly. The following half century has seen significant advances in
the first of these fields whereas the second has remained elusive, until recently. Here,
we review work that begins to shed light on Tol-Pal function in Gram-negative bacteria.
What emerges from these studies is that Tol-Pal is an energised system with fundamental,
interlinked roles in cell division – coordinating the re-structuring of peptidoglycan at
division sites and stabilising the connection between the outer membrane and underlying
cell wall. This latter role is achieved by Tol-Pal exploiting the proton motive force to
catalyse the accumulation of the outer membrane peptidoglycan associated lipoprotein Pal
at division sites while simultaneously mobilising Pal molecules from around the cell.
These studies begin to explain the diverse phenotypic outcomes of tol-pal
mutations, point to other cell envelope roles Tol-Pal may have and raise many new
questions.
Collapse
Affiliation(s)
- Joanna Szczepaniak
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| | - Cara Press
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| | - Colin Kleanthous
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
12
|
Pore-forming toxins in infection and immunity. Biochem Soc Trans 2021; 49:455-465. [PMID: 33492383 DOI: 10.1042/bst20200836] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
The integrity of the plasma membranes is extremely crucial for the survival and proper functioning of the cells. Organisms from all kingdoms of life employ specialized pore-forming proteins and toxins (PFPs and PFTs) that perforate cell membranes, and cause detrimental effects. PFPs/PFTs exert their damaging actions by forming oligomeric pores in the membrane lipid bilayer. PFPs/PFTs play important roles in diverse biological processes. Many pathogenic bacteria secrete PFTs for executing their virulence mechanisms. The immune system of the higher vertebrates employs PFPs to kill pathogen-infected cells and transformed cancer cells. The most obvious consequence of membrane pore-formation by the PFPs/PFTs is the killing of the target cells due to the disruption of the permeability barrier function of the plasma membranes. PFPs/PFTs can also activate diverse cellular processes that include activation of the stress-response pathways, induction of programmed cell death, and inflammation. Upon attack by the PFTs, host cells may also activate pathways to repair the injured membranes, restore cellular homeostasis, and trigger inflammatory immune responses. In this article, we present an overview of the diverse cellular responses that are triggered by the PFPs/PFTs, and their implications in the process of pathogen infection and immunity.
Collapse
|
13
|
Yang Y, Babich O, Sukhikh S, Zimina M, Milentyeva I. Antibiotic activity and resistance of lactic acid bacteria and other antagonistic bacteriocin-producing microorganisms. FOODS AND RAW MATERIALS 2020. [DOI: 10.21603/2308-4057-2020-2-377-384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Introduction. Increased resistance of microorganisms to traditional antibiotics has created a practical need for isolating and synthesizing new antibiotics. We aimed to study the antibiotic activity and resistance of bacteriocins produced by lactic acid bacteria and other microorganisms.
Study objects and methods. We studied the isolates of the following microorganism strains: Bacillus subtilis, Penicillium glabrum, Penicillium lagena, Pseudomonas koreenis, Penicillium ochrochloron, Leuconostoc lactis, Lactobacillus plantarum, Leuconostoc mesenteroides, Pediococcus acidilactici, Leuconostoc mesenteroides, Pediococcus pentosaceus, Lactobacillus casei, Lactobacillus fermentum, Bacteroides hypermegas, Bacteroides ruminicola, Pediococcus damnosus, Bacteroides paurosaccharolyticus, Halobacillus profundi, Geobacillus stearothermophilus, and Bacillus caldotenax. Pathogenic test strains included Escherichia coli, Salmonella enterica, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus mycoides, Alcaligenes faecalis, and Proteus vulgaris. The titer of microorganisms was determined by optical density measurements at 595 nm.
Results and discussion. We found that eleven microorganisms out of twenty showed high antimicrobial activity against all test strains of pathogenic and opportunistic microorganisms. All the Bacteroides strains exhibited little antimicrobial activity against Gramnegative test strains, while Halobacillus profundi had an inhibitory effect on Gram-positive species only. The Penicillium strains also displayed a slight antimicrobial effect on pathogenic test strains.
Conclusion. The antibiotic resistance of the studied lactic acid bacteria and other bacteriocin-producing microorganisms allows for their use in the production of pharmaceutical antibiotic drugs.
Collapse
|
14
|
Bhattacharyya S, Walker DM, Harshey RM. Dead cells release a 'necrosignal' that activates antibiotic survival pathways in bacterial swarms. Nat Commun 2020; 11:4157. [PMID: 32814767 PMCID: PMC7438516 DOI: 10.1038/s41467-020-17709-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/14/2020] [Indexed: 01/06/2023] Open
Abstract
Swarming is a form of collective bacterial motion enabled by flagella on the surface of semi-solid media. Swarming populations exhibit non-genetic or adaptive resistance to antibiotics, despite sustaining considerable cell death. Here, we show that antibiotic-induced death of a sub-population benefits the swarm by enhancing adaptive resistance in the surviving cells. Killed cells release a resistance-enhancing factor that we identify as AcrA, a periplasmic component of RND efflux pumps. The released AcrA interacts on the surface of live cells with an outer membrane component of the efflux pump, TolC, stimulating drug efflux and inducing expression of other efflux pumps. This phenomenon, which we call 'necrosignaling', exists in other Gram-negative and Gram-positive bacteria and displays species-specificity. Given that adaptive resistance is a known incubator for evolving genetic resistance, our findings might be clinically relevant to the rise of multidrug resistance.
Collapse
Affiliation(s)
- Souvik Bhattacharyya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - David M Walker
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Rasika M Harshey
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
15
|
Ruhe ZC, Low DA, Hayes CS. Polymorphic Toxins and Their Immunity Proteins: Diversity, Evolution, and Mechanisms of Delivery. Annu Rev Microbiol 2020; 74:497-520. [PMID: 32680451 DOI: 10.1146/annurev-micro-020518-115638] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
All bacteria must compete for growth niches and other limited environmental resources. These existential battles are waged at several levels, but one common strategy entails the transfer of growth-inhibitory protein toxins between competing cells. These antibacterial effectors are invariably encoded with immunity proteins that protect cells from intoxication by neighboring siblings. Several effector classes have been described, each designed to breach the cell envelope of target bacteria. Although effector architectures and export pathways tend to be clade specific, phylogenetically distant species often deploy closely related toxin domains. Thus, diverse competition systems are linked through a common reservoir of toxin-immunity pairs that is shared via horizontal gene transfer. These toxin-immunity protein pairs are extraordinarily diverse in sequence, and this polymorphism underpins an important mechanism of self/nonself discrimination in bacteria. This review focuses on the structures, functions, and delivery mechanisms of polymorphic toxin effectors that mediate bacterial competition.
Collapse
Affiliation(s)
- Zachary C Ruhe
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA;
| | - David A Low
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA; .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA; .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
16
|
Jansen KB, Inns PG, Housden NG, Hopper JTS, Kaminska R, Lee S, Robinson CV, Bayley H, Kleanthous C. Bifurcated binding of the OmpF receptor underpins import of the bacteriocin colicin N into Escherichia coli. J Biol Chem 2020; 295:9147-9156. [PMID: 32398259 PMCID: PMC7335789 DOI: 10.1074/jbc.ra120.013508] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/04/2020] [Indexed: 11/14/2022] Open
Abstract
Colicins are Escherichia coli-specific bacteriocins that translocate across the outer bacterial membrane by a poorly understood mechanism. Group A colicins typically parasitize the proton-motive force-linked Tol system in the inner membrane via porins after first binding an outer membrane protein receptor. Recent studies have suggested that the pore-forming group A colicin N (ColN) instead uses lipopolysaccharide as a receptor. Contrary to this prevailing view, using diffusion-precipitation assays, native state MS, isothermal titration calorimetry, single-channel conductance measurements in planar lipid bilayers, and in vivo fluorescence imaging, we demonstrate here that ColN uses OmpF both as its receptor and translocator. This dual function is achieved by ColN having multiple distinct OmpF-binding sites, one located within its central globular domain and another within its disordered N terminus. We observed that the ColN globular domain associates with the extracellular surface of OmpF and that lipopolysaccharide (LPS) enhances this binding. Approximately 90 amino acids of ColN then translocate through the porin, enabling the ColN N terminus to localize within the lumen of an OmpF subunit from the periplasmic side of the membrane, a binding mode reminiscent of that observed for the nuclease colicin E9. We conclude that bifurcated engagement of porins is intrinsic to the import mechanism of group A colicins.
Collapse
Affiliation(s)
| | | | | | | | - Renata Kaminska
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Sejeong Lee
- Chemistry Research laboratory, University of Oxford, Oxford, United Kingdom
| | - Carol V Robinson
- Chemistry Research laboratory, University of Oxford, Oxford, United Kingdom
| | - Hagan Bayley
- Chemistry Research laboratory, University of Oxford, Oxford, United Kingdom
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
17
|
Lee S, Housden NG, Ionescu SA, Zimmer MH, Kaminska R, Kleanthous C, Bayley H. Transmembrane Epitope Delivery by Passive Protein Threading through the Pores of the OmpF Porin Trimer. J Am Chem Soc 2020; 142:12157-12166. [PMID: 32614588 PMCID: PMC7366379 DOI: 10.1021/jacs.0c02362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Trimeric porins in the outer membrane (OM) of Gram-negative bacteria are the conduits by which nutrients and antibiotics diffuse passively into cells. The narrow gateways that porins form in the OM are also exploited by bacteriocins to translocate into cells by a poorly understood process. Here, using single-channel electrical recording in planar lipid bilayers in conjunction with protein engineering, we explicate the mechanism by which the intrinsically unstructured N-terminal translocation domain (IUTD) of the endonuclease bacteriocin ColE9 is imported passively across the Escherichia coli OM through OmpF. We show that the import is dominated by weak interactions of OmpF pores with binding epitopes within the IUTD that are orientationally biased and result in the threading of over 60 amino acids through 2 subunits of OmpF. Single-molecule kinetic analysis demonstrates that the IUTD enters from the extracellular side of OmpF and translocates to the periplasm where the polypeptide chain does an about turn in order to enter a neighboring subunit, only for some of these molecules to pop out of this second subunit before finally re-entering to form a stable complex. These intimately linked transport/binding processes generate an essentially irreversible, hook-like assembly that constrains an import activating peptide epitope between two subunits of the OmpF trimer.
Collapse
Affiliation(s)
- Sejeong Lee
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | | | - Sandra A Ionescu
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Matthew H Zimmer
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Renata Kaminska
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Hagan Bayley
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| |
Collapse
|
18
|
Cytophaga hutchinsonii gldN, Encoding a Core Component of the Type IX Secretion System, Is Essential for Ion Assimilation, Cellulose Degradation, and Cell Motility. Appl Environ Microbiol 2020; 86:AEM.00242-20. [PMID: 32245758 DOI: 10.1128/aem.00242-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
The type IX secretion system (T9SS), which is involved in pathogenicity, motility, and utilization of complex biopolymers, is a novel protein secretion system confined to the phylum Bacteroidetes Cytophaga hutchinsonii, a common cellulolytic soil bacterium belonging to the phylum Bacteroidetes, can rapidly digest crystalline cellulose using a novel strategy. In this study, the deletion mutant of chu_0174 (gldN) was obtained using PY6 medium supplemented with Stanier salts. GldN was verified to be a core component of C. hutchinsonii T9SS, and is indispensable for cellulose degradation, motility, and secretion of C-terminal domain (CTD) proteins. Notably, the ΔgldN mutant showed significant growth defects in Ca2+- and Mg2+-deficient media. These growth defects could be relieved by the addition of Ca2+ or Mg2+ The intracellular concentrations of Ca2+ and Mg2+ were markedly reduced in ΔgldN These results demonstrated that GldN is essential for the acquisition of trace amounts of Ca2+ and Mg2+, especially for Ca2+ Moreover, an outer membrane efflux protein, CHU_2807, which was decreased in abundance on the outer membrane of ΔgldN, is essential for normal growth in PY6 medium. The reduced intracellular accumulation of Ca2+ and Mg2+ in the Δ2807 mutant indicated that CHU_2807 is involved in the uptake of trace amounts of Ca2+ and Mg2+ This study provides insights into the role of T9SS in metal ion assimilation in C. hutchinsonii IMPORTANCE The widespread Gram-negative bacterium Cytophaga hutchinsonii uses a novel but poorly understood strategy to utilize crystalline cellulose. Recent studies showed that a T9SS exists in C. hutchinsonii and is involved in cellulose degradation and motility. However, the main components of the C. hutchinsonii T9SS and their functions are still unclear. Our study characterized the function of GldN, which is a core component of the T9SS. GldN was proved to play vital roles in cellulose degradation and cell motility. Notably, GldN is essential for the acquisition of Ca2+ and Mg2+ ions under Ca2+- and Mg2+-deficient conditions, revealing a link between the T9SS and the metal ion transport system. The outer membrane abundance of CHU_2807, which is essential for Ca2+ and Mg2+ uptake in PY6 medium, was affected by the deletion of GldN. This study demonstrated that the C. hutchinsonii T9SS has extensive functions, including cellulose degradation, motility, and metal ion assimilation, and contributes to further understanding of the function of the T9SS in the phylum Bacteroidetes.
Collapse
|
19
|
Celia H, Noinaj N, Buchanan SK. Structure and Stoichiometry of the Ton Molecular Motor. Int J Mol Sci 2020; 21:E375. [PMID: 31936081 PMCID: PMC7014051 DOI: 10.3390/ijms21020375] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/29/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
The Ton complex is a molecular motor that uses the proton gradient at the inner membrane of Gram-negative bacteria to generate force and movement, which are transmitted to transporters at the outer membrane, allowing the entry of nutrients into the periplasmic space. Despite decades of investigation and the recent flurry of structures being reported by X-ray crystallography and cryoEM, the mode of action of the Ton molecular motor has remained elusive, and the precise stoichiometry of its subunits is still a matter of debate. This review summarizes the latest findings on the Ton system by presenting the recently reported structures and related reports on the stoichiometry of the fully assembled complex.
Collapse
Affiliation(s)
- Herve Celia
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA;
| | - Susan K Buchanan
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| |
Collapse
|
20
|
Porins and small-molecule translocation across the outer membrane of Gram-negative bacteria. Nat Rev Microbiol 2019; 18:164-176. [DOI: 10.1038/s41579-019-0294-2] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
|
21
|
Jin X, Kightlinger W, Hong SH. Optimizing Cell-Free Protein Synthesis for Increased Yield and Activity of Colicins. Methods Protoc 2019; 2:28. [PMID: 36358105 PMCID: PMC6632115 DOI: 10.3390/mps2020028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/19/2022] Open
Abstract
Colicins are antimicrobial proteins produced by Escherichia coli that hold great promise as viable complements or alternatives to antibiotics. Cell-free protein synthesis (CFPS) is a useful production platform for toxic proteins because it eliminates the need to maintain cell viability, a common problem in cell-based production. Previously, we demonstrated that colicins produced by CFPS based on crude Escherichia coli lysates are effective in eradicating antibiotic-tolerant bacteria known as persisters. However, we also found that some colicins have poor solubility or low cell-killing activity. In this study, we improved the solubility of colicin M from 16% to nearly 100% by producing it in chaperone-enriched E. coli extracts, resulting in enhanced cell-killing activity. We also improved the cytotoxicity of colicin E3 by adding or co-expressing the E3 immunity protein during the CFPS reaction, suggesting that the E3 immunity protein enhances colicin E3 activity in addition to protecting the host strain. Finally, we confirmed our previous finding that active colicins can be rapidly synthesized by observing colicin E1 production over time in CFPS. Within three hours of CFPS incubation, colicin E1 reached its maximum production yield and maintained high cytotoxicity during longer incubations up to 20 h. Taken together, our findings indicate that colicin production can be easily optimized for improved solubility and activity using the CFPS platform.
Collapse
Affiliation(s)
- Xing Jin
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA;
| | - Weston Kightlinger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA;
| | - Seok Hoon Hong
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA;
| |
Collapse
|