1
|
Cohen BE. The Role of the Swollen State in Cell Proliferation. J Membr Biol 2024:10.1007/s00232-024-00328-x. [PMID: 39482485 DOI: 10.1007/s00232-024-00328-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024]
Abstract
Cell swelling is known to be involved in various stages of the growth of plant cells and microorganisms but in mammalian cells how crucial a swollen state is for determining the fate of the cellular proliferation remains unclear. Recent evidence has increased our understanding of how the loss of the cell surface interactions with the extracellular matrix at early mitosis decreases the membrane tension triggering curvature changes in the plasma membrane and the activation of the sodium/hydrogen (Na +/H +) exchanger (NHE1) that drives osmotic swelling. Such a swollen state is temporary, but it is critical to alter essential membrane biophysical parameters that are required to activate Ca2 + channels and modulate the opening of K + channels involved in setting the membrane potential. A decreased membrane potential across the mitotic cell membrane enhances the clustering of Ras proteins involved in the Ca2 + and cytoskeleton-driven events that lead to cell rounding. Changes in the external mechanical and osmotic forces also have an impact on the lipid composition of the plasma membrane during mitosis.
Collapse
|
2
|
Zalivina I, Barwari T, Yin X, Langley SR, Barallobre-Barreiro J, Wakimoto H, Zampetaki A, Mayr M, Avkiran M, Eminaga S. Inhibition of miR-199a-3p in a murine hypertrophic cardiomyopathy (HCM) model attenuates fibrotic remodeling. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 6:100056. [PMID: 38143961 PMCID: PMC10739604 DOI: 10.1016/j.jmccpl.2023.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
Background Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic disorder, characterized by cardiomyocyte hypertrophy, cardiomyocyte disarray and fibrosis, which has a prevalence of ∼1: 200-500 and predisposes individuals to heart failure and sudden death. The mechanisms through which diverse HCM-causing mutations cause cardiac dysfunction remain mostly unknown and their identification may reveal new therapeutic avenues. MicroRNAs (miRNAs) have emerged as critical regulators of gene expression and disease phenotype in various pathologies. We explored whether miRNAs could play a role in HCM pathogenesis and offer potential therapeutic targets. Methods and results Using high-throughput miRNA expression profiling and qPCR analysis in two distinct mouse models of HCM, we found that miR-199a-3p expression levels are upregulated in mutant mice compared to age- and treatment-matched wild-type mice. We also found that miR-199a-3p expression is enriched in cardiac non-myocytes compared to cardiomyocytes. When we expressed miR-199a-3p mimic in cultured murine primary cardiac fibroblasts and analyzed the conditioned media by proteomics, we found that several extracellular matrix (ECM) proteins (e.g., TSP2, FBLN3, COL11A1, LYOX) were differentially secreted (data are available via ProteomeXchange with identifier PXD042904). We confirmed our proteomics findings by qPCR analysis of selected mRNAs and demonstrated that miR-199a-3p mimic expression in cardiac fibroblasts drives upregulation of ECM gene expression, including Tsp2, Fbln3, Pcoc1, Col1a1 and Col3a1. To examine the role of miR-199a-3p in vivo, we inhibited its function using lock-nucleic acid (LNA)-based inhibitors (antimiR-199a-3p) in an HCM mouse model. Our results revealed that progression of cardiac fibrosis is attenuated when miR-199a-3p function is inhibited in mild-to-moderate HCM. Finally, guided by computational target prediction algorithms, we identified mRNAs Cd151 and Itga3 as direct targets of miR-199a-3p and have shown that miR-199a-3p mimic expression negatively regulates AKT activation in cardiac fibroblasts. Conclusions Altogether, our results suggest that miR-199a-3p may contribute to cardiac fibrosis in HCM through its actions in cardiac fibroblasts. Thus, inhibition of miR-199a-3p in mild-to-moderate HCM may offer therapeutic benefit in combination with complementary approaches that target the primary defect in cardiac myocytes.
Collapse
Affiliation(s)
- Irina Zalivina
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Temo Barwari
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Xiaoke Yin
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Sarah R. Langley
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Zampetaki
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Manuel Mayr
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Metin Avkiran
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Seda Eminaga
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| |
Collapse
|
3
|
Zhang D, Chen X, Liu B, Yuan Y, Cui W, Zhu D, Zhu J, Duan S, Li C. The Temporal and Spatial Changes of Autophagy and PI3K Isoforms in Different Neural Cells After Hypoxia/Reoxygenation Injury. Mol Neurobiol 2023; 60:5366-5377. [PMID: 37316758 DOI: 10.1007/s12035-023-03421-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
There are limited therapeutic options for patient with traumatic spinal cord injury (SCI). Phosphoinositide 3-kinase family (PI3Ks) are the key molecules for regulating cell autophagy, which is a possible way of treating SCI. As we know, PI3K family are composed of eight isoforms, which are distributed into three classes. While the role of PI3Ks in regulating autophagy is controversial and the effects may be in a cell-specific manner. Different isoforms do not distribute in neural cells consistently and it is not clear how the PI3K isoforms regulate and interact with autophagy. Therefore, we explored the distributions and expression of different PI3K isoforms in two key neural cells (PC12 cells and astrocytes). The results showed that the expression of LC3II/I and p62, which are the markers of autophagy, changed in different patterns in PC12 cells and astrocytes after hypoxia/reoxygenation injury (H/R). Furthermore, the mRNA level of eight PI3K isoforms did not change in the same way, and even for the same isoform the mRNA activities are different between PC12 cells and astrocytes. What is more, the results of western blot of PI3K isoforms after H/R were inconsistent with the relevant mRNA. Based on this study, the therapeutic effects of regulating autophagy on SCI are not confirmed definitely, and its molecular mechanisms may be related with different temporal and spatial patterns of activation and distributions of PI3K isoforms.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xuanyu Chen
- Department of Orthopedics, Capital Medical University Electric Power Hospital, Beijing, 100073, China
| | - Baoge Liu
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Yuan Yuan
- Department of Spinal Cord Injury Rehabilitation, China Rehabilitation Research Center, Beijing, 100068, China
| | - Wei Cui
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Di Zhu
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jichao Zhu
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Shuo Duan
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Chenxi Li
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| |
Collapse
|
4
|
Targeting Class I-II-III PI3Ks in Cancer Therapy: Recent Advances in Tumor Biology and Preclinical Research. Cancers (Basel) 2023; 15:cancers15030784. [PMID: 36765741 PMCID: PMC9913247 DOI: 10.3390/cancers15030784] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
Phosphatidylinositol-3-kinase (PI3K) enzymes, producing signaling phosphoinositides at plasma and intracellular membranes, are key in intracellular signaling and vesicular trafficking pathways. PI3K is a family of eight enzymes divided into three classes with various functions in physiology and largely deregulated in cancer. Here, we will review the recent evidence obtained during the last 5 years on the roles of PI3K class I, II and III isoforms in tumor biology and on the anti-tumoral action of PI3K inhibitors in preclinical cancer models. The dependency of tumors to PI3K isoforms is dictated by both genetics and context (e.g., the microenvironment). The understanding of class II/III isoforms in cancer development and progression remains scarce. Nonetheless, the limited available data are consistent and reveal that there is an interdependency between the pathways controlled by all PI3K class members in their role to promote cancer cell proliferation, survival, growth, migration and metabolism. It is unknown whether this feature contributes to partial treatment failure with isoform-selective PI3K inhibitors. Hence, a better understanding of class II/III functions to efficiently inhibit their positive and negative interactions with class I PI3Ks is needed. This research will provide the proof-of-concept to develop combination treatment strategies targeting several PI3K isoforms simultaneously.
Collapse
|
5
|
Application of Caenorhabditis elegans in Lipid Metabolism Research. Int J Mol Sci 2023; 24:ijms24021173. [PMID: 36674689 PMCID: PMC9860639 DOI: 10.3390/ijms24021173] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Over the last decade, the development and prevalence of obesity have posed a serious public health risk, which has prompted studies on the regulation of adiposity. With the ease of genetic manipulation, the diversity of the methods for characterizing body fat levels, and the observability of feeding behavior, Caenorhabditis elegans (C. elegans) is considered an excellent model for exploring energy homeostasis and the regulation of the cellular fat storage. In addition, the homology with mammals in the genes related to the lipid metabolism allows many aspects of lipid modulation by the regulators of the central nervous system to be conserved in this ideal model organism. In recent years, as the complex network of genes that maintain an energy balance has been gradually expanded and refined, the regulatory mechanisms of lipid storage have become clearer. Furthermore, the development of methods and devices to assess the lipid levels has become a powerful tool for studies in lipid droplet biology and the regulation of the nematode lipid metabolism. Herein, based on the rapid progress of C. elegans lipid metabolism-related studies, this review outlined the lipid metabolic processes, the major signaling pathways of fat storage regulation, and the primary experimental methods to assess the lipid content in nematodes. Therefore, this model system holds great promise for facilitating the understanding, management, and therapies of human obesity and other metabolism-related diseases.
Collapse
|
6
|
Xu W, Berning P, Erdmann T, Grau M, Bettazová N, Zapukhlyak M, Frontzek F, Kosnopfel C, Lenz P, Grondine M, Willis B, Lynch JT, Klener P, Hailfinger S, Barry ST, Lenz G. mTOR inhibition amplifies the anti-lymphoma effect of PI3Kβ/δ blockage in diffuse large B-cell lymphoma. Leukemia 2023; 37:178-189. [PMID: 36352190 PMCID: PMC9883168 DOI: 10.1038/s41375-022-01749-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive disease that exhibits constitutive activation of phosphoinositide 3-kinase (PI3K) driven by chronic B-cell receptor signaling or PTEN deficiency. Since pan-PI3K inhibitors cause severe side effects, we investigated the anti-lymphoma efficacy of the specific PI3Kβ/δ inhibitor AZD8186. We identified a subset of DLBCL models within activated B-cell-like (ABC) and germinal center B-cell-like (GCB) DLBCL that were sensitive to AZD8186 treatment. On the molecular level, PI3Kβ/δ inhibition decreased the pro-survival NF-κB and AP-1 activity or led to downregulation of the oncogenic transcription factor MYC. In AZD8186-resistant models, we detected a feedback activation of the PI3K/AKT/mTOR pathway following PI3Kβ/δ inhibition, which limited AZD8186 efficacy. The combined treatment with AZD8186 and the mTOR inhibitor AZD2014 overcame resistance to PI3Kβ/δ inhibition and completely prevented outgrowth of lymphoma cells in vivo in cell line- and patient-derived xenograft mouse models. Collectively, our study reveals that subsets of DLBCLs are addicted to PI3Kβ/δ signaling and thus identifies a previously unappreciated role of the PI3Kβ isoform in DLBCL survival. Furthermore, our data demonstrate that combined targeting of PI3Kβ/δ and mTOR is effective in all major DLBCL subtypes supporting the evaluation of this strategy in a clinical trial setting.
Collapse
Affiliation(s)
- Wendan Xu
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Philipp Berning
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Tabea Erdmann
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Michael Grau
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Nardjas Bettazová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Myroslav Zapukhlyak
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Fabian Frontzek
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Corinna Kosnopfel
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Peter Lenz
- Department of Physics, University of Marburg, Marburg, Germany
- LOEWE Center for Synthetic Microbiology, Marburg, Germany
| | | | - Brandon Willis
- Bioscience, Early Oncology, AstraZeneca, Boston, MA, USA
| | - James T Lynch
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Internal Medicine - Department of Hematology, University General Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stephan Hailfinger
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Georg Lenz
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany.
| |
Collapse
|
7
|
Brosinsky P, Bornbaum J, Warga B, Schulz L, Schlüter KD, Ghigo A, Hirsch E, Schulz R, Euler G, Heger J. PI3K as Mediator of Apoptosis and Contractile Dysfunction in TGFβ 1-Stimulated Cardiomyocytes. BIOLOGY 2021; 10:biology10070670. [PMID: 34356525 PMCID: PMC8301398 DOI: 10.3390/biology10070670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND TGFβ1 is a growth factor that plays a major role in the remodeling process of the heart by inducing cardiomyocyte dysfunction and apoptosis, as well as fibrosis thereby restricting heart function. TGFβ1 mediates its effect via the TGFβ receptor I (ALK5) and the activation of SMAD transcription factors, but TGFβ1 is also known as activator of phosphoinositide-3-kinase (PI3K) via the non-SMAD signaling pathway. The aim of this study was to investigate whether PI3K is also involved in TGFβ1-induced cardiomyocytes apoptosis and contractile dysfunction. METHODS AND RESULTS Incubation of isolated ventricular cardiomyocytes with TGFβ1 resulted in impaired contractile function. Pre-incubation of cells with the PI3K inhibitor Ly294002 or the ALK5 inhibitor SB431542 attenuated the decreased cell shortening in TGFβ1-stimulated cells. Additionally, TGFβ-induced apoptosis was significantly reduced by the PI3K inhibitor Ly294002. Administration of a PI3Kγ-specific inhibitor AS605240 abolished the TGFβ effect on apoptosis and cell shortening. This was also confirmed in cardiomyocytes from PI3Kγ KO mice. Induction of SMAD binding activity and the TGFβ target gene collagen 1 could be blocked by the PI3K inhibitor Ly294002, but not by the specific PI3Kγ inhibitor AS605240. CONCLUSIONS TGFβ1-induced SMAD activation, cardiomyocyte apoptosis, and impaired cell shortening are mediated via both, the ALK5 receptor and PI3K, in adult cardiomyocytes. PI3Kγ specifically contributes to apoptosis induction and impairment of contractile function independent of SMAD signaling.
Collapse
Affiliation(s)
- Paulin Brosinsky
- Institute of Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (P.B.); (J.B.); (B.W.); (L.S.); (K.-D.S.); (R.S.); (G.E.)
| | - Julia Bornbaum
- Institute of Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (P.B.); (J.B.); (B.W.); (L.S.); (K.-D.S.); (R.S.); (G.E.)
| | - Björn Warga
- Institute of Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (P.B.); (J.B.); (B.W.); (L.S.); (K.-D.S.); (R.S.); (G.E.)
| | - Lisa Schulz
- Institute of Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (P.B.); (J.B.); (B.W.); (L.S.); (K.-D.S.); (R.S.); (G.E.)
| | - Klaus-Dieter Schlüter
- Institute of Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (P.B.); (J.B.); (B.W.); (L.S.); (K.-D.S.); (R.S.); (G.E.)
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy; (A.G.); (E.H.)
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy; (A.G.); (E.H.)
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (P.B.); (J.B.); (B.W.); (L.S.); (K.-D.S.); (R.S.); (G.E.)
| | - Gerhild Euler
- Institute of Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (P.B.); (J.B.); (B.W.); (L.S.); (K.-D.S.); (R.S.); (G.E.)
| | - Jacqueline Heger
- Institute of Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (P.B.); (J.B.); (B.W.); (L.S.); (K.-D.S.); (R.S.); (G.E.)
- Correspondence: ; Tel.: +49-641-99-47215
| |
Collapse
|
8
|
Di-Luoffo M, Ben-Meriem Z, Lefebvre P, Delarue M, Guillermet-Guibert J. PI3K functions as a hub in mechanotransduction. Trends Biochem Sci 2021; 46:878-888. [PMID: 34112586 DOI: 10.1016/j.tibs.2021.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/22/2021] [Accepted: 05/12/2021] [Indexed: 01/18/2023]
Abstract
Mammalian cells integrate different types of stimuli that govern their fate. These stimuli encompass biochemical as well as biomechanical cues (shear, tensile, and compressive stresses) that are usually studied separately. The phosphatidylinositol 3-kinase (PI3K) enzymes, producing signaling phosphoinositides at plasma and intracellular membranes, are key in intracellular signaling and vesicular trafficking pathways. Recent evidence in cancer research demonstrates that these enzymes are essential in mechanotransduction. Despite this, the importance of the integration of biomechanical cues and PI3K-driven biochemical signals is underestimated. In this opinion article, we make the hypothesis that modeling of biomechanical cues is critical to understand PI3K oncogenicity. We also identify known/missing knowledge in terms of isoform specificity and molecular pathways of activation, knowledge that is needed for clinical applications.
Collapse
Affiliation(s)
- M Di-Luoffo
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (Inserm) U1037, Centre National de la Recherche Scientifique (CNRS) U5071, Toulouse, France; Laboratoire D'analyse et D'architectures Des Systems (LAAS)-CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| | - Z Ben-Meriem
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (Inserm) U1037, Centre National de la Recherche Scientifique (CNRS) U5071, Toulouse, France; Laboratoire D'analyse et D'architectures Des Systems (LAAS)-CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| | - P Lefebvre
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (Inserm) U1037, Centre National de la Recherche Scientifique (CNRS) U5071, Toulouse, France; Laboratoire D'analyse et D'architectures Des Systems (LAAS)-CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| | - M Delarue
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (Inserm) U1037, Centre National de la Recherche Scientifique (CNRS) U5071, Toulouse, France; Laboratoire D'analyse et D'architectures Des Systems (LAAS)-CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| | - J Guillermet-Guibert
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (Inserm) U1037, Centre National de la Recherche Scientifique (CNRS) U5071, Toulouse, France; TouCAN (Laboratoire d'Excellence Toulouse Cancer), Toulouse, France.
| |
Collapse
|