1
|
Rao DF, Zhang H, Wang JL, Meng XX, Li ZZ, Xie CY, Jaidi IE, Dai L, Ye JJ, Zhu M, Peng YJ, Chen Q, Zhang DX, Teng YB. Structural insights into thesubstrate binding sites of O-carbamoyltransferase VtdB from Streptomyces sp. NO1W98. Biochem Biophys Res Commun 2023; 659:40-45. [PMID: 37031593 DOI: 10.1016/j.bbrc.2023.03.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
The O-carbamoyltransferase VtdB catalyzes the carbamoylation of venturicidin B, which is essential for the biosynthesis of the antibiotic venturicidin A. Here, the crystal structures of VtdB and VtdB in complex with the intermediate carbamoyladenylate (VtdBCAO) were determined at resolutions of 2.99 Å and 2.90 Å, respectively. The structures resemble the conserved YrdC-like and specific Kae1-like domains. A magnesium ion and the intermediate carbamoyladenylate were also observed in the Kae1-like domain of VtdB. The structure of VtdBCAO in complex with the substrate venturicidin B was modeled by a molecular docking method to better understand the substrate binding mode, revealing a novel venturicidin B binding pocket.
Collapse
Affiliation(s)
- De-Fa Rao
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Hui Zhang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Ju-Ling Wang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xiao-Xiao Meng
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Zhen-Zhen Li
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Chun-Ya Xie
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Ikrame El Jaidi
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Li Dai
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Jing-Jing Ye
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Min Zhu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yu-Jie Peng
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Qi Chen
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Dao-Xiang Zhang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China.
| | - Yan-Bin Teng
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
2
|
Shi D, Caldovic L, Tuchman M. Sources and Fates of Carbamyl Phosphate: A Labile Energy-Rich Molecule with Multiple Facets. BIOLOGY 2018; 7:biology7020034. [PMID: 29895729 PMCID: PMC6022934 DOI: 10.3390/biology7020034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022]
Abstract
Carbamyl phosphate (CP) is well-known as an essential intermediate of pyrimidine and arginine/urea biosynthesis. Chemically, CP can be easily synthesized from dihydrogen phosphate and cyanate. Enzymatically, CP can be synthesized using three different classes of enzymes: (1) ATP-grasp fold protein based carbamyl phosphate synthetase (CPS); (2) Amino-acid kinase fold carbamate kinase (CK)-like CPS (anabolic CK or aCK); and (3) Catabolic transcarbamylase. The first class of CPS can be further divided into three different types of CPS as CPS I, CPS II, and CPS III depending on the usage of ammonium or glutamine as its nitrogen source, and whether N-acetyl-glutamate is its essential co-factor. CP can donate its carbamyl group to the amino nitrogen of many important molecules including the most well-known ornithine and aspartate in the arginine/urea and pyrimidine biosynthetic pathways. CP can also donate its carbamyl group to the hydroxyl oxygen of a variety of molecules, particularly in many antibiotic biosynthetic pathways. Transfer of the carbamyl group to the nitrogen group is catalyzed by the anabolic transcarbamylase using a direct attack mechanism, while transfer of the carbamyl group to the oxygen group is catalyzed by a different class of enzymes, CmcH/NodU CTase, using a different mechanism involving a three-step reaction, decomposition of CP to carbamate and phosphate, transfer of the carbamyl group from carbamate to ATP to form carbamyladenylate and pyrophosphate, and transfer of the carbamyl group from carbamyladenylate to the oxygen group of the substrate. CP is also involved in transferring its phosphate group to ADP to generate ATP in the fermentation of many microorganisms. The reaction is catalyzed by carbamate kinase, which may be termed as catabolic CK (cCK) in order to distinguish it from CP generating CK. CP is a thermally labile molecule, easily decomposed into phosphate and cyanate, or phosphate and carbamate depending on the pH of the solution, or the presence of enzyme. Biological systems have developed several mechanisms including channeling between enzymes, increased affinity of CP to enzymes, and keeping CP in a specific conformation to protect CP from decomposition. CP is highly important for our health as both a lack of, or decreased, CP production and CP accumulation results in many disease conditions.
Collapse
Affiliation(s)
- Dashuang Shi
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20010, USA.
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20010, USA.
| | - Mendel Tuchman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20010, USA.
| |
Collapse
|
3
|
Hii KS, Lim PT, Kon NF, Takata Y, Usup G, Leaw CP. Physiological and transcriptional responses to inorganic nutrition in a tropical Pacific strain of Alexandrium minutum: Implications for the saxitoxin genes and toxin production. HARMFUL ALGAE 2016; 56:9-21. [PMID: 28073499 DOI: 10.1016/j.hal.2016.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 06/06/2023]
Abstract
Saxitoxins (STXs) constitute a family of potent sodium channel blocking toxins, causative agents of paralytic shellfish poisoning (PSP), and are produced by several species of marine dinoflagellates and cyanobacteria. Two STX-core genes, sxtA and sxtG, have been well elucidated in Alexandrium but the expression of these genes under various nutritional modes in tropical species remains unclear. This study investigates the physiological responses of a tropical Pacific strain of Alexandrium minutum growing with nitrate or ammonium, and with various nitrogen to phosphorus (N:P) supply ratios. The transcriptional responses of the sxt genes were observed. Likewise, a putative sxtI encoding O-carbamoyltransferase (herein designated as AmsxtI) was recovered from the transcriptomic data, and its expression was investigated. The results revealed that the cellular toxin quota (Qt) was higher in P-depleted, nitrate-grown cultures. With cultures at similar N:P (<16), cells grown with excess ammonium showed a higher Qt than those grown with nitrate. sxtA1 was not expressed under any culture conditions, suggesting that this gene might not be involved in STX biosynthesis by this strain. Conversely, sxtA4 and sxtG showed positive correlations with Qt, and were up-regulated in P-depleted, nitrate-grown cultures and with excess ambient ammonium. On the other hand, AmsxtI was expressed only when induced by P-depletion, suggesting that this gene may play an important role in P-recycling metabolism, while simultaneously enhancing toxin production.
Collapse
Affiliation(s)
- Kieng Soon Hii
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok 16310, Kelantan, Malaysia.
| | - Nyuk Fong Kon
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| | - Yoshinobu Takata
- The University of Tokyo, Yayoi 1-1-1, Bunkyo-Ku, Tokyo 113-8657, Japan
| | - Gires Usup
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok 16310, Kelantan, Malaysia.
| |
Collapse
|
4
|
Petras D, Kerwat D, Pesic A, Hempel BF, von Eckardstein L, Semsary S, Arasté J, Marguerettaz M, Royer M, Cociancich S, Süssmuth RD. The O-Carbamoyl-Transferase Alb15 Is Responsible for the Modification of Albicidin. ACS Chem Biol 2016; 11:1198-204. [PMID: 26886160 DOI: 10.1021/acschembio.5b01001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Albicidin is a potent antibiotic and phytotoxin produced by Xanthomonas albilineans which targets the plant and bacterial DNA gyrase. We now report on a new albicidin derivative which is carbamoylated at the N-terminal coumaric acid by the action of the ATP-dependent O-carbamoyltransferase Alb15, present in the albicidin (alb) gene cluster. Carbamoyl-albicidin was characterized by tandem mass spectrometry from cultures of a Xanthomonas overproducer strain and the gene function confirmed by gene inactivation of alb15 in X. albilineans. Expression of alb15 in Escherichia coli and in vitro reconstitution of the carbamoyltransferase activity confirmed albicidin as the substrate. The chemical synthesis of carbamoyl-albicidin finally enabled us to assess its bioactivity by means of in vitro gyrase inhibition and antibacterial assays. Compared to albicidin, carbamoyl-albicidin showed a significantly higher inhibitory efficiency against bacterial gyrase (∼8 vs 49 nM), which identifies the carbamoyl group as an important structural feature of albicidin maturation.
Collapse
Affiliation(s)
- Daniel Petras
- Institut für
Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Dennis Kerwat
- Institut für
Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Alexander Pesic
- Institut für
Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Benjamin-F Hempel
- Institut für
Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Leonard von Eckardstein
- Institut für
Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Siamak Semsary
- Institut für
Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Julie Arasté
- Cirad, UMR BGPI, F-34398 Montpellier Cedex 5, France
| | | | - Monique Royer
- Cirad, UMR BGPI, F-34398 Montpellier Cedex 5, France
| | | | - Roderich D. Süssmuth
- Institut für
Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| |
Collapse
|
5
|
Paradkar A, Jensen S, Mosher R. Comparative Genetics and Molecular Biology of ß-Lactam Biosynthesis. ACTA ACUST UNITED AC 2013. [DOI: 10.1201/b14856-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
6
|
Hamed RB, Gomez-Castellanos JR, Henry L, Ducho C, McDonough MA, Schofield CJ. The enzymes of β-lactam biosynthesis. Nat Prod Rep 2013; 30:21-107. [DOI: 10.1039/c2np20065a] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
Parthier C, Görlich S, Jaenecke F, Breithaupt C, Bräuer U, Fandrich U, Clausnitzer D, Wehmeier UF, Böttcher C, Scheel D, Stubbs MT. The O-carbamoyltransferase TobZ catalyzes an ancient enzymatic reaction. Angew Chem Int Ed Engl 2012; 51:4046-52. [PMID: 22383337 DOI: 10.1002/anie.201108896] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Indexed: 11/09/2022]
Affiliation(s)
- Christoph Parthier
- Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Parthier C, Görlich S, Jaenecke F, Breithaupt C, Bräuer U, Fandrich U, Clausnitzer D, Wehmeier UF, Böttcher C, Scheel D, Stubbs MT. Die O-Carbamoyltransferase TobZ katalysiert eine enzymatische Reaktion frühen Ursprungs. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Dual Carbamoylations on the Polyketide and Glycosyl Moiety by Asm21 Result in Extended Ansamitocin Biosynthesis. ACTA ACUST UNITED AC 2011; 18:1571-80. [DOI: 10.1016/j.chembiol.2011.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 10/29/2011] [Accepted: 11/07/2011] [Indexed: 11/23/2022]
|
10
|
A role for the universal Kae1/Qri7/YgjD (COG0533) family in tRNA modification. EMBO J 2011; 30:882-93. [PMID: 21285948 DOI: 10.1038/emboj.2010.363] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 12/21/2010] [Indexed: 11/09/2022] Open
Abstract
The YgjD/Kae1 family (COG0533) has been on the top-10 list of universally conserved proteins of unknown function for over 5 years. It has been linked to DNA maintenance in bacteria and mitochondria and transcription regulation and telomere homeostasis in eukaryotes, but its actual function has never been found. Based on a comparative genomic and structural analysis, we predicted this family was involved in the biosynthesis of N(6)-threonylcarbamoyl adenosine, a universal modification found at position 37 of tRNAs decoding ANN codons. This was confirmed as a yeast mutant lacking Kae1 is devoid of t(6)A. t(6)A(-) strains were also used to reveal that t(6)A has a critical role in initiation codon restriction to AUG and in restricting frameshifting at tandem ANN codons. We also showed that YaeZ, a YgjD paralog, is required for YgjD function in vivo in bacteria. This work lays the foundation for understanding the pleiotropic role of this universal protein family.
Collapse
|
11
|
Kellmann R, Mihali TK, Michali TK, Neilan BA, Neilan BA. Identification of a saxitoxin biosynthesis gene with a history of frequent horizontal gene transfers. J Mol Evol 2008; 67:526-38. [PMID: 18850059 DOI: 10.1007/s00239-008-9169-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 07/04/2008] [Accepted: 09/22/2008] [Indexed: 11/24/2022]
Abstract
The paralytic shellfish poisoning (PSP) toxins, saxitoxin, and its derivatives, are produced by a complex and unique biosynthetic pathway. It involves reactions that are rare in other metabolic pathways, however, distantly related organisms, such as dinoflagellates and cyanobacteria, produce these toxins by an identical pathway. Speculative explanations for the unusual phylogenetic distribution of this metabolic pathway have been proposed, including a polyphyletic origin, the involvement of symbiotic bacteria, and horizontal gene transfer. This study describes for the first time the identity of one gene, sxt1, that is involved in the biosynthesis of saxitoxin in cyanobacteria. It encoded an O-carbamoyltransferase (OCTASE) that was proposed to carbamoylate the hydroxymethyl side chain of saxitoxin precursor. Orthologues of sxt1 were exclusively present in PSP-toxic strains of cyanobacteria and had a high sequence similarity to each other. L. wollei had a naturally mutated sxt1 gene that encoded an inactive enzyme, and was incapable of producing carbamoylated PSP-toxin analogues, supporting the proposed function of Sxt1. Phylogenetic analysis revealed that OCATSE genes were present exclusively in prokaryotic organisms and were characterized by a high rate of horizontal gene transfer. OCTASE has most likely evolved from an ancestral O-sialoglycoprotein endopeptidase from proteobacteria, whereas the most likely phylogenetic origin of sxt1 was an ancestral alpha-proteobacterium. The phylogeny of sxt1 suggested that the entire set of genes required for saxitoxin biosynthesis may spread by horizontal gene transfer.
Collapse
Affiliation(s)
- Ralf Kellmann
- Department of Molecular Biology, University of Bergen, P.O. Box 7803, 5020, Bergen, Norway.
| | | | | | | | | |
Collapse
|
12
|
|
13
|
Martín JF, Liras P. Enzymes involved in penicillin, cephalosporin and cephamycin biosynthesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006; 39:153-87. [PMID: 2510473 DOI: 10.1007/bfb0051954] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Abstract
Although microorganisms are extremely good in presenting us with an amazing array of valuable products, they usually produce them only in amounts that they need for their own benefit; thus, they tend not to overproduce their metabolites. In strain improvement programs, a strain producing a high titer is usually the desired goal. Genetics has had a long history of contributing to the production of microbial products. The tremendous increases in fermentation productivity and the resulting decreases in costs have come about mainly by mutagenesis and screening/selection for higher producing microbial strains and the application of recombinant DNA technology.
Collapse
Affiliation(s)
- Jose L Adrio
- Department of Biotechnology, Puleva Biotech, S.A., Granada, Spain.
| | | |
Collapse
|
15
|
Abstract
Metabolic engineering has become a rational alternative to classical strain improvement in optimisation of beta-lactam production. In metabolic engineering directed genetic modification are introduced to improve the cellular properties of the production strains. This has resulted in substantial increases in the existing beta-lactam production processes. Furthermore, pathway extension, by heterologous expression of novel genes in well-characterised strains, has led to introduction of new fermentation processes that replace environmentally damaging chemical methods. This minireview discusses the recent developments in metabolic engineering and the applications of this approach for improving beta-lactam production.
Collapse
Affiliation(s)
- Jette Thykaer
- Center for Process Biotechnology, BioCentrum, Technical University of Denmark, Building 223, DK-2800, Lyngby, Denmark
| | | |
Collapse
|
16
|
Shi D, Gallegos R, DePonte J, Morizono H, Yu X, Allewell NM, Malamy M, Tuchman M. Crystal structure of a transcarbamylase-like protein from the anaerobic bacterium Bacteroides fragilis at 2.0 A resolution. J Mol Biol 2002; 320:899-908. [PMID: 12095263 DOI: 10.1016/s0022-2836(02)00539-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A transcarbamylase-like protein essential for arginine biosynthesis in the anaerobic bacterium Bacteroides fragilis has been purified and crystallized in space group P4(3)2(1)2 (a=b=153.4 A, c=94.8 A). The structure was solved using a single isomorphous replacement with anomalous scattering (SIRAS) and was refined at 2.0 A resolution to an R-factor of 20.6% (R-free=25.2%). The molecular model is trimeric and comprises 960 amino acid residues, two phosphate groups and 422 water molecules. The monomer has the consensus transcarbamylase fold with two structural domains linked by two long interdomain helices: the putative carbamoyl phosphate-binding domain and a binding domain for the second substrate. Each domain has a central parallel beta-sheet surrounded by alpha-helices and loops with alpha/beta topology. The putative carbamoyl phosphate-binding site is similar to those in ornithine transcarbamylases (OTCases) and aspartate transcarbamylases (ATCases); however, the second substrate-binding site is strikingly different. This site has several insertions and deletions, and residues critical to substrate binding and catalysis in other known transcarbamylases are not conserved. The three-dimensional structure and the fact that this protein is essential for arginine biosynthesis suggest strongly that it is a new member of the transcarbamylase family. A similar protein has been found in Xylella fastidiosa, a bacterium that infects grapes, citrus and other plants.
Collapse
Affiliation(s)
- Dashuang Shi
- Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue N.W., Washington, DC 20010-2970, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Coque JJ, Pérez-Llarena FJ, Enguita FJ, Fuente JL, Martín JF, Liras P. Characterization of the cmcH genes of Nocardia lactamdurans and Streptomyces clavuligerus encoding a functional 3'-hydroxymethylcephem O-carbamoyltransferase for cephamycin biosynthesis. Gene 1995; 162:21-7. [PMID: 7557411 DOI: 10.1016/0378-1119(95)00308-s] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Sequencing of ORF10 (gene cmcH) of the Nocardia lactamdurans cephamycin gene cluster proved that it encodes a protein with a deduced molecular mass of 57,149 Da. This protein showed significant similarity to the putative O-carbamoyltransferases (O-Cases) encoded by the nodU genes of Rhizobium fredii and Bradyrhizobium japonicum, involved in the synthesis of nodulation factors. The carbamoyl-phosphate (CP)-binding amino-acid sequence of human OTCase is conserved in the cmcH product. A similar cmcH (80% identify in a 160-nt fragment) in the cephamycin (CmC) cluster of cmc genes of Streptomyces clavuligerus was partially sequenced. The cmcH gene is closely linked to and in the same orientation as cefF in both organisms. Both cmcH were subcloned in pIJ702 and expressed in Streptomyces lividans. Extracts of transformants could carbamoylate decarbamoylcefuroxime. A similar cmcH was found by Southern hybridization in Streptomyces cattleya, but not in Streptomyces griseus or Streptomyces lipmanii which produce non-carbamoylated CmC.
Collapse
Affiliation(s)
- J J Coque
- Department of Ecology, Genetics and Microbiology, Faculty of Biology, University of León, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Coque JJ, Enguita FJ, Martín JF, Liras P. A two-protein component 7 alpha-cephem-methoxylase encoded by two genes of the cephamycin C cluster converts cephalosporin C to 7-methoxycephalosporin C. J Bacteriol 1995; 177:2230-5. [PMID: 7721717 PMCID: PMC176873 DOI: 10.1128/jb.177.8.2230-2235.1995] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Two genes, cmcI and cmcJ, corresponding to open reading frames 7 and 8 (ORF7 and ORF8) of the cephamycin C cluster of Nocardia lactamdurans encode enzymes that convert cephalosporin C to 7-methoxycephalosporin C. Proteins P7 and P8 (the products of ORF7 and ORF8 expressed in Streptomyces lividans) introduce the methoxyl group at C-7 of the cephem nucleus. Efficient hydroxylation at C-7 and transfer of the methyl group from S-adenosylmethionine require both proteins P7 and P8, although P7 alone shows weak C-7 hydroxylase activity and strong cephalosporin-dependent NADH oxidase activity. Both P7 and P8 appear to be synthesized in a coordinated form by translational coupling of cmcI and cmcJ. Protein P7 contains domains that correspond to conserved sequences in cholesterol 7 alpha-monooxygenases and to the active center of O-methyltransferases by comparison with the crystal structure of catechol-O-methyltransferase. Protein P8 may act as a coupling protein for efficient hydroxylation at C-7 in a form similar to that of the two-component system of Pseudomonas putida p-hydroxyphenylacetate-3-hydroxylase.
Collapse
Affiliation(s)
- J J Coque
- Department of Ecology, Genetics and Microbiology, Faculty of Biology, University of León, Spain
| | | | | | | |
Collapse
|
19
|
Abstract
The genes pcbAB, pcbC and penDE encoding enzymes involved in the biosynthesis of penicillin have been cloned from Penicillium chrysogenum and Aspergillus nidulans. They are clustered in chromosome I (10.4 Mb) of P. chrysogenum, but they are located in chromosome II of Penicillium notatum (9.6 Mb) and in chromosome VI (3.0 Mb) of A. nidulans. Expression studies have shown that each gene is expressed as a single transcript from separate promoters. Enzyme regulation studies and gene expression analysis have provided useful information to understand the control of gene expression leading to overexpression of the genes involved in penicillin biosynthesis. Cephalosporin genes have been studied in Cephalosporium acremonium and also in cephalosporin-producing bacteria. In C. acremonium the genes involved in cephalosporin biosynthesis are separated in at least two clusters. Cluster I (pcbAB-pcbC) encodes the first two enzymes of the cephalosporin pathway which are very similar to those involved in penicillin biosynthesis. Cluster II (cefEF-cefG), encodes the last three enzymatic activities of the cephalosporin pathway. It is unknown, at this time, if the cefD gene encoding isopenicillin epimerase is linked to any of the two clusters. In cephamycin producing bacteria the genes encoding the entire biosynthetic pathway are located in a single cluster extending for about 30 kb in Nocardia lactamdurans, and in Streptomyces clavuligerus. The cephamycin clusters of N. lactamdurans and S. clavuligerus include a gene lat which encodes lysine-6-aminotransferase an enzyme involved in formation of the precursor alpha-aminoadipic acid. The N. lactamdurans cephamycin cluster includes, in addition, a beta-lactamase (bla) gene, a penicillin binding protein (pbp), and a transmembrane protein gene (cmcT) that is probably involved in secretion of the cephamycin. Little is known however about the mechanism of control of gene expression in the different beta-lactam producers. The availability of most of the structural genes provides a good basis for further studies on gene expression. This knowledge should lead in the next decade to a rational design of strain improvement procedures. The origin and evolution of beta-lactam genes is intriguing since their nucleotide sequences are extremely conserved despite their restricted distribution in the microbial world.
Collapse
Affiliation(s)
- J F Martín
- Department of Ecology, Genetics and Microbiology, Faculty of Biology, University of León, Spain
| | | |
Collapse
|
20
|
Affiliation(s)
- S E Jensen
- Department of Microbiology, University of Alberta Edmonton, Canada
| | | |
Collapse
|
21
|
Kirpekar AC, Kirwan DJ, Stieber RW. Effects of Glutamate, Glucose, Phosphate, and Alkali metal ions on cephamycin C production byNocardia lactamdurans in defined media. Biotechnol Bioeng 1991; 38:1100-9. [DOI: 10.1002/bit.260380919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Walker JB. Possible evolutionary relationships between streptomycin and bluensomycin biosynthetic pathways: detection of novel inositol kinase and O-carbamoyltransferase activities. J Bacteriol 1990; 172:5844-51. [PMID: 1698764 PMCID: PMC526902 DOI: 10.1128/jb.172.10.5844-5851.1990] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bluensomycin (glebomycin) is an aminocyclitol antibiotic that differs structurally from dihydrostreptomycin in having bluensidine (1D-1-O-carbamoyl-3-guanidinodeoxy-scyllo-inositol) rather than streptidine (1,3-diguanidino-1,3-dideoxy-scyllo-inositol) as its aminocyclitol moiety. Extracts of the bluensomycin producer Streptomyces hygroscopicus form glebosus ATCC 14607 (S. glebosus) were found to have aminodeoxy-scyllo-inositol kinase activity but to lack 1D-1-guanidino-3-amino-1,3-dideoxy-scyllo-inositol kinase activity, showing for the first time that these two reactions in streptomycin producers must be catalyzed by different enzymes. S. glebosus extracts therefore possess the same five enzymes required for synthesis of guanidinodeoxy-scyllo-inositol from myo-inositol that are found in streptomycin producers but lack the next three of the four enzymes found in streptomycin producers that are required to synthesize the second guanidino group of streptidine-P. In place of a second guanidino group, S. glebosus extracts were found to catalyze a Mg2(+)-dependent carbamoylation of guanidinodeoxy-scyllo-inositol to form bluensidine, followed by a phosphorylation to form bluensidine-P. The novel carbamoyl-P:guanidinodeoxy-scyllo-inositol O-carbamoyltransferase and ATP:bluensidine phosphotransferase activities were not detected in streptomycin producers or in S. glebosus during its early rapid growth phase. Free bluensidine appears to be a normal intermediate in bluensomycin biosynthesis, in contrast to the case of streptomycin biosynthesis; in the latter, although exogenous streptidine can enter the pathway via streptidine-P, free streptidine is not an intermediate in the endogenous biosynthetic pathway. Comparison of the streptomycin and bluensomycin biosynthetic pathways provides a unique opportunity to evaluate those proposed mechanisms for the evolutionary acquisition of new biosynthetic capabilities that involve gene duplication and subsequent mutational changes in one member of the pair. In this model, there are at least five pairs of enzymes catalyzing analogous reactions that can be analyzed for homology at both the protein and DNA levels, including two putative pairs of inositol kinases detected in this study.
Collapse
Affiliation(s)
- J B Walker
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251
| |
Collapse
|
23
|
Martin JF, Liras P. Biosynthesis of β-lactam antibiotics: Design and construction of overproducing strains. Trends Biotechnol 1985. [DOI: 10.1016/0167-7799(85)90057-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Affiliation(s)
- L C Vining
- Biology Department, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
25
|
Naturally Occurring β-Lactams. FORTSCHRITTE DER CHEMIE ORGANISCHER NATURSTOFFE / PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 1985. [DOI: 10.1007/978-3-7091-8790-6_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Wolfe S, Demain AL, Jensen SE, Westlake DW. Enzymatic approach to syntheses of unnatural beta-lactams. Science 1984; 226:1386-92. [PMID: 6390683 DOI: 10.1126/science.6390683] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Four enzymes associated with the transformation of the peptide delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV) into the beta-lactam antibiotic desacetylcephalosporin C have been isolated from the prokaryotic organism Streptomyces clavuligerus and immobilized. Appropriate choice of the cofactors allows continuous and quantitative conversion of the peptide into either penicillins or cephalosporins at room temperature. The overall process includes four oxidations, two ring closures, and one epimerization. In contrast, cell-free transformations with the eukaryotic organism Cephalosporium acremonium do not proceed beyond the oxidation level of penicillin. The amino acids of the natural peptide ACV can be altered by chemical means; several of the resulting peptides are converted into novel antibiotics by the enzymes of Streptomyces clavuligerus.
Collapse
|
27
|
Enzyme Nomenclature. Recommendations 1978. Supplement 4: corrections and additions. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 131:461-72. [PMID: 6840060 DOI: 10.1111/j.1432-1033.1983.tb07285.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
|
29
|
|