1
|
Ledermann R, Bourdès A, Schuller M, Jorrin B, Ahel I, Poole PS. Aspartate aminotransferase of Rhizobium leguminosarum has extended substrate specificity and metabolizes aspartate to enable N 2 fixation in pea nodules. MICROBIOLOGY (READING, ENGLAND) 2024; 170. [PMID: 39073398 DOI: 10.1099/mic.0.001471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Rhizobium leguminosarum aspartate aminotransferase (AatA) mutants show drastically reduced symbiotic nitrogen fixation in legume nodules. Whilst AatA reversibly transaminates the two major amino-donor compounds aspartate and glutamate, the reason for the lack of N2 fixation in the mutant has remained unclear. During our investigations into the role of AatA, we found that it catalyses an additional transamination reaction between aspartate and pyruvate, forming alanine. This secondary reaction runs at around 60 % of the canonical aspartate transaminase reaction rate and connects alanine biosynthesis to glutamate via aspartate. This may explain the lack of any glutamate-pyruvate transaminase activity in R. leguminosarum, which is common in eukaryotic and many prokaryotic genomes. However, the aspartate-to-pyruvate transaminase reaction is not needed for N2 fixation in legume nodules. Consequently, we show that aspartate degradation is required for N2 fixation, rather than biosynthetic transamination to form an amino acid. Hence, the enzyme aspartase, which catalyses the breakdown of aspartate to fumarate and ammonia, suppressed an AatA mutant and restored N2 fixation in pea nodules.
Collapse
Affiliation(s)
| | - Alexandre Bourdès
- John Innes Centre, NR4 7UH, Norwich, UK
- School of Animal and Microbial Sciences, University of Reading, RG6 6AJ, Reading, UK
| | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, UK
| | - Beatriz Jorrin
- Department of Biology, University of Oxford, OX1 3RB, Oxford, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, UK
| | - Philip Simon Poole
- Department of Biology, University of Oxford, OX1 3RB, Oxford, UK
- John Innes Centre, NR4 7UH, Norwich, UK
- School of Animal and Microbial Sciences, University of Reading, RG6 6AJ, Reading, UK
| |
Collapse
|
2
|
50 years of comparative biochemistry: The legacy of Peter Hochachka. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:1-11. [PMID: 29501788 DOI: 10.1016/j.cbpb.2018.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 12/29/2022]
Abstract
Peter Hochachka was an early pioneer in the field of comparative biochemistry. He passed away in 2002 after 4 decades of research in the discipline. To celebrate his contributions and to coincide with what would have been his 80th birthday, a group of his former students organized a symposium that ran as a satellite to the 2017 Canadian Society of Zoologists annual meeting in Winnipeg, Manitoba (Canada). This Special Issue of CBP brings together manuscripts from symposium attendees and other authors who recognize the role Peter played in the evolution of the discipline. In this article, the symposium organizers and guest editors look back on his career, celebrating his many contributions to research, acknowledging his role in training of generations of graduate students and post-doctoral fellows in comparative biochemistry and physiology.
Collapse
|
3
|
Malek A, Sager R, Altermatt HJ, Gaeng D, Leiser R, Schneider H. Glucose Consumption and Lactate Production of Human Placental Tissue Under Different Conditions of In Vitro Incubation. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155769600300303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | | | | | | | | | - Henning Schneider
- Departments of Obstettrics and Gynecology and Pathology, University of Berne, Berne, Switzerland; Department of Veterinary Anatomy, University of Giessen, Giessen, Germany
| |
Collapse
|
4
|
Application of mass spectrometry-based metabolomics in identification of early noninvasive biomarkers of alcohol-induced liver disease using mouse model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 815:217-38. [PMID: 25427910 DOI: 10.1007/978-3-319-09614-8_13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A rapid, non-invasive urine test for early stage alcohol-induced liver disease (ALD) would permit risk stratification and treatment of high-risk individuals before ALD leads to irreversible liver damage and death. Urinary metabolomic studies were carried out to identify ALD-associated metabolic biomarkers using Ppara-null mouse model that is susceptible to ALD development on chronic alcohol consumption. Two successive studies were conducted to evaluate the applicability of mass spectrometry-based metabolomics in identification of ALD-specific signatures and to examine the robustness of these biomarkers against genetic background. Principal components analysis of ultraperformance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS)-generated urinary metabolic fingerprints showed that alcohol-treated wild-type and Ppara-null mice could be distinguished from control animals. It also showed that a combined endogenous biomarker panel helps to identify subjects with ALD as well as those at risk of developing ALD even without any information on alcohol intake or genetics. Quantitative analysis showed that increased excretion of indole-3-lactic acid and phenyllactic acid was a genetic background-independent signature exclusively associated with ALD pathogenesis in Ppara-null mice that showed liver pathologies similar to those observed in early stages of human ALD. These findings demonstrated that mass spectrometry-based metabolomic analysis could help in the identification of ALD-specific signatures, and that metabolites such as indole-3-lactic acid and phenyllactic acid, may serve as robust noninvasive biomarkers for early stages of ALD.
Collapse
|
5
|
Soldatov AA, Parfenova IA. [Stoichiometry of cytochromes and oxygen tension in skeletal muscles of marine fish]. UKRAINIAN BIOCHEMICAL JOURNAL 2014; 86:60-7. [PMID: 24868912 DOI: 10.15407/ubj86.02.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The character of oxygen tension distribution and peculiarities of cytochromes stoichiometry in skeletal muscles of bottom and pelagic species of marine fish were compared. It is shown, that the limitation of muscle activity increases the number of hypoxic zones in the muscle tissue. The mitochondrial electron-transporting chain then obtain the uncompensated type of organization, expressed in the increase of the share of the terminal complex aa3 on the background of general reduction of cytochromes content in the muscles. The reaction is of an adaptive character and can be implemented by pelagic fish species in conditions of experimental hypokinesia.
Collapse
|
6
|
Clanton TL, Hogan MC, Gladden LB. Regulation of cellular gas exchange, oxygen sensing, and metabolic control. Compr Physiol 2013; 3:1135-90. [PMID: 23897683 DOI: 10.1002/cphy.c120030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells must continuously monitor and couple their metabolic requirements for ATP utilization with their ability to take up O2 for mitochondrial respiration. When O2 uptake and delivery move out of homeostasis, cells have elaborate and diverse sensing and response systems to compensate. In this review, we explore the biophysics of O2 and gas diffusion in the cell, how intracellular O2 is regulated, how intracellular O2 levels are sensed and how sensing systems impact mitochondrial respiration and shifts in metabolic pathways. Particular attention is paid to how O2 affects the redox state of the cell, as well as the NO, H2S, and CO concentrations. We also explore how these agents can affect various aspects of gas exchange and activate acute signaling pathways that promote survival. Two kinds of challenges to gas exchange are also discussed in detail: when insufficient O2 is available for respiration (hypoxia) and when metabolic requirements test the limits of gas exchange (exercising skeletal muscle). This review also focuses on responses to acute hypoxia in the context of the original "unifying theory of hypoxia tolerance" as expressed by Hochachka and colleagues. It includes discourse on the regulation of mitochondrial electron transport, metabolic suppression, shifts in metabolic pathways, and recruitment of cell survival pathways preventing collapse of membrane potential and nuclear apoptosis. Regarding exercise, the issues discussed relate to the O2 sensitivity of metabolic rate, O2 kinetics in exercise, and influences of available O2 on glycolysis and lactate production.
Collapse
Affiliation(s)
- T L Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA.
| | | | | |
Collapse
|
7
|
Morash AJ, Yu W, Le Moine CMR, Hills JA, Farrell AP, Patterson DA, McClelland GB. Genomic and Metabolic Preparation of Muscle in Sockeye Salmon Oncorhynchus nerka for Spawning Migration. Physiol Biochem Zool 2013; 86:750-60. [DOI: 10.1086/673376] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Xia J, Xu H, Feng X, Xu Z, Chi B. Poly(l-diaminopropionic acid), a novel non-proteinic amino acid oligomer co-produced with poly(ε-l-lysine) by Streptomyces albulus PD-1. Appl Microbiol Biotechnol 2013; 97:7597-605. [DOI: 10.1007/s00253-013-4936-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 04/15/2013] [Accepted: 04/15/2013] [Indexed: 11/28/2022]
|
9
|
Shen YY, Zhou WP, Zhou TC, Zeng YN, Li GM, Irwin DM, Zhang YP. Genome-wide scan for bats and dolphin to detect their genetic basis for new locomotive styles. PLoS One 2012; 7:e46455. [PMID: 23139738 PMCID: PMC3491009 DOI: 10.1371/journal.pone.0046455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/30/2012] [Indexed: 11/18/2022] Open
Abstract
For most mammals, running is their major locomotive style, however, cetaceans and bats are two mammalian groups that have independently developed new locomotive styles (swimming and flying) from their terrestrial ancestors. In this study, we used a genome-wide comparative analysis in an attempt to identify the selective imprint of the development of new locomotive styles by cetaceans and bats to adapt to their new ecological niches. We found that an elevated proportion of mitochondrion-associated genes show evidence of adaptive evolution in cetaceans and on the common ancestral lineage leading to bats, compared to other terrestrial mammals. This result is consistent with the fact that during the independent developments of swimming and flying in these two groups, the changes of energy metabolism ratios would be among the most important factors to overcome elevated energy demands. Furthermore, genes that show evidence of sequence convergence or parallel evolution in these two lineages were overrepresented in the categories of energy metabolism, muscle contraction, heart, and glucose metabolism, genes that perform functions which are essential for locomotion. In conclusion, our analyses showed that on the dolphin and bat lineages, genes associated with locomotion not only both show a greater propensity to adaptively evolve, but also show evidence of sequence convergence, which likely reflects a response to a common requirement during their development of these two drastic locomotive styles.
Collapse
Affiliation(s)
- Yong-Yi Shen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, China
| | - Wei-Ping Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, China
- Department of Molecular and Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Tai-Cheng Zhou
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China
| | - Yan-Ni Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, China
- School of Life Science, East China Normal University, Shanghai, China
| | - Gui-Mei Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, China
| | - David M. Irwin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, China
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, China
- School of Life Science, East China Normal University, Shanghai, China
| |
Collapse
|
10
|
Manna SK, Patterson AD, Yang Q, Krausz KW, Idle JR, Fornace AJ, Gonzalez FJ. UPLC-MS-based urine metabolomics reveals indole-3-lactic acid and phenyllactic acid as conserved biomarkers for alcohol-induced liver disease in the Ppara-null mouse model. J Proteome Res 2011; 10:4120-33. [PMID: 21749142 DOI: 10.1021/pr200310s] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since the development and prognosis of alcohol-induced liver disease (ALD) vary significantly with genetic background, identification of a genetic background-independent noninvasive ALD biomarker would significantly improve screening and diagnosis. This study explored the effect of genetic background on the ALD-associated urinary metabolome using the Ppara-null mouse model on two different backgrounds, C57BL/6 (B6) and 129/SvJ (129S), along with their wild-type counterparts. Reversed-phase gradient UPLC-ESI-QTOF-MS analysis revealed that urinary excretion of a number of metabolites, such as ethylsulfate, 4-hydroxyphenylacetic acid, 4-hydroxyphenylacetic acid sulfate, adipic acid, pimelic acid, xanthurenic acid, and taurine, were background-dependent. Elevation of ethyl-β-d-glucuronide and N-acetylglycine was found to be a common signature of the metabolomic response to alcohol exposure in wild-type as well as in Ppara-null mice of both strains. However, increased excretion of indole-3-lactic acid and phenyllactic acid was found to be a conserved feature exclusively associated with the alcohol-treated Ppara-null mouse on both backgrounds that develop liver pathologies similar to the early stages of human ALD. These markers reflected the biochemical events associated with early stages of ALD pathogenesis. The results suggest that indole-3-lactic acid and phenyllactic acid are potential candidates for conserved and pathology-specific high-throughput noninvasive biomarkers for early stages of ALD.
Collapse
Affiliation(s)
- Soumen K Manna
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | | | | | | | | | | | | |
Collapse
|
11
|
Soldatov AA, Andreenko TI, Golovina IV, Stolbov AY. Peculiarities of organization of tissue metabolism in molluscs with different tolerance to external hypoxia. J EVOL BIOCHEM PHYS+ 2010. [DOI: 10.1134/s0022093010040022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Soldatov AA, Andreenko TI, Sysoeva IV, Sysoev AA. Tissue specificity of metabolism in the bivalve mollusc Anadara inaequivalvis Br. under conditions of experimental anoxia. J EVOL BIOCHEM PHYS+ 2009. [DOI: 10.1134/s002209300903003x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Abstract
Cardioplegic solutions rich in the hydrophilic, basic amino acids, glutamate and aspartate, have enhanced myocardial preservation and left ventricular function. This has been demonstrated in assorted animal preparations involving ischemia with and without reperfusion. Published clinical data, though limited, strongly support the contention that these amino acids have myocardial protective properties. Several biochemical mechanisms exist by which certain amino acids may attenuate ischemic or reperfusion injury. Glutamate and aspartate may become preferred myocardial fuels in the setting of ischemia. They may also reduce myocardial ammonia production and reduce cytoplasmic lactate levels, thereby deinhibiting glycolysis. Some amino acids may become substrate for the citric acid cycle. Glutamate and aspartate also move reducing equivalents from cytoplasm to mitochondria where they are necessary for oxidative phosphorylation and energy generation. A rationale exists for the use of an amino acid-rich cardioplegia-like solution in myocardial infarction. These solutions are safe and inexpensive.
Collapse
Affiliation(s)
- M Arsenian
- Department of Medicine, Addison-Gilbert Hospital, Gloucester, Massachusetts, USA
| |
Collapse
|
14
|
Sridharan V, Guichard J, Li CY, Muise-Helmericks R, Beeson CC, Wright GL. O(2)-sensing signal cascade: clamping of O(2) respiration, reduced ATP utilization, and inducible fumarate respiration. Am J Physiol Cell Physiol 2008; 295:C29-37. [PMID: 18463229 DOI: 10.1152/ajpcell.00466.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
These studies explore the consequences of activating the prolyl hydroxylase (PHD) O(2)-sensing pathway in spontaneously twitching neonatal cardiomyocytes. Full activation of the PHD pathway was achieved using the broad-spectrum PHD inhibitor (PHI) dimethyloxaloylglycine (DMOG). PHI treatment of cardiomyocytes caused an 85% decrease in O(2) consumption and a 300% increase in lactic acid production under basal conditions. This indicates a approximately 75% decrease in ATP turnover rate, inasmuch as the increased ATP generation by glycolysis is inadequate to compensate for the lower respiration. To determine the extent to which decreased ATP turnover underlies the suppressed O(2) consumption, mitochondria were uncoupled with 2,4-dinitrophenol. We were surprised to find that 2,4-dinitrophenol failed to increase O(2) consumption by PHI-treated cells, indicating that electron transport chain activity, rather than ATP turnover rate, limits respiration in PHI-treated cardiomyocytes. Silencing of hypoxia-inducible factor-1alpha (HIF-1alpha) expression restored the ability of uncoupled PHI-treated myocytes to increase O(2) consumption; however, basal O(2) uptake rates remained low because of the unabated suppression of cellular ATP consumption. Thus it appears that respiration is actively "clamped" through an HIF-dependent mechanism, whereas HIF-independent mechanisms are responsible for downregulation of ATP consumption. In addition, we find that PHD pathway activation enables mitochondria to utilize fumarate as a terminal electron acceptor when cytochrome c oxidase is inactive. The source of fumarate for this unusual respiration is derived from aspartate via the purine nucleotide cycle. In sum, these studies show that the O(2)-sensing pathway is sufficient to actively "clamp" O(2) consumption and independently suppress cellular ATP consumption. The PHD pathway also enables the mitochondria to utilize fumarate for respiration.
Collapse
Affiliation(s)
- Vijayalakshmi Sridharan
- Department of Pharmaceutical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | |
Collapse
|
15
|
Sridharan V, Guichard J, Bailey RM, Kasiganesan H, Beeson C, Wright GL. The prolyl hydroxylase oxygen-sensing pathway is cytoprotective and allows maintenance of mitochondrial membrane potential during metabolic inhibition. Am J Physiol Cell Physiol 2006; 292:C719-28. [PMID: 17050618 DOI: 10.1152/ajpcell.00100.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cellular oxygen sensor is a family of oxygen-dependent proline hydroxylase domain (PHD)-containing enzymes, whose reduction of activity initiate a hypoxic signal cascade. In these studies, prolyl hydroxylase inhibitors (PHIs) were used to activate the PHD-signaling pathway in cardiomyocytes. PHI-pretreatment led to the accumulation of glycogen and an increased maintenance of ATP levels in glucose-free medium containing cyanide. The addition of the glycolytic inhibitor 2-deoxy-d-glucose (2-DG) caused a decline of ATP levels that was indistinguishable between control and PHI-treated myocytes. Despite the comparable levels of ATP depletion, PHI-preconditioned myocytes remained significantly protected. As expected, mitochondrial membrane potential (DeltaPsi(mito)) collapses in control myocytes during cyanide and 2-DG treatment and it fails to completely recover upon washout. In contrast, DeltaPsi(mito) is partially maintained during metabolic inhibition and recovers completely on washout in PHI-preconditioned cells. Inclusion of rotenone, but not oligomycin, with cyanide and 2-DG was found to collapse DeltaPsi(mito) in PHI-pretreated myocytes. Thus, continued complex I activity was implicated in the maintenance of DeltaPsi(mito) in PHI-treated myocytes, whereas a role for the "reverse mode" operation of the F(1)F(0)-ATP synthase was ruled out. Further examination of mitochondrial function revealed that PHI treatment downregulated basal oxygen consumption to only approximately 15% that of controls. Oxygen consumption rates, although initially lower in PHI-preconditioned myocytes, recovered completely upon removal of metabolic poisons, while reaching only 22% of preinsult levels in control myocytes. We conclude that PHD oxygen-sensing mechanism directs multiple compensatory changes in the cardiomyocyte, which include a low-respiring mitochondrial phenotype that is remarkably protected against metabolic insult.
Collapse
Affiliation(s)
- Vijayalakshmi Sridharan
- Dept. of Pharmaceutical Sciences, Medical Univ. of South Carolina, 280 Calhoun St., Charleston, SC 29425, USA
| | | | | | | | | | | |
Collapse
|
16
|
Castellini MA, Castellini JM. Defining the limits of diving biochemistry in marine mammals. Comp Biochem Physiol B Biochem Mol Biol 2005; 139:509-18. [PMID: 15544972 DOI: 10.1016/j.cbpc.2004.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 09/14/2004] [Accepted: 09/14/2004] [Indexed: 11/22/2022]
Abstract
The field of marine mammal diving biochemistry was essentially untouched when Peter Hochachka turned his attention to it in the mid-1970s. Over the next 30 years, his work followed three main themes in this area: first, most biologists at that time supported the theory that diving mammals utilized enhanced metabolic pathways for hypoxic energy production (glycolysis to lactate) and reduced their metabolic rate while diving. Peter began his work on potential hypoxic adaptations in marine mammals by working out the details of how these pathways would be regulated. By the 1980s, he started to ask how diving mammals balanced the increased demands of exercise with the apparently conflicting demands to reduce aerobic metabolism while exercising underwater. By the 1990s, his work involved complex models of the interplay between the neural, hormonal, behavioral and evolutionary components of diving biochemistry and animal exercise. From a comparative approach, he excelled at bringing themes of hypoxic adaptation from many different types of animals to the field of diving mammal biochemistry. This review traces the history of Peter Hochachka's work on diving biochemistry from the perspective of those of us who spent time with him both inside the laboratory and outside in the field from Antarctica to Iceland.
Collapse
Affiliation(s)
- Michael A Castellini
- Institute of Marine Science, School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
| | | |
Collapse
|
17
|
Cytosolic aspartate aminotransferase from the grey mullet (Mugil auratus Risso) red muscle: Isolation and properties. Int J Biochem Cell Biol 1996. [DOI: 10.1016/1357-2725(96)00033-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Abstract
1. Positive inotropic effect of taurine and improvement of cardiac performance of failing heart are mediated through the modulation of Ca2+ movement through the sarcolemma. 2. Cardioprotection with glutamate and aspartate is related to enhanced anaerobic energy formation in mitochondria coupled with succinate formation and, probably, with the relieving of glycolytic flux. During reperfusion, both amino acids replenish the malate-aspartate shuttle reactants, thereby facilitating glucose oxidation. 3. Increased intracellular concentrations of branched chain amino acids (leucine, valine and isoleusine) stimulate formation of acetyl-coenzyme (CoA) and succinyl-CoA and, thus, recovery of oxidative metabolism. 4. Methionine and cysteine enhance force of contraction by N-methylation of membrane phospholipids of the sarcolemma and sarcoplasmic reticulum. Methionine and, to a lesser extent, cysteine may reduce myocardial damage by oxygen radical species. 5. Histidine exerts antioxidant properties as a scavenger of singlet oxygen and OH radicals. High concentrations of histidine provide intracellular buffering to stimulate anaerobic energy formation.
Collapse
Affiliation(s)
- O I Pisarenko
- Institute of Experimental Cardiology, Cardiology Research Centre, Moscow, Russia
| |
Collapse
|
19
|
Systems analysis of the tricarboxylic acid cycle in Dictyostelium discoideum. I. The basis for model construction. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50700-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Guidoux R. Acetoacetate and malate effects on succinate and energy production by O2-deprived liver mitochondria supplied with 2-oxoglutarate. Arch Biochem Biophys 1991; 287:397-402. [PMID: 1898011 DOI: 10.1016/0003-9861(91)90495-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Acetoacetate provision to Ca(2+)-loaded liver mitochondria (less than 40 micrograms-ion Ca2+ x g protein-1), supplied with 2 mM Pi and 2-oxoglutarate as substrate, was found to prevent the mitochondrial deenergization and Ca2+ release induced by either rotenone during aerobic incubations or by O2 deprivation. Under the latter condition, the acetoacetate-promoted Ca2+ retention was entirely supported by ATP produced anaerobically at the succinylthiokinase step of the tricarboxylic acid cycle and was therefore abolished by addition of oligomycin. Surprisingly, oligomycin was also found to trigger Ca2+ release in rotenone-inhibited mitochondria in the presence of acetoacetate under aerobic conditions, unless a Pi acceptor was supplied. ADP deprivation at the succinylthiokinase step is likely to be involved. As estimated from rates of succinate production in O2-deprived mitochondria or from respiration rates in rotenone-inhibited mitochondria at supramaximal acetoacetate concentrations (above 1.2 mM) in the presence of a Pi acceptor, ATP production by substrate-level phosphorylation was close to 10 mumol.g protein-1.min-1 and appeared to be limited by rates of ketone body transport across the inner membrane. The rates of anaerobic energy production obtained by coupling 2-oxoglutarate oxidation to acetoacetate reduction were markedly higher than those obtained by reactions involved in the anaerobic metabolism of amino acids, simulated by providing 2-oxoglutarate and malate to mitochondria. Energy production was limited by rates of oxidant equivalent generation under the latter condition. Our data suggest that acetoacetate could effectively contribute to sustaining anaerobic energy production from endogenous substrates in liver tissue.
Collapse
Affiliation(s)
- R Guidoux
- Nestec Ltd, Research Centre, Vers-chez-les-Blanc, Lausanne, Switzerland
| |
Collapse
|
21
|
Julia PL, Kofsky ER, Buckberg GD, Young HH, Bugyi HI. Studies of myocardial protection in the immature heart. J Thorac Cardiovasc Surg 1990. [DOI: 10.1016/s0022-5223(19)36831-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Julia P, Young HH, Buckberg GD, Kofsky ER, Bugyi HI. Studies of myocardial protection in the immature heart. J Thorac Cardiovasc Surg 1990. [DOI: 10.1016/s0022-5223(19)36832-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Kench JE. Observations on the respiration of the south atlantic hagfish, Eptatretus hexatrema müll. ACTA ACUST UNITED AC 1989. [DOI: 10.1016/0300-9629(89)90514-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Pisarenko OI, Novikova EB, Serebryakova LI, Tskitishvili OV, Ivanov VE, Studneva IM. Function and metabolism of dog heart in ischemia and in subsequent reperfusion: effect of exogenous glutamic acid. Pflugers Arch 1985; 405:377-83. [PMID: 2867519 DOI: 10.1007/bf00595691] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effect of intravenous infusion of glutamic acid on cardiac contractile function during short-term ischemia and subsequent reperfusion was studied in anaesthetized dogs. Left ventricular ischemia was induced by underperfusion of the anterior descending and circumflex coronary arteries. Infusion of glutamic acid at 3 mg/kg/min resulted in less depression of cardiac function when given after a 2 min period of 60% coronary blood flow reduction: left ventricular systolic pressure decreased by 9% vs. 22%, dP/dt decreased by 16% vs. 29%, the double product (left ventricular systolic pressure by heart rate) was reduced by 16% vs. 31%. When reperfusion was carried out during glutamic acid infusion there was a significantly enhanced recovery in cardiac function. The augmentation of cardiac performance in ischemia and reperfusion caused by glutamic acid was not accompanied by changes in myocardial oxygen consumption. Glutamic acid uptake by the ischemic myocardium increased 2-fold during infusion. This led to cessation of ammonia release from the heart due to stimulation of glutamine synthesis, and an enhancement of alanine formation coupled with pyruvate uptake but it did not effect lactate production. However, glutamic acid infusion did not influence cardiac performance and metabolism under conditions of normal coronary flow. The results suggest that elevation of glutamate arterial concentration exerts a beneficial effect on ischemic heart. The mechanisms of the protective action are discussed.
Collapse
|
25
|
Abstract
Aminotransferases are ubiquitous enzymes of mammalian cells and several are of important diagnostic use. The application of aspartate aminotransferase activity measurements in serum from individuals suffering from myocardial infarction brought about a new dimension in clinical laboratory testing in the 1950s. This review focuses on measurement techniques for aspartate aminotransferase and their application (a subsequent article will review other aminotransferases). Assay techniques measuring enzyme activity are direct spectrophotometric measurements, manometric techniques, assays using dye substances, coupled enzyme techniques, and radiometric procedures. Of these procedures, the one employing malate dehydrogenase and NADH is the most important and is covered in particular detail. The estimation of the mitochondrial isoenzyme of aspartate aminotransferase is also of clinical interest, in particular for estimating severity of disease or in specific applications (e.g., chronic alcoholism). Methods reviewed for estimation of this enzyme are electrophoresis, chromatography, differential kinetic behavior, and immunochemical separation. Determination of the enzyme protein by techniques independent of its catalytic activity are also reviewed.
Collapse
|
26
|
Koldkjaer O. Immunoelectrophoretic characterization of human mitochondrial aspartate aminotransferase purified by ion exchange and affinity chromatography. Clin Chim Acta 1982; 122:359-68. [PMID: 7105419 DOI: 10.1016/0009-8981(82)90139-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Human mitochondrial aspartate aminotransferase (m-ASAT) was prepared for use as an antigen for antibody production and as a standard, i.e. a high degree of purity was demanded. The purification was performed by three ion exchange chromatography steps followed by affinity chromatography on aspartate coupled gel. Four preparations gave specific activities of 230 to 300 U/mg at 37 degrees C. The purity of m-ASAT was assessed by crossed immunoelectrophoresis, which showed that the final preparation did not contain contaminating proteins. Immunization with the purified m-ASAT gave a good antibody response.
Collapse
|
27
|
Butler PJ, Jones DR. The comparative physiology of diving in vertebrates. ADVANCES IN COMPARATIVE PHYSIOLOGY AND BIOCHEMISTRY 1982; 8:179-364. [PMID: 6753521 DOI: 10.1016/b978-0-12-011508-2.50012-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Investigations on the role of the amino acids in anaerobic metabolism of the lugwormArenicola marina L. ACTA ACUST UNITED AC 1980. [DOI: 10.1007/bf00689219] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Hochachka PW, Storey KB, French CJ, Schneider DE. Hydrogen shuttles in air versus water breathing fishes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1979; 63:45-56. [PMID: 318399 DOI: 10.1016/0305-0491(79)90232-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
1. The malate-aspartate cycle was demonstrable in subcellular preparations of hearts from Arapaima, Lepidosiren, and Synbranchus (obligate air breathers), Hoplerythriunus (facultative air breather), and Osteoglossum and Hoplias (obligate water breathers). 2. Although no respiratory evidence for significant alpha-glycerophosphate cycle participation could be shown in the air breathers, this cycle was demonstrable in hearts of water breathers. 3. In agreement with the O2 uptake studies, it was possible to reconstruct the malate-aspartate, but not the alpha-glycerophosphate cycle, in isolated mitochondria from air breathers, while both shuttles could be reconstructed with heart mitochondria in the case of water breathing fishes.
Collapse
Affiliation(s)
- P W Hochachka
- Dept. of Zoology, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
30
|
Hochachka PW, French CJ, Meredith J. Metabolic and ultrastructural organization inNautilus muscles. ACTA ACUST UNITED AC 1978. [DOI: 10.1002/jez.1402050108] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Brodan V, Fabián J, Andĕl M, Pechar J. Myocardial amino acid metabolism in patients with chronic ischemic heart disease. Basic Res Cardiol 1978; 73:160-70. [PMID: 656023 DOI: 10.1007/bf01906751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Taegtmeyer H, Peterson MB, Ragavan VV, Ferguson AG, Lesch M. De novo alanine synthesis in isolated oxygen-deprived rabbit myocardium. J Biol Chem 1977. [DOI: 10.1016/s0021-9258(17)40153-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
33
|
Orlický J, Ruscák M. Alanine aminotransferase and lactate dehydrogenase activity in the crayfish and rabbit striated muscles. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1977; 56:71-5. [PMID: 11943 DOI: 10.1016/0305-0491(77)90224-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Mudge GH, Mills RM, Taegtmeyer H, Gorlin R, Lesch M. Alterations of myocardial amino acid metabolism in chronic ischemic heart disease. J Clin Invest 1976; 58:1185-92. [PMID: 993339 PMCID: PMC333286 DOI: 10.1172/jci108571] [Citation(s) in RCA: 111] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Arteriovenous differences (A-V) of all naturally occurring amino acids, lactate, and oxygen were measured simultaneously with coronary sinus blood flow (CSBF) in 8 normal subjects and 11 patients with coronary artery disease at rest and during pacing stress. Mean values for CSBF and myocardial oxygen consumptions (MVO2) for the two groups were similar at rest and during pacing, although mean CSBF and MVO2 increased significantly in both groups in the paced as compared to the rest state. Alanine (ala) was the only amino acid released by the myocardium, while only glutamic acid(glu) demonstrated uptake. Mean A-V ala was negative at rest in the control and coronary disease groups (-4.8+/-3.8 vs. -22.0+/-3.0 nmol/ml, respectively), but was significantly more negative in the coronary group (P less than 0.001) and not statistically different than zero in the normals. A-V ala became significantly negative with pacing in the normals (-10.0+/-4.3 nmol/ml), remained unchanged in the coronary group (-23.0+/-2.9 nmol/ml), and was significantly more negative in the coronary group (P less than 0.05). Calculation of data on the basis of net ala flux ([A-V] X [CSBF X hematocrit]) yielded similar results as that obtained with A-V differences. A-V glu was significantly positive in normals (27.7 +/- 8.9 nmol/ml, P less than 0.01) and coronary patients (59.9 +/- 8.9 nmol/ml, P less than 0.01) at rest but significantly greater in the latter group (P less than 0.001). With pacing, A-V glu remained significantly greater than zero in coronary patients (35.3 +/- 6.3 nmol/ml) and decreased to zero in the normals (4.3 +/- 11.8 nmol/ml). Calculation of net glu flux (nmol/min) at rest yielded data similar to that based on A-V difference. With pacing, net glu flux in the coronary patients did not decrease due to the augmentation of CSBF. No relation between A-V glu or ala and CSBF, MVO2 or A-V lactate was noted. The data demonstrate that specific alterations of myocardial amino acid metabolism characterize patients with chronic ischemic heart disease.
Collapse
|
35
|
Abstract
Fixation of carbon dioxide has been demonstrated for extracts from Crithidia fasciculata, Trypanosoma mega and Trypanosoma brucei brucei bloodstream and culture forms. The enzymes involved in this fixation were found to be ADP-stimulated phosphoenolpyruvate carboxykinase (E.C. 4.1.1.32), 'malic' enzyme (E.C. 1.1.138-40) and pyruvate carboxylase (E.C. 6.4.1.1). The subcellular localization of these enzymes has been investigated in all three organisms. Products of short and long term fixation experiments were separated and identified. The importance of carboxylation reactions is discussed in relation to the maintenance of oxidized and reduced coenzyme levels.
Collapse
|
36
|
|