Lopes-Cardozo M, Klazinga W, van den Bergh SG. Accumulation of carnitine esters of beta-oxidation intermediates during palmitate oxidation by rat-liver mitochondria.
EUROPEAN JOURNAL OF BIOCHEMISTRY 1978;
83:629-34. [PMID:
631139 DOI:
10.1111/j.1432-1033.1978.tb12132.x]
[Citation(s) in RCA: 34] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Rat-liver mitochondria were incubated with [14C]palmitate in the presence of L-malate, fluorocitrate, and L-carnitine. The specific activities of acetyl groups incorporated into citrate, ketone bodies and acetyl-L-carnitine were measured. During state-4 oxidation of [1--14C]palmitate the specific activity of the acetyl-CoA pool was 1.3-times higher than that of the average acetyl group of palmitate, indicating an incomplete breakdown of the palmitate molecule. Accumulation of carnitine esters was observed in this condition. The acyl moieties of carnitine esters formed during the state-4 oxidation of [U-14C]palmitate or [16(-14)C]palmitate were analysed by radioactive gas-chromatography. Substantial amounts of beta-oxidation intermediates were found. The accumulation of carnitine esters of C6-C14 intermediates can quantitatively explain the high specific activity of the acetyl-CoA pool during the state-4 oxidation of [1(-14)C] palmitate. The localization and control of beta-oxidation are discussed.
Collapse