1
|
Dar A, Godara P, Prusty D, Bashir M. Plasmodium falciparum topoisomerases: Emerging targets for anti-malarial therapy. Eur J Med Chem 2024; 265:116056. [PMID: 38171145 DOI: 10.1016/j.ejmech.2023.116056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
Different metabolic pathways like DNA replication, transcription, and recombination generate topological constrains in the genome. These topological constraints are resolved by essential molecular machines known as topoisomerases. To bring changes in DNA topology, the topoisomerases create a single or double-stranded nick in the template DNA, hold the nicked ends to let the tangled DNA pass through, and finally re-ligate the breaks. The DNA nicking and re-ligation activities as well as ATPase activities (when present) in topoisomerases are subjected to inhibition by several anticancer and antibacterial drugs, thus establishing these enzymes as successful targets in anticancer and antibacterial therapies. The anti-topoisomerase drugs interfere with the functioning of these enzymes and result in the accumulation of DNA tangles or lethal genomic breaks, thereby promoting host cell (or organism) death. The potential of topoisomerases in the human malarial parasite, Plasmodium falciparum in antimalarial drug development has received little attention so far. Interestingly, the parasite genome encodes orthologs of topoisomerases found in eukaryotes, prokaryotes, and archaea, thus, providing an enormous opportunity for investigating these enzymes for antimalarial therapeutics. This review focuses on the features of Plasmodium falciparum topoisomerases (PfTopos) with respect to their closer counterparts in other organisms. We will discuss overall advances and basic challenges with topoisomerase research in Plasmodium falciparum and our attempts to understand the interaction of PfTopos with classical and new-generation topoisomerase inhibitors using in silico molecular docking approach. The recent episodes of parasite resistance against artemisinin, the only effective antimalarial drug at present, further highlight the significance of investigating new drug targets including topoisomerases in antimalarial therapeutics.
Collapse
Affiliation(s)
- Ashraf Dar
- Department of Biochemistry, University of Kashmir, Srinagar, 190006, India.
| | - Priya Godara
- Central University of Rajasthan, Ajmer, Rajasthan, India
| | | | - Masarat Bashir
- COTS, Sheri-Kashmir University of Agricultural Sciences and Technology, Mirgund, Srinagar, India
| |
Collapse
|
2
|
Singh P, Tabassum W, Fangaria N, Dey S, Padhi S, Bhattacharyya MK, Arun Kumar K, Roy A, Bhattacharyya S. Plasmodium Topoisomerase VIB and Spo11 Constitute Functional Type IIB Topoisomerase in Malaria Parasite: Its Possible Role in Mitochondrial DNA Segregation. Microbiol Spectr 2023; 11:e0498022. [PMID: 37212694 PMCID: PMC10269783 DOI: 10.1128/spectrum.04980-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/07/2023] [Indexed: 05/23/2023] Open
Abstract
The human malaria parasite undergoes a noncanonical cell division, namely, endoreduplication, where several rounds of nuclear, mitochondrial, and apicoplast replication occur without cytoplasmic division. Despite its importance in Plasmodium biology, the topoisomerases essential for decatenation of replicated chromosome during endoreduplication remain elusive. We hypothesize that the topoisomerase VI complex, containing Plasmodium falciparum topiosomerase VIB (PfTopoVIB) and catalytic P. falciparum Spo11 (PfSpo11), might be involved in the segregation of the Plasmodium mitochondrial genome. Here, we demonstrate that the putative PfSpo11 is the functional ortholog of yeast Spo11 that can complement the sporulation defects of the yeast Δspo11 strain, and the catalytic mutant Pfspo11Y65F cannot complement such defects. PfTopoVIB and PfSpo11 display a distinct expression pattern compared to the other type II topoisomerases of Plasmodium and are induced specifically at the late schizont stage of the parasite, when the mitochondrial genome segregation occurs. Furthermore, PfTopoVIB and PfSpo11 are physically associated with each other at the late schizont stage, and both subunits are localized in the mitochondria. Using PfTopoVIB- and PfSpo11-specific antibodies, we immunoprecipitated the chromatin of tightly synchronous early, mid-, and late schizont stage-specific parasites and found that both the subunits are associated with the mitochondrial genome during the late schizont stage of the parasite. Furthermore, PfTopoVIB inhibitor radicicol and atovaquone show synergistic interaction. Accordingly, atovaquone-mediated disruption of mitochondrial membrane potential reduces the import and recruitment of both subunits of PfTopoVI to mitochondrial DNA (mtDNA) in a dose-dependent manner. The structural differences between PfTopoVIB and human TopoVIB-like protein could be exploited for development of a novel antimalarial agent. IMPORTANCE This study demonstrates a likely role of topoisomerase VI in the mitochondrial genome segregation of Plasmodium falciparum during endoreduplication. We show that PfTopoVIB and PfSpo11 remain associated and form the functional holoenzyme within the parasite. The spatiotemporal expression of both subunits of PfTopoVI correlates well with their recruitment to the mitochondrial DNA at the late schizont stage of the parasite. Additionally, the synergistic interaction between PfTopoVI inhibitor and the disruptor of mitochondrial membrane potential, atovaquone, supports that topoisomerase VI is the mitochondrial topoisomerase of the malaria parasite. We propose that topoisomerase VI may act as a novel target against malaria.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Wahida Tabassum
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Nupur Fangaria
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sandeep Dey
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Siladitya Padhi
- TCS Research-Hyderabad (Life Sciences Division), Tata Consultancy Services Limited, Hyderabad, India
| | - Mrinal K. Bhattacharyya
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Kota Arun Kumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Arijit Roy
- TCS Research-Hyderabad (Life Sciences Division), Tata Consultancy Services Limited, Hyderabad, India
| | - Sunanda Bhattacharyya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
3
|
Abstract
Malaria remains a significant threat to global health, and despite concerted efforts to curb the disease, malaria-related morbidity and mortality increased in recent years. Malaria is caused by unicellular eukaryotes of the genus Plasmodium, and all clinical manifestations occur during asexual proliferation of the parasite inside host erythrocytes. In the blood stage, Plasmodium proliferates through an unusual cell cycle mode called schizogony. Contrary to most studied eukaryotes, which divide by binary fission, the parasite undergoes several rounds of DNA replication and nuclear division that are not directly followed by cytokinesis, resulting in multinucleated cells. Moreover, despite sharing a common cytoplasm, these nuclei multiply asynchronously. Schizogony challenges our current models of cell cycle regulation and, at the same time, offers targets for therapeutic interventions. Over the recent years, the adaptation of advanced molecular and cell biological techniques have given us deeper insight how DNA replication, nuclear division, and cytokinesis are coordinated. Here, we review our current understanding of the chronological events that characterize the unusual cell division cycle of P. falciparum in the clinically relevant blood stage of infection.
Collapse
|
4
|
Lamba S, Roy A. DNA Topoisomerases in the Unicellular Protozoan Parasites: Unwinding the Mystery. Biochem Pharmacol 2022; 203:115158. [PMID: 35780829 DOI: 10.1016/j.bcp.2022.115158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
Abstract
DNA topoisomerases are a group of enzymes present ubiquitously in all organisms from unicellular protozoan parasites to humans. These enzymes control the topological problems caused by DNA double helix in the cell during nucleic acid metabolism. Certain types of topoisomerases present in unicellular parasites are quite different from human topoisomerases (hTop) concerning structure, expression, and function. Many protozoan parasites causing fatal diseases have DNA topoisomerases, which play vital roles in their survival. Given the fact that the structures of the protozoan parasite topoisomerases are different from humans, DNA topoisomerase acts as an essential target for potent drug development for parasitic diseases. Moreover, various studies revealed the therapeutic potential of these drugs targeting the parasitic topoisomerases. Therefore, the characterization of parasitic topoisomerases is pivotal for the development of future potential drug targets. Considering the importance of this ubiquitous enzyme as a potential drug target, we describe in detail all the reported protozoan topoisomerases in an organized manner including Leishmania, Trypanosoma, Plasmodium, Giardia, Entamoeba, Babesia, Theileria, Crithidia, Cryptosporidium, Toxoplasma, etc. This review highlights the unique attributes associated with the structure and function of different types of DNA topoisomerases from the unicellular protozoan parasites. So, it would be beneficial for researchers to obtain awareness about the currently characterized topoisomerases and the ones that need better characterization, understand the structure-function relationship of parasitic topoisomerases, to develop the potent anti-parasitic drugs, and also provides a future platform for therapeutic development.
Collapse
Affiliation(s)
- Swati Lamba
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune-411007, India
| | - Amit Roy
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune-411007, India.
| |
Collapse
|
5
|
A tale of topoisomerases and the knotty genetic material in the backdrop of Plasmodium biology. Biosci Rep 2022; 42:231351. [PMID: 35699968 PMCID: PMC9261774 DOI: 10.1042/bsr20212847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
The untangling or overwinding of genetic material is an inevitable part of DNA
replication, repair, recombination, and transcription. Topoisomerases belong to
a conserved enzyme family that amends DNA topology during various processes of
DNA metabolism. To relax the genetic material, topoisomerases transiently break
the phosphodiester bond on one or both DNA strands and remain associated with
the cleavage site by forming a covalent enzyme–DNA intermediate. This
releases torsional stress and allows the broken DNA to be re-ligated by the
enzyme. The biological function of topoisomerases ranges from the separation of
sister chromatids following DNA replication to the aiding of chromosome
condensation and segregation during mitosis. Topoisomerases are also actively
involved in meiotic recombination. The unicellular apicomplexan parasite,
Plasmodium falciparum, harbors different topoisomerase
subtypes, some of which have substantially different sequences and functions
from their human counterparts. This review highlights the biological function of
each identified Plasmodium topoisomerase along with a
comparative analysis of their orthologs in human or other model organisms. There
is also a focus on recent advancements towards the development of topoisomerase
chemical inhibitors, underscoring the druggability of unique topoisomerase
subunits that are absent in humans. Plasmodium harbors three
distinct genomes in the nucleus, apicoplast, and mitochondria, respectively, and
undergoes non-canonical cell division during the schizont stage of development.
This review emphasizes the specific developmental stages of
Plasmodium on which future topoisomerase research should
focus.
Collapse
|
6
|
Abstract
The homologous recombination (HR) pathway has been implicated as the predominant mechanism for the repair of chromosomal DNA double-strand breaks (DSBs) of the malarial parasite. Although the extrachromosomal mitochondrial genome of this parasite experiences a greater number of DSBs due to its close proximity to the electron transport chain, nothing is known about the proteins involved in the repair of the mitochondrial genome. We investigated the involvement of nucleus-encoded HR proteins in the repair of the mitochondrial genome, as this genome does not code for any DNA repair proteins. Here, we provide evidence that the nucleus-encoded "recombinosome" of the parasite is also involved in mitochondrial genome repair. First, two crucial HR proteins, namely, Plasmodium falciparum Rad51 (PfRad51) and P. falciparum Bloom helicase (PfBlm) are located in the mitochondria. They are recruited to the mitochondrial genome at the schizont stage, a stage that is prone to DSBs due to exposure to various endogenous and physiologic DNA-damaging agents. Second, the recruitment of these two proteins to the damaged mitochondrial genome coincides with the DNA repair kinetics. Moreover, both the proteins exit the mitochondrial DNA (mtDNA) once the genome is repaired. Most importantly, the specific chemical inhibitors of PfRad51 and PfBlm block the repair of UV-induced DSBs of the mitochondrial genome. Additionally, overexpression of these two proteins resulted in a kinetically faster repair. Given the essentiality of the mitochondrial genome, blocking its repair by inhibiting the HR pathway could offer a novel strategy for curbing malaria. IMPORTANCE The impact of malaria on global public health and the world economy continues to surge despite decades of vaccine research and drug development efforts. An alarming rise in resistance toward all the commercially available antimalarial drugs and the lack of an effective malaria vaccine brings us to the urge to identify novel intervention strategies for curbing malaria. Here, we uncover the molecular mechanism behind the repair of the most deleterious form of DNA lesions on the parasitic mitochondrial genome. Given that the single-copy mitochondrion is an indispensable organelle of the malaria parasite, we propose that targeting the mitochondrial DNA repair pathways should be exploited as a potential malaria control strategy. The establishment of the parasitic homologous recombination machinery as the predominant repair mechanism of the mitochondrial DNA double-strand breaks underscores the importance of this pathway as a novel druggable target.
Collapse
|