1
|
Wilson S, Kim E, Ishii A, Ruban AV, Minagawa J. Overexpression of LHCSR and PsbS enhance light tolerance in Chlamydomonas reinhardtii. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 244:112718. [PMID: 37156084 DOI: 10.1016/j.jphotobiol.2023.112718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Nonphotochemical quenching (NPQ) is a crucial mechanism for fine-tuning light harvesting and protecting the photosystem II (PSII) reaction centres from excess light energy in plants and algae. This process is regulated by photoprotective proteins LHCSR1, LHCSR3, and PsbS in green algae, such as Chlamydomonas reinhardtii. The det1-2 phot mutant, which overexpresses these photoprotective proteins, resulting in a significantly higher NPQ response, has been recently discovered in C. reinhardtii. Here, we analysed the physiological impact of this response on algal cells and found that det1-2 phot was capable of efficient growth under high light intensities, where wild-type (WT) cells were unable to survive. The mutant exhibited a smaller PSII cross-section in the dark and showed a detachment of the peripheral light-harvesting complex II (LHCII) antenna in the NPQ state, as suggested by a rise in the chlorophyll fluorescence parameter of photochemical quenching in the dark (qPd > 1). Furthermore, fluorescence decay-associated spectra demonstrated a decreased excitation pressure on PSII, with excess energy being directed toward PSI. The amount of LHCSR1, LHCSR3, and PsbS in the mutant correlated with the magnitude of the protective NPQ response. Overall, the study suggests the mechanism by which the overexpression of photoprotective proteins in det1-2 phot brings about an efficient and effective photoprotective response, enabling the mutant to grow and survive under high light intensities that would otherwise be lethal for WT cells.
Collapse
Affiliation(s)
- Sam Wilson
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Eunchul Kim
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Asako Ishii
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Alexander V Ruban
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan.
| |
Collapse
|
2
|
Quantifying the long-term interplay between photoprotection and repair mechanisms sustaining photosystem II activity. Biochem J 2022; 479:701-717. [PMID: 35234841 DOI: 10.1042/bcj20220031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022]
Abstract
The photosystem II reaction centre (RCII) protein subunit D1 is the main target of light-induced damage in the thylakoid membrane. As such, it is constantly replaced with newly synthesised proteins, in a process dubbed the 'D1 repair cycle'. The mechanism of relief of excitation energy pressure on RCII, non-photochemical quenching (NPQ), is activated to prevent damage. The contribution of the D1 repair cycle and NPQ in preserving the photochemical efficiency of RCII is currently unclear. In this work, we seek to (1) quantify the relative long-term effectiveness of photoprotection offered by NPQ and the D1 repair cycle, and (2) determine the fraction of sustained decrease in RCII activity that is due to long-term protective processes. We found that while under short-term, sunfleck-mimicking illumination, NPQ is substantially more effective in preserving RCII activity than the D1 repair cycle (Plant. Cell Environ. 41, 1098-1112, 2018). Under prolonged constant illumination, its contribution is less pronounced, accounting only for up to 30% of RCII protection, while D1 repair assumes a predominant role. Exposure to a wide range of light intensities yields comparable results, highlighting the crucial role of a constant and rapid D1 turnover for the maintenance of RCII efficiency. The interplay between NPQ and D1 repair cycle is crucial to grant complete phototolerance to plants under low and moderate light intensities, and limit damage to photosystem II under high light. Additionally, we disentangled and quantified the contribution of a slowly-reversible NPQ component that does not impair RCII activity, and is therefore protective.
Collapse
|
3
|
Rodriguez-Heredia M, Saccon F, Wilson S, Finazzi G, Ruban AV, Hanke GT. Protection of photosystem I during sudden light stress depends on ferredoxin:NADP(H) reductase abundance and interactions. PLANT PHYSIOLOGY 2022; 188:1028-1042. [PMID: 35060611 PMCID: PMC8825262 DOI: 10.1093/plphys/kiab550] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Plant tolerance to high light and oxidative stress is increased by overexpression of the photosynthetic enzyme Ferredoxin:NADP(H) reductase (FNR), but the specific mechanism of FNR-mediated protection remains enigmatic. It has also been reported that the localization of this enzyme within the chloroplast is related to its role in stress tolerance. Here, we dissected the impact of FNR content and location on photoinactivation of photosystem I (PSI) and photosystem II (PSII) during high light stress of Arabidopsis (Arabidopsis thaliana). The reaction center of PSII is efficiently turned over during light stress, while damage to PSI takes much longer to repair. Our results indicate a PSI sepcific effect, where efficient oxidation of the PSI primary donor (P700) upon transition from darkness to light, depends on FNR recruitment to the thylakoid membrane tether proteins: thylakoid rhodanase-like protein (TROL) and translocon at the inner envelope of chloroplasts 62 (Tic62). When these interactions were disrupted, PSI photoinactivation occurred. In contrast, there was a moderate delay in the onset of PSII damage. Based on measurements of ΔpH formation and cyclic electron flow, we propose that FNR location influences the speed at which photosynthetic control is induced, resulting in specific impact on PSI damage. Membrane tethering of FNR therefore plays a role in alleviating high light stress, by regulating electron distribution during short-term responses to light.
Collapse
Affiliation(s)
| | - Francesco Saccon
- Department of Biochemistry, Queen Mary University of London, London E1 4NS, UK
| | - Sam Wilson
- Department of Biochemistry, Queen Mary University of London, London E1 4NS, UK
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Grenoble Alpes, Institut National de Recherche Agronomique (INRA), Institut de Recherche en Sciences et Technologies pour le Vivant (iRTSV), CEA Grenoble, F-38054 Grenoble cedex 9, France
| | - Alexander V Ruban
- Department of Biochemistry, Queen Mary University of London, London E1 4NS, UK
| | - Guy T Hanke
- Department of Biochemistry, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
4
|
Colpo A, Baldisserotto C, Pancaldi S, Sabia A, Ferroni L. Photosystem II photoinhibition and photoprotection in a lycophyte, Selaginella martensii. PHYSIOLOGIA PLANTARUM 2022; 174:e13604. [PMID: 34811759 PMCID: PMC9300044 DOI: 10.1111/ppl.13604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 05/13/2023]
Abstract
The Lycophyte Selaginella martensii efficiently acclimates to diverse light environments, from deep shade to full sunlight. The plant does not modulate the abundance of the Light Harvesting Complex II, mostly found as a free trimer, and does not alter the maximum capacity of thermal dissipation (NPQ). Nevertheless, the photoprotection is expected to be modulatable upon long-term light acclimation to preserve the photosystems (PSII, PSI). The effects of long-term light acclimation on PSII photoprotection were investigated using the chlorophyll fluorometric method known as "photochemical quenching measured in the dark" (qPd ). Singularly high-qPd values at relatively low irradiance suggest a heterogeneous antenna system (PSII antenna uncoupling). The extent of antenna uncoupling largely depends on the light regime, reaching the highest value in sun-acclimated plants. In parallel, the photoprotective NPQ (pNPQ) increased from deep-shade to high-light grown plants. It is proposed that the differences in the long-term modulation in the photoprotective capacity are proportional to the amount of uncoupled LHCII. In deep-shade plants, the inconsistency between invariable maximum NPQ and lower pNPQ is attributed to the thermal dissipation occurring in the PSII core.
Collapse
Affiliation(s)
- Andrea Colpo
- Department of Environmental and Prevention SciencesUniversity of FerraraFerrara
| | | | - Simonetta Pancaldi
- Department of Environmental and Prevention SciencesUniversity of FerraraFerrara
| | - Alessandra Sabia
- Department of Environmental and Prevention SciencesUniversity of FerraraFerrara
| | - Lorenzo Ferroni
- Department of Environmental and Prevention SciencesUniversity of FerraraFerrara
| |
Collapse
|
5
|
Wang Y, Huang C, Zeng W, Zhang T, Zhong C, Deng S, Tang T. Epigenetic and transcriptional responses underlying mangrove adaptation to UV-B. iScience 2021; 24:103148. [PMID: 34646986 PMCID: PMC8496181 DOI: 10.1016/j.isci.2021.103148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 12/02/2022] Open
Abstract
Tropical plants have adapted to strong solar ultraviolet (UV) radiation. Here we compare molecular responses of two tropical mangroves Avecennia marina and Rhizophora apiculata to high-dose UV-B. Whole-genome bisulfate sequencing indicates that high UV-B induced comparable hyper- or hypo-methylation in three sequence contexts (CG, CHG, and CHH, where H refers to A, T, or C) in A. marina but mainly CHG hypomethylation in R. apiculata. RNA and small RNA sequencing reveals UV-B induced relaxation of transposable element (TE) silencing together with up-regulation of TE-adjacent genes in R. apiculata but not in A. marina. Despite conserved upregulation of flavonoid biosynthesis and downregulation of photosynthesis genes caused by high UV-B, A. marina specifically upregulated ABC transporter and ubiquinone biosynthesis genes that are known to be protective against UV-B-induced damage. Our results point to divergent responses underlying plant UV-B adaptation at both the epigenetic and transcriptional level.
Collapse
Affiliation(s)
- Yushuai Wang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, People’s Republic of China
| | - Chenglong Huang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, People’s Republic of China
| | - Weishun Zeng
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, People’s Republic of China
| | - Tianyuan Zhang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, People’s Republic of China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou 571100, Hainan, People’s Republic of China
| | - Shulin Deng
- CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People’s Republic of China
- Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People’s Republic of China
| | - Tian Tang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, People’s Republic of China
| |
Collapse
|
6
|
Wilson S, Johnson MP, Ruban AV. Proton motive force in plant photosynthesis dominated by ΔpH in both low and high light. PLANT PHYSIOLOGY 2021; 187:263-275. [PMID: 34618143 PMCID: PMC8418402 DOI: 10.1093/plphys/kiab270] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/23/2021] [Indexed: 05/08/2023]
Abstract
The proton motive force (pmf) across the thylakoid membrane couples photosynthetic electron transport and ATP synthesis. In recent years, the electrochromic carotenoid and chlorophyll absorption band shift (ECS), peaking ∼515 nm, has become a widely used probe to measure pmf in leaves. However, the use of this technique to calculate the parsing of the pmf between the proton gradient (ΔpH) and electric potential (Δψ) components remains controversial. Interpretation of the ECS signal is complicated by overlapping absorption changes associated with violaxanthin de-epoxidation to zeaxanthin (ΔA505) and energy-dependent nonphotochemical quenching (qE; ΔA535). In this study, we used Arabidopsis (Arabidopsis thaliana) plants with altered xanthophyll cycle activity and photosystem II subunit S (PsbS) content to disentangle these overlapping contributions. In plants where overlap among ΔA505, ΔA535, and ECS is diminished, such as npq4 (lacking ΔA535) and npq1npq4 (also lacking ΔA505), the parsing method implies the Δψ contribution is virtually absent and pmf is solely composed of ΔpH. Conversely, in plants where ΔA535 and ECS overlap is enhanced, such as L17 (a PsbS overexpressor) and npq1 (where ΔA535 is blue-shifted to 525 nm) the parsing method implies a dominant contribution of Δψ to the total pmf. These results demonstrate the vast majority of the pmf attributed by the ECS parsing method to Δψ is caused by ΔA505 and ΔA535 overlap, confirming pmf is dominated by ΔpH following the first 60 s of continuous illumination under both low and high light conditions. Further implications of these findings for the regulation of photosynthesis are discussed.
Collapse
Affiliation(s)
- Sam Wilson
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Matthew P. Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Alexander V. Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
7
|
Moustakas M, Bayçu G, Sperdouli I, Eroğlu H, Eleftheriou EP. Arbuscular Mycorrhizal Symbiosis Enhances Photosynthesis in the Medicinal Herb Salvia fruticosa by Improving Photosystem II Photochemistry. PLANTS 2020; 9:plants9080962. [PMID: 32751534 PMCID: PMC7463761 DOI: 10.3390/plants9080962] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/12/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
We investigated the influence of Salvia fruticosa colonization by the arbuscular mycorrhizal fungi (AMF) Rhizophagus irregularis on photosynthetic function by using chlorophyll fluorescence imaging analysis to evaluate the light energy use in photosystem II (PSII) of inoculated and non-inoculated plants. We observed that inoculated plants used significantly higher absorbed energy in photochemistry (ΦPSII) than non-inoculated and exhibited significant lower excess excitation energy (EXC). However, the increased ΦPSII in inoculated plants did not result in a reduced non-regulated energy loss in PSII (ΦNO), suggesting the same singlet oxygen (1O2) formation between inoculated and non-inoculated plants. The increased ΦPSII in inoculated plants was due to an increased efficiency of open PSII centers to utilize the absorbed light (Fv'/Fm') due to a decreased non-photochemical quenching (NPQ) since there was no difference in the fraction of open reaction centers (qp). The decreased NPQ in inoculated plants resulted in an increased electron-transport rate (ETR) compared to non-inoculated. Yet, inoculated plants exhibited a higher efficiency of the water-splitting complex on the donor side of PSII as revealed by the increased Fv/Fo ratio. A spatial heterogeneity between the leaf tip and the leaf base for the parameters ΦPSII and ΦNPQ was observed in both inoculated and non-inoculated plants, reflecting different developmental zones. Overall, our findings suggest that the increased ETR of inoculated S. fruticosa contributes to increased photosynthetic performance, providing growth advantages to inoculated plants by increasing their aboveground biomass, mainly by increasing leaf biomass.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (G.B.); (H.E.)
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence: (M.M.); (E.P.E.)
| | - Gülriz Bayçu
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (G.B.); (H.E.)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Demeter, Thermi, 57001 Thessaloniki, Greece;
| | - Hilal Eroğlu
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (G.B.); (H.E.)
- Biology Division, Institute of Graduate Studies in Science, Istanbul University, 34134 Istanbul, Turkey
| | - Eleftherios P. Eleftheriou
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence: (M.M.); (E.P.E.)
| |
Collapse
|
8
|
Molecular Mechanism of Oxidation of P700 and Suppression of ROS Production in Photosystem I in Response to Electron-Sink Limitations in C3 Plants. Antioxidants (Basel) 2020; 9:antiox9030230. [PMID: 32168828 PMCID: PMC7139980 DOI: 10.3390/antiox9030230] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 02/01/2023] Open
Abstract
Photosynthesis fixes CO2 and converts it to sugar, using chemical-energy compounds of both NADPH and ATP, which are produced in the photosynthetic electron transport system. The photosynthetic electron transport system absorbs photon energy to drive electron flow from Photosystem II (PSII) to Photosystem I (PSI). That is, both PSII and PSI are full of electrons. O2 is easily reduced to a superoxide radical (O2-) at the reducing side, i.e., the acceptor side, of PSI, which is the main production site of reactive oxygen species (ROS) in photosynthetic organisms. ROS-dependent inactivation of PSI in vivo has been reported, where the electrons are accumulated at the acceptor side of PSI by artificial treatments: exposure to low temperature and repetitive short-pulse (rSP) illumination treatment, and the accumulated electrons flow to O2, producing ROS. Recently, my group found that the redox state of the reaction center of chlorophyll P700 in PSI regulates the production of ROS: P700 oxidation suppresses the production of O2- and prevents PSI inactivation. This is why P700 in PSI is oxidized upon the exposure of photosynthesis organisms to higher light intensity and/or low CO2 conditions, where photosynthesis efficiency decreases. In this study, I introduce a new molecular mechanism for the oxidation of P700 in PSI and suppression of ROS production from the robust relationship between the light and dark reactions of photosynthesis. The accumulated protons in the lumenal space of the thylakoid membrane and the accumulated electrons in the plastoquinone (PQ) pool drive the rate-determining step of the P700 photo-oxidation reduction cycle in PSI from the photo-excited P700 oxidation to the reduction of the oxidized P700, thereby enhancing P700 oxidation.
Collapse
|
9
|
Moustakas M, Hanć A, Dobrikova A, Sperdouli I, Adamakis IDS, Apostolova E. Spatial Heterogeneity of Cadmium Effects on Salvia sclarea Leaves Revealed by Chlorophyll Fluorescence Imaging Analysis and Laser Ablation Inductively Coupled Plasma Mass Spectrometry. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2953. [PMID: 31547238 PMCID: PMC6766342 DOI: 10.3390/ma12182953] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/01/2019] [Accepted: 09/09/2019] [Indexed: 01/28/2023]
Abstract
In this study, for a first time (according to our knowledge), we couple the methodologies of chlorophyll fluorescence imaging analysis (CF-IA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), in order to investigate the effects of cadmium (Cd) accumulation on photosystem II (PSII) photochemistry. We used as plant material Salvia sclarea that grew hydroponically with or without (control) 100 μM Cd for five days. The spatial heterogeneity of a decreased effective quantum yield of electron transport (ΦPSΙΙ) that was observed after exposure to Cd was linked to the spatial pattern of high Cd accumulation. However, the high increase of non-photochemical quenching (NPQ), at the leaf part with the high Cd accumulation, resulted in the decrease of the quantum yield of non-regulated energy loss (ΦNO) even more than that of control leaves. Thus, S. sclarea leaves exposed to 100 μM Cd exhibited lower reactive oxygen species (ROS) production as singlet oxygen (1O2). In addition, the increased photoprotective heat dissipation (NPQ) in the whole leaf under Cd exposure was sufficient enough to retain the same fraction of open reaction centers (qp) with control leaves. Our results demonstrated that CF-IA and LA-ICP-MS could be successfully combined to monitor heavy metal effects and plant tolerance mechanisms.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Anetta Hanć
- Department of Trace Element Analysis by Spectroscopy Method, Faculty of Chemistry, Adam Mickiewicz University, 61 614 Poznań, Poland.
| | - Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, 1113 Sofia, Bulgaria.
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Demeter, Thermi, 57001 Thessaloniki, Greece.
| | | | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, 1113 Sofia, Bulgaria.
| |
Collapse
|
10
|
Liu J, Lu Y, Hua W, Last RL. A New Light on Photosystem II Maintenance in Oxygenic Photosynthesis. FRONTIERS IN PLANT SCIENCE 2019; 10:975. [PMID: 31417592 PMCID: PMC6685048 DOI: 10.3389/fpls.2019.00975] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/11/2019] [Indexed: 05/19/2023]
Abstract
Life on earth is sustained by oxygenic photosynthesis, a process that converts solar energy, carbon dioxide, and water into chemical energy and biomass. Sunlight is essential for growth and productivity of photosynthetic organisms. However, exposure to an excessive amount of light adversely affects fitness due to photooxidative damage to the photosynthetic machinery, primarily to the reaction center of the oxygen-evolving photosystem II (PSII). Photosynthetic organisms have evolved diverse photoprotective and adaptive strategies to avoid, alleviate, and repair PSII damage caused by high-irradiance or fluctuating light. Rapid and harmless dissipation of excess absorbed light within antenna as heat, which is measured by chlorophyll fluorescence as non-photochemical quenching (NPQ), constitutes one of the most efficient protective strategies. In parallel, an elaborate repair system represents another efficient strategy to maintain PSII reaction centers in active states. This article reviews both the reaction center-based strategy for robust repair of photodamaged PSII and the antenna-based strategy for swift control of PSII light-harvesting (NPQ). We discuss evolutionarily and mechanistically diverse strategies used by photosynthetic organisms to maintain PSII function for growth and productivity under static high-irradiance light or fluctuating light environments. Knowledge of mechanisms underlying PSII maintenance would facilitate bioengineering photosynthesis to enhance agricultural productivity and sustainability to feed a growing world population amidst climate change.
Collapse
Affiliation(s)
- Jun Liu
- Department of Functional Genomics and Molecular Biology, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- *Correspondence: Jun Liu,
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| | - Wei Hua
- Department of Functional Genomics and Molecular Biology, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Wei Hua
| | - Robert L. Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|