1
|
Girondé A, Poret M, Etienne P, Trouverie J, Bouchereau A, Le Cahérec F, Leport L, Niogret MF, Avice JC. A Comparative Study of Proteolytic Mechanisms during Leaf Senescence of Four Genotypes of Winter Oilseed Rape Highlighted Relevant Physiological and Molecular Traits for NRE Improvement. PLANTS (BASEL, SWITZERLAND) 2015; 5:E1. [PMID: 27135221 PMCID: PMC4844419 DOI: 10.3390/plants5010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/07/2015] [Accepted: 12/14/2015] [Indexed: 11/21/2022]
Abstract
Winter oilseed rape is characterized by a low N use efficiency related to a weak leaf N remobilization efficiency (NRE) at vegetative stages. By investigating the natural genotypic variability of leaf NRE, our goal was to characterize the relevant physiological traits and the main protease classes associated with an efficient proteolysis and high leaf NRE in response to ample or restricted nitrate supply. The degradation rate of soluble proteins and D1 protein (a thylakoid-bound protein) were correlated to N remobilization, except for the genotype Samouraï which showed a low NRE despite high levels of proteolysis. Under restricted nitrate conditions, high levels of soluble protein degradation were associated with serine, cysteine and aspartic proteases at acidic pH. Low leaf NRE was related to a weak proteolysis of both soluble and thylakoid-bound proteins. The results obtained on the genotype Samouraï suggest that the timing between the onset of proteolysis and abscission could be a determinant. The specific involvement of acidic proteases suggests that autophagy and/or senescence-associated vacuoles are implicated in N remobilization under low N conditions. The data revealed that the rate of D1 degradation could be a relevant indicator of leaf NRE and might be used as a tool for plant breeding.
Collapse
Affiliation(s)
- Alexandra Girondé
- UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., Université de Caen Normandie, F-14032 Caen, France.
| | - Marine Poret
- UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., Université de Caen Normandie, F-14032 Caen, France.
| | - Philippe Etienne
- UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., Université de Caen Normandie, F-14032 Caen, France.
| | - Jacques Trouverie
- UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., Université de Caen Normandie, F-14032 Caen, France.
| | - Alain Bouchereau
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, Agrocampus Ouest, Université de Rennes 1, F-35653 Le Rheu, France.
| | - Françoise Le Cahérec
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, Agrocampus Ouest, Université de Rennes 1, F-35653 Le Rheu, France.
| | - Laurent Leport
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, Agrocampus Ouest, Université de Rennes 1, F-35653 Le Rheu, France.
| | - Marie-Françoise Niogret
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, Agrocampus Ouest, Université de Rennes 1, F-35653 Le Rheu, France.
| | - Jean-Christophe Avice
- UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., Université de Caen Normandie, F-14032 Caen, France.
| |
Collapse
|
2
|
Girondé A, Etienne P, Trouverie J, Bouchereau A, Le Cahérec F, Leport L, Orsel M, Niogret MF, Nesi N, Carole D, Soulay F, Masclaux-Daubresse C, Avice JC. The contrasting N management of two oilseed rape genotypes reveals the mechanisms of proteolysis associated with leaf N remobilization and the respective contributions of leaves and stems to N storage and remobilization during seed filling. BMC PLANT BIOLOGY 2015; 15:59. [PMID: 25848818 PMCID: PMC4384392 DOI: 10.1186/s12870-015-0437-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/23/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND Oilseed rape is the third largest oleaginous crop in the world but requires high levels of N fertilizer of which only 50% is recovered in seeds. This weak N use efficiency is associated with a low foliar N remobilization, leading to a significant return of N to the soil and a risk of pollution. Contrary to what is observed during senescence in the vegetative stages, N remobilization from stems and leaves is considered efficient during monocarpic senescence. However, the contribution of stems towards N management and the cellular mechanisms involved in foliar remobilization remain largely unknown. To reach this goal, the N fluxes at the whole plant level from bolting to mature seeds and the processes involved in leaf N remobilization and proteolysis were investigated in two contrasting genotypes (Aviso and Oase) cultivated under ample or restricted nitrate supply. RESULTS During seed filling in both N conditions, Oase efficiently allocated the N from uptake to seeds while Aviso favoured a better N remobilization from stems and leaves towards seeds. Nitrate restriction decreased seed yield and oil quality for both genotypes but Aviso had the best seed N filling. Under N limitation, Aviso had a better N remobilization from leaves to stems before the onset of seed filling. Afterwards, the higher N remobilization from stems and leaves of Aviso led to a higher final N amount in seeds. This high leaf N remobilization is associated with a better degradation/export of insoluble proteins, oligopeptides, nitrate and/or ammonia. By using an original method based on the determination of Rubisco degradation in the presence of inhibitors of proteases, efficient proteolysis associated with cysteine proteases and proteasome activities was identified as the mechanism of N remobilization. CONCLUSION The results confirm the importance of foliar N remobilization after bolting to satisfy seed filling and highlight that an efficient proteolysis is mainly associated with (i) cysteine proteases and proteasome activities and (ii) a fine coordination between proteolysis and export mechanisms. In addition, the stem may act as transient storage organs in the case of an asynchronism between leaf N remobilization and N demand for seed filling.
Collapse
Affiliation(s)
- Alexandra Girondé
- />Université de Caen Basse-Normandie, F-14032 Caen, France
- />UCBN, UMR INRA–UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., F-14032 Caen, France
- />INRA, UMR INRA–UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., F-14032 Caen, France
| | - Philippe Etienne
- />Université de Caen Basse-Normandie, F-14032 Caen, France
- />UCBN, UMR INRA–UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., F-14032 Caen, France
- />INRA, UMR INRA–UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., F-14032 Caen, France
| | - Jacques Trouverie
- />Université de Caen Basse-Normandie, F-14032 Caen, France
- />UCBN, UMR INRA–UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., F-14032 Caen, France
- />INRA, UMR INRA–UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., F-14032 Caen, France
| | - Alain Bouchereau
- />INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, F-35653 Le Rheu, France
| | - Françoise Le Cahérec
- />INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, F-35653 Le Rheu, France
| | - Laurent Leport
- />INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, F-35653 Le Rheu, France
| | - Mathilde Orsel
- />INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, F-35653 Le Rheu, France
- />UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAV, PRES L’UNAM, Université d’Angers, F-49045 Angers, France
- />UMR 1345 Institut de Recherche en Horticulture et Semences, AgroCampus-Ouest, F-49045 Angers, France
| | - Marie-Françoise Niogret
- />INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, F-35653 Le Rheu, France
| | - Nathalie Nesi
- />INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, F-35653 Le Rheu, France
| | - Deleu Carole
- />INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, F-35653 Le Rheu, France
| | - Fabienne Soulay
- />Département Adaptation des Plantes à l’Environnement, UMR 1318, INRA, Institut Jean-Pierre Bourgin, RD10, 78026 Versailles, Cedex France
| | - Céline Masclaux-Daubresse
- />Département Adaptation des Plantes à l’Environnement, UMR 1318, INRA, Institut Jean-Pierre Bourgin, RD10, 78026 Versailles, Cedex France
| | - Jean-Christophe Avice
- />Université de Caen Basse-Normandie, F-14032 Caen, France
- />UCBN, UMR INRA–UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., F-14032 Caen, France
- />INRA, UMR INRA–UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., F-14032 Caen, France
| |
Collapse
|
3
|
Guevara T, Mallorquí-Fernández N, García-Castellanos R, García-Piqué S, Ebert Petersen G, Lauritzen C, Pedersen J, Arnau J, Gomis-Rüth FX, Solà M. Papaya glutamine cyclotransferase shows a singular five-fold beta-propeller architecture that suggests a novel reaction mechanism. Biol Chem 2006; 387:1479-86. [PMID: 17081122 DOI: 10.1515/bc.2006.185] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cyclisation of N-terminal glutamine and/or glutamate to yield pyroglutamate is an essential posttranslational event affecting a plethora of bioactive peptides and proteins. It is directly linked with pathologies ranging from neurodegenerative diseases to inflammation and several types of cancers. The reaction is catalysed by ubiquitous glutaminyl cyclotransferases (QCs), which present two distinct prototypes. Mammalian QCs are zinc-dependent enzymes with an alpha/beta-hydrolase fold. Here we present the 1.6-A-resolution structure of the other prototype, the plant analogue from Carica papaya (PQC). The hatbox-shaped molecule consists of an unusual five-fold beta-propeller traversed by a central channel, a topology that has hitherto been described only for some sugar-binding proteins and an extracellular nucleotidase. The high resistance of the enzyme to denaturation and proteolytic degradation is explained by its architecture, which is uniquely stabilised by a series of tethering elements that confer rigidity. Strikingly, the N-terminus of PQC specifically interacts with residues around the entrance to the central channel of a symmetry-related molecule, suggesting that this location is the putative active site. Cyclisation would follow a novel general-acid/base working mechanism, pivoting around a strictly conserved glutamate. This study provides a lead structure not only for plant QC orthologues, but also for bacteria, including potential human pathogens causing diphtheria, plague and malaria.
Collapse
Affiliation(s)
- Tibisay Guevara
- Institut de Biologia Molecular de Barcelona, C.S.I.C., c/ Jordi Girona, 18-26, E-08034 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zerhouni S, Amrani A, Nijs M, Smolders N, Azarkan M, Vincentelli J, Looze Y. Purification and characterization of papaya glutamine cyclotransferase, a plant enzyme highly resistant to chemical, acid and thermal denaturation. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1387:275-90. [PMID: 9748628 DOI: 10.1016/s0167-4838(98)00140-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Papaya glutamine cyclotransferase (PQC), present in the laticiferous cells of the tropical species Carica papaya, was purified near to homogeneity. Starting from the soluble fraction of the collected plant latex, a combination of ion-exchange chromatography on SP-Sepharose Fast Flow, hydrophobic interaction chromatography on Fractogel TSK Butyl-650 and affinity chromatography on immobilized trypsin provided a purification factor of 279 with an overall yield of 80%. In the course of the purification procedure, the two solvent accessible thiol functions located on the hydrophobic surface of the enzyme were converted into their S-methylthioderivatives. Papaya QC, a glycoprotein with a molecular mass of 33000 Da, contains a unique and highly basic polypeptide chain devoid of disulfide bridges as well as of covalently attached phosphate groups. Its absorption spectrum is dominated by the chromophores tyrosine which, nonetheless, do not contribute to the fluorescence emission of the plant enzyme. With a lambdamax of emission at 338 nm and a moderate susceptibility to be quenched by acrylamide, most of the tryptophyl residues of papaya QC appear to be sterically shielded by surrounding protein atoms. Fluorescence can thus be used to monitor unfolding of this enzyme. Preliminary experiments show that papaya QC is exceptionally resistant to chemical (guanidinium hydrochloride), acid and thermal denaturation. At first sight also, this enzyme exhibits high resistance to proteolysis by the papaya cysteine proteinases, yet present in great excess (around 100 mol of proteinases per mol of PQC) in the plant latex. Altogether, these results awaken much curiosity and interest to further investigate how the structure of this plant enzyme is specified.
Collapse
Affiliation(s)
- S Zerhouni
- Protein Chemistry Department (CP 609), Faculty of Medicine, Free University of Brussels, Campus Erasme, Route de Lennik, 808, B-1070 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
9
|
Dehrmann FM, Elliott E, Dennison C. Reductive activation markedly increases the stability of cathepsins B and L to extracellular ionic conditions. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1996; 377:391-4. [PMID: 8839985 DOI: 10.1515/bchm3.1996.377.6.391] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cathepsins B and L are thought to function extracellularly in pathological conditions. pH-Activity profiles of cathepsin B, measured in phosphate and acetate-Mes-Tris buffers of constant ionic strength, indicated that cathepsin B is sensitive to specific buffer ions, as previously reported for cathepsin L. In assessing the activity of these enzymes in vitro the influence of the buffer must therefore be taken into account. In Hank's balanced salt solution, a buffer modeling the extracellular fluid, the half-life of activated human liver cathepsin B at 37 degrees C is 245 +/- 11.3 s, at pH 7.2, and 857 +/- 50.1 s, at pH 6.8 (the peritumor pH), indicating that cathepsin B is markedly stable under these conditions. The stability was increased by the additional presence of proteins. Without immediate activation, however, the stabilities of both cathepsins B and L were markedly decreased, a large proportion of their activity being lost before it could be measured. Enzymes injected into the extracellular space in the unactivated state would therefore survive for only a very short time in their native conformation. It is proposed that the active site thiolate-imidazolium ion pair contributes substantially to the stability of cathepsins B and L to extracellular ionic conditions.
Collapse
Affiliation(s)
- F M Dehrmann
- Department of Biochemistry, University of Natal, Pietermaritzburg, Rep. of South Africa
| | | | | |
Collapse
|