1
|
Akazaki H, Kawai F, Chida H, Matsumoto Y, Hirayama M, Hoshikawa K, Unzai S, Hakamata W, Nishio T, Park SY, Oku T. Cloning, expression and purification of cytochrome c(6) from the brown alga Hizikia fusiformis and complete X-ray diffraction analysis of the structure. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:674-80. [PMID: 18678931 PMCID: PMC2494970 DOI: 10.1107/s1744309108017752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Accepted: 06/11/2008] [Indexed: 11/10/2022]
Abstract
The primary sequence of cytochrome c(6) from the brown alga Hizikia fusiformis has been determined by cDNA cloning and the crystal structure has been solved at 1.6 A resolution. The crystal belonged to the tetragonal space group P4(1)2(1)2, with unit-cell parameters a = b = 84.58, c = 232.91 A and six molecules per asymmetric unit. The genome code, amino-acid sequence and crystal structure of H. fusiformis cytochrome c(6) were most similar to those of red algal cytochrome c(6). These results support the hypothesis that brown algae acquired their chloroplasts via secondary endosymbiosis involving a red algal endosymbiont and a eukaryote host.
Collapse
Affiliation(s)
- Hideharu Akazaki
- Bio-organic Chemistry Laboratory, Graduate School of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa-shi, Kanagawa 252-8510, Japan
| | - Fumihiro Kawai
- Protein Design Laboratory, Graduate School of Integrated Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Hirotaka Chida
- Bio-organic Chemistry Laboratory, Graduate School of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa-shi, Kanagawa 252-8510, Japan
| | - Yuichirou Matsumoto
- Bio-organic Chemistry Laboratory, Graduate School of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa-shi, Kanagawa 252-8510, Japan
| | - Mao Hirayama
- Bio-organic Chemistry Laboratory, Graduate School of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa-shi, Kanagawa 252-8510, Japan
| | - Ken Hoshikawa
- Bio-organic Chemistry Laboratory, Graduate School of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa-shi, Kanagawa 252-8510, Japan
| | - Satoru Unzai
- Protein Design Laboratory, Graduate School of Integrated Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Wataru Hakamata
- Bio-organic Chemistry Laboratory, Graduate School of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa-shi, Kanagawa 252-8510, Japan
| | - Toshiyuki Nishio
- Bio-organic Chemistry Laboratory, Graduate School of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa-shi, Kanagawa 252-8510, Japan
| | - Sam-Yong Park
- Bio-organic Chemistry Laboratory, Graduate School of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa-shi, Kanagawa 252-8510, Japan
| | - Tadatake Oku
- Bio-organic Chemistry Laboratory, Graduate School of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa-shi, Kanagawa 252-8510, Japan
| |
Collapse
|
5
|
Aitken A. Purification and primary structure of cytochrome f from the cyanobacterium, Plectonema boryanum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1977; 78:273-9. [PMID: 199428 DOI: 10.1111/j.1432-1033.1977.tb11738.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The amino acid sequence of the soluble c-type cytochrome, cytochrome f, from the cyanobacterium Plectonema boryanum (also called Phormidium luridum or Schizothrix calcicola) has been determined. The proposed sequence consists of one polypeptide chain of 85 residues and has three Asn-Gly linkages. Partly due to the presence of these Asn-Gly bonds, which readily undergo rearrangement, proteolytic digestion on the small amount of protein available was unsatisfactory. The structure was determined partly by a combination of chemical cleavage and automatic sequencing techniques. A new technique for conserving material by cyanogen bromide cleavage of residual polypeptide after automatic degradation is described. The possible evolutionary significance of primary structure comparisons with other cytochromes f is discussed.
Collapse
|