1
|
Ehret E, Stroh S, Auberson M, Ino F, Jäger Y, Maillard M, Szabo R, Bugge TH, Frateschi S, Hummler E. Kidney-Specific Membrane-Bound Serine Proteases CAP1/Prss8 and CAP3/St14 Affect ENaC Subunit Abundances but Not Its Activity. Cells 2023; 12:2342. [PMID: 37830556 PMCID: PMC10572026 DOI: 10.3390/cells12192342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
The serine proteases CAP1/Prss8 and CAP3/St14 are identified as ENaC channel-activating proteases in vitro, highly suggesting that they are required for proteolytic activation of ENaC in vivo. The present study tested whether CAP3/St14 is relevant for renal proteolytic ENaC activation and affects ENaC-mediated Na+ absorption following Na+ deprivation conditions. CAP3/St14 knockout mice exhibit a significant decrease in CAP1/Prss8 protein expression with altered ENaC subunit and decreased pNCC protein abundances but overall maintain sodium balance. RNAscope-based analyses reveal co-expression of CAP3/St14 and CAP1/Prss8 with alpha ENaC in distal tubules of the cortex from wild-type mice. Double CAP1/Prss8; CAP3/St14-deficiency maintained Na+ and K+ balance on a Na+-deprived diet, restored ENaC subunit protein abundances but showed reduced NCC activity under Na+ deprivation. Overall, our data clearly show that CAP3/St14 is not required for direct proteolytic activation of ENaC but for its protein abundance. Our study reveals a complex regulation of ENaC by these serine proteases on the expression level rather than on its proteolytic activation.
Collapse
Affiliation(s)
- Elodie Ehret
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (E.E.)
- National Center of Competence in Research “Kidney.CH”, 1011 Lausanne, Switzerland
| | - Sévan Stroh
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (E.E.)
| | - Muriel Auberson
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (E.E.)
| | - Frédérique Ino
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (E.E.)
- Department of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Yannick Jäger
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (E.E.)
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Marc Maillard
- Service of Nephrology, Department of Medicine, Lausanne University Hospital (CHUV), 1005 Lausanne, Switzerland
| | - Roman Szabo
- National Institutes of Health/NIDCR, Bethesda, MD 20892, USA
| | - Thomas H. Bugge
- National Institutes of Health/NIDCR, Bethesda, MD 20892, USA
| | - Simona Frateschi
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (E.E.)
| | - Edith Hummler
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (E.E.)
- National Center of Competence in Research “Kidney.CH”, 1011 Lausanne, Switzerland
| |
Collapse
|
2
|
Lu DD, Huang N, Li SWA, Fang JR, Lai CH, Wang JK, Chan KS, Johnson MD, Lin CY. HAI-1 is required for the novel role of FGFBP1 in maintenance of cell morphology and F-actin rearrangement in human keratinocytes. Hum Cell 2023:10.1007/s13577-023-00906-6. [PMID: 37076641 DOI: 10.1007/s13577-023-00906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/31/2023] [Indexed: 04/21/2023]
Abstract
Formation and maintenance of skin barrier function require tightly controlled membrane-associated proteolysis, in which the integral membrane Kunitz-type serine protease inhibitor, HAI-1, functions as the primary inhibitor of the membrane-associated serine proteases, matriptase and prostasin. Previously, HAI-1 loss in HaCaT human keratinocytes resulted in an expected increase in prostasin proteolysis but a paradoxical decrease in matriptase proteolysis. The paradoxical decrease in shed active matriptase is further investigated in this study with an unexpected discovery of novel functions of fibroblast growth factor-binding protein 1 (FGFBP1), which acts as an extracellular ligand that can rapidly elicit F-actin rearrangement and subsequently affect the morphology of human keratinocytes. This novel growth factor-like function is in stark contrast to the canonical activity of this protein through interactions with FGFs for its pathophysiological functions. This discovery began with the observation that HAI-1 KO HaCaT cells lose the characteristic cobblestone morphology of the parental cells and exhibit aberrant F-actin formation along with altered subcellular targeting of matriptase and HAI-2. The alterations in cell morphology and F-actin status caused by targeted HAI-1 deletion can be restored by treatment with conditioned medium from parental HaCaT cells, in which FGFBP1 was identified by tandem mass spectrometry. Recombinant FGFBP1 down to 1 ng/ml was able to revert the changes caused by HAI-1 loss. Our study reveals a novel function of FGFBP1 in the maintenance of keratinocyte morphology, which depends on HAI-1.
Collapse
Affiliation(s)
- Dajun D Lu
- Lombardi Comprehensive Cancer Center, Department of Oncology, W422 Research Building, Georgetown University, W416 Research Building, 3970 Reservoir Road, NW, Washington, DC, 20057, USA
| | - Nanxi Huang
- Lombardi Comprehensive Cancer Center, Department of Oncology, W422 Research Building, Georgetown University, W416 Research Building, 3970 Reservoir Road, NW, Washington, DC, 20057, USA
| | - Sheng-Wen A Li
- School of Medicine National Defense Medical Center, Taipei, 114, Taiwan
| | - Jessica R Fang
- , Winston Churchill High School, Potomac, MD, 20854, USA
| | - Chih-Hsin Lai
- Department of Dentistry Renai Branch, Taipei City Hospital, Taipei, 106, Taiwan
| | - Jehng-Kang Wang
- Department of Biochemistry, National Defense Medical Center, Taipei, 114, Taiwan
| | - Khee-Siang Chan
- Department of Intensive Care Medicine, Chi Mei Medical Center, No.901, Chung-Hwa Road, Yung-Kang District, Tainan City, 71004, Taiwan.
| | - Michael D Johnson
- Lombardi Comprehensive Cancer Center, Department of Oncology, W422 Research Building, Georgetown University, W416 Research Building, 3970 Reservoir Road, NW, Washington, DC, 20057, USA.
| | - Chen-Yong Lin
- Lombardi Comprehensive Cancer Center, Department of Oncology, W422 Research Building, Georgetown University, W416 Research Building, 3970 Reservoir Road, NW, Washington, DC, 20057, USA.
| |
Collapse
|
3
|
Nonboe AW, Bald ZH, Vogel LK. Understanding HAIs: Ally proteins in the fight against cancer. FEBS J 2022; 289:3416-3418. [PMID: 35220685 PMCID: PMC9305204 DOI: 10.1111/febs.16399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/25/2022] [Accepted: 02/15/2022] [Indexed: 11/30/2022]
Abstract
Understanding how HAI‐1 and HAI‐2 regulate the epithelial serine protease matriptase may hold the key to curing epithelial‐derived cancer. HAIs are serine protease inhibitors that inhibit matriptase and have a poorly understood effect on the presence of matriptase protein in cells. In this issue of The FEBS Journal, Yamashita et al. provide much‐needed new insights into this effect, describing it as a ‘chaperone‐like function’ of HAI‐1. However, several observations suggest that matriptase folds correctly without HAIs and that HAIs are not chaperones. We introduce the concept of ‘ally proteins’ to categorize the poorly understood function of HAIs, distinguishing them from chaperones. Comment on: https://doi.org/10.1111/febs.16348
Collapse
Affiliation(s)
- Annika W. Nonboe
- Department of Cellular and Molecular Medicine Faculty of Health and Medical Sciences University of Copenhagen Denmark
| | - Zuzanna H. Bald
- Department of Cellular and Molecular Medicine Faculty of Health and Medical Sciences University of Copenhagen Denmark
| | - Lotte K. Vogel
- Department of Cellular and Molecular Medicine Faculty of Health and Medical Sciences University of Copenhagen Denmark
| |
Collapse
|