1
|
Zhang S, Zhang Q, Lu Y, Chen J, Liu J, Li Z, Xie Z. Roles of Integrin in Cardiovascular Diseases: From Basic Research to Clinical Implications. Int J Mol Sci 2024; 25:4096. [PMID: 38612904 PMCID: PMC11012347 DOI: 10.3390/ijms25074096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) pose a significant global health threat due to their complex pathogenesis and high incidence, imposing a substantial burden on global healthcare systems. Integrins, a group of heterodimers consisting of α and β subunits that are located on the cell membrane, have emerged as key players in mediating the occurrence and progression of CVDs by regulating the physiological activities of endothelial cells, vascular smooth muscle cells, platelets, fibroblasts, cardiomyocytes, and various immune cells. The crucial role of integrins in the progression of CVDs has valuable implications for targeted therapies. In this context, the development and application of various integrin antibodies and antagonists have been explored for antiplatelet therapy and anti-inflammatory-mediated tissue damage. Additionally, the rise of nanomedicine has enhanced the specificity and bioavailability of precision therapy targeting integrins. Nevertheless, the complexity of the pathogenesis of CVDs presents tremendous challenges for monoclonal targeted treatment. This paper reviews the mechanisms of integrins in the development of atherosclerosis, cardiac fibrosis, hypertension, and arrhythmias, which may pave the way for future innovations in the diagnosis and treatment of CVDs.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Qingfang Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Yutong Lu
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jinkai Liu
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhuohan Li
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
| |
Collapse
|
2
|
Xin H, Huang J, Song Z, Mao J, Xi X, Shi X. Structure, signal transduction, activation, and inhibition of integrin αIIbβ3. Thromb J 2023; 21:18. [PMID: 36782235 PMCID: PMC9923933 DOI: 10.1186/s12959-023-00463-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Integrins are heterodimeric receptors comprising α and β subunits. They are expressed on the cell surface and play key roles in cell adhesion, migration, and growth. Several types of integrins are expressed on the platelets, including αvβ3, αIIbβ3, α2β1, α5β1, and α6β1. Among these, physically αIIbβ3 is exclusively expressed on the platelet surface and their precursor cells, megakaryocytes. αIIbβ3 adopts at least three conformations: i) bent-closed, ii) extended-closed, and iii) extended-open. The transition from conformation i) to iii) occurs when αIIbβ3 is activated by stimulants. Conformation iii) possesses a high ligand affinity, which triggers integrin clustering and platelet aggregation. Platelets are indispensable for maintaining vascular system integrity and preventing bleeding. However, excessive platelet activation can result in myocardial infarction (MI) and stroke. Therefore, finding a novel strategy to stop bleeding without accelerating the risk of thrombosis is important. Regulation of αIIbβ3 activation is vital for this strategy. There are a large number of molecules that facilitate or inhibit αIIbβ3 activation. The interference of these molecules can accurately control the balance between hemostasis and thrombosis. This review describes the structure and signal transduction of αIIbβ3, summarizes the molecules that directly or indirectly affect integrin αIIbβ3 activation, and discusses some novel antiαIIbβ3 drugs. This will advance our understanding of the activation of αIIbβ3 and its essential role in platelet function and tumor development.
Collapse
Affiliation(s)
- Honglei Xin
- grid.452511.6Department of Hematology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003 China
| | - Jiansong Huang
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou 310003 China ,grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Zhiqun Song
- grid.412676.00000 0004 1799 0784Jiangsu Province People’s Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029 China
| | - Jianhua Mao
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiaodong Xi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xiaofeng Shi
- Department of Hematology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China. .,Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
3
|
Abstract
The vasculature is a dynamic environment in which blood platelets constantly survey the endothelium for sites of vessel damage. The formation of a mechanically coherent hemostatic plug to prevent blood loss relies on a coordinated series of ligand-receptor interactions governing the recruitment, activation, and aggregation of platelets. The physical biology of each step is distinct in that the recruitment of platelets depends on the mechanosensing of the platelet receptor glycoprotein Ib for the adhesive protein von Willebrand factor, whereas platelet activation and aggregation are responsive to the mechanical forces sensed at adhesive junctions between platelets and at the platelet-matrix interface. Herein we take a biophysical perspective to discuss the current understanding of platelet mechanotransduction as well as the measurement techniques used to quantify the physical biology of platelets in the context of thrombus formation under flow.
Collapse
Affiliation(s)
- Caroline E Hansen
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, Georgia 30332, USA; .,Wallace H. Coulter Department of Biomedical Engineering and Institute for Electronics and Nanotechnology, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Yongzhi Qiu
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, Georgia 30332, USA; .,Wallace H. Coulter Department of Biomedical Engineering and Institute for Electronics and Nanotechnology, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Owen J T McCarty
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239, USA.,Division of Hematology and Medical Oncology and Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Wilbur A Lam
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, Georgia 30332, USA; .,Wallace H. Coulter Department of Biomedical Engineering and Institute for Electronics and Nanotechnology, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| |
Collapse
|
4
|
Shi X, Yang J, Cui X, Huang J, Long Z, Zhou Y, Liu P, Tao L, Ruan Z, Xiao B, Zhang W, Li D, Dai K, Mao J, Xi X. Functional Effect of the Mutations Similar to the Cleavage during Platelet Activation at Integrin β3 Cytoplasmic Tail when Expressed in Mouse Platelets. PLoS One 2016; 11:e0166136. [PMID: 27851790 PMCID: PMC5112943 DOI: 10.1371/journal.pone.0166136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022] Open
Abstract
Previous studies in Chinese hamster ovary cells showed that truncational mutations of β3 at sites of F754 and Y759 mimicking calpain cleavage regulate integrin signaling. The roles of the sequence from F754 to C-terminus and the conservative N756ITY759 motif in platelet function have yet to be elaborated. Mice expressing β3 with F754 and Y759 truncations, or NITY deletion (β3-ΔTNITYRGT, β3-ΔRGT, or β3-ΔNITY) were established through transplanting the homozygous β3-deficient mouse bone marrow cells infected by the GFP tagged MSCV MigR1 retroviral vector encoding different β3 mutants into lethally radiated wild-type mice. The platelets were harvested for soluble fibrinogen binding and platelet spreading on immobilized fibrinogen. Platelet adhesion on fibrinogen- and collagen-coated surface under flow was also tested to assess the ability of the platelets to resist hydrodynamic drag forces. Data showed a drastic inhibition of the β3-ΔTNITYRGT platelets to bind soluble fibrinogen and spread on immobilized fibrinogen in contrast to a partially impaired fibrinogen binding and an almost unaffected spreading exhibited in the β3-ΔNITY platelets. Behaviors of the β3-ΔRGT platelets were consistent with the previous observations in the β3-ΔRGT knock-in platelets. The adhesion impairment of platelets with the β3 mutants under flow was in different orders of magnitude shown as: β3-ΔTNITYRGT>β3-ΔRGT>β3-ΔNITY to fibrinogen-coated surface, and β3-ΔTNITYRGT>β3-ΔNITY>β3-ΔRGT to collagen-coated surface. To evaluate the interaction of the β3 mutants with signaling molecules, GST pull-down and immunofluorescent assays were performed. Results showed that β3-ΔRGT interacted with kindlin but not c-Src, β3-ΔNITY interacted with c-Src but not kindlin, while β3-ΔTNITYRGT did not interact with both proteins. This study provided evidence in platelets at both static and flow conditions that the calpain cleavage-related sequences of integrin β3, i.e. T755NITYRGT762, R760GT762, and N756ITY759 participate in bidirectional, outside-in, and inside-out signaling, respectively and the association of c-Src or kindlin with β3 integrin may regulate these processes.
Collapse
Affiliation(s)
- Xiaofeng Shi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jichun Yang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiongying Cui
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiansong Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Hematology, Institute of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhangbiao Long
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yulan Zhou
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ping Liu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lanlan Tao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zheng Ruan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bing Xiao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Dongya Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Kesheng Dai
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, 215006, China
| | - Jianhua Mao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- * E-mail: (JM); (XX)
| | - Xiaodong Xi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- * E-mail: (JM); (XX)
| |
Collapse
|
5
|
A live cell micro-imaging technique to examine platelet calcium signaling dynamics under blood flow. Methods Mol Biol 2012; 788:73-89. [PMID: 22130701 DOI: 10.1007/978-1-61779-307-3_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The platelet is a specialized adhesive cell that plays a key role in thrombus formation under both physiological and pathological blood flow conditions. Platelet adhesion and activation are dynamic processes associated with rapid morphological and functional changes, with the earliest signaling events occurring over a subsecond time-scale. The relatively small size of platelets combined with the dynamic nature of platelet adhesion under blood flow means that the investigation of platelet signaling events requires techniques with both high spatial discrimination and rapid temporal resolution. Unraveling the complex signaling processes governing platelet adhesive function under conditions of hemodynamic shear stress has been a longstanding goal in platelet research and has been greatly influenced by the development and application of microimaging-based techniques. Advances in the area of epi-fluorescence and confocal-based platelet calcium (Ca(2+)) imaging have facilitated the in vitro and in vivo elucidation of the early signaling events regulating platelet adhesion and activation. These studies have identified distinct Ca(2+) signaling mechanisms that serve to dynamically regulate activation of the major platelet integrin α(IIb)β(3) and associated adhesion and aggregation processes under flow. This chapter describes in detail a ratiometric calcium imaging protocol and associated troubleshooting procedures developed in our laboratory to examine live platelet Ca(2+) signaling dynamics. This technique provides a method for high-resolution imaging of the Ca(2+) dynamics underpinning platelet adhesion and thrombus formation under conditions of pathophysiological shear stress.
Collapse
|
6
|
Gilio K, Harper MT, Cosemans JMEM, Konopatskaya O, Munnix ICA, Prinzen L, Leitges M, Liu Q, Molkentin JD, Heemskerk JWM, Poole AW. Functional divergence of platelet protein kinase C (PKC) isoforms in thrombus formation on collagen. J Biol Chem 2010; 285:23410-9. [PMID: 20479008 PMCID: PMC2906332 DOI: 10.1074/jbc.m110.136176] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions. Using mouse gene knock-out and pharmacological approaches in human platelets, we show that collagen-dependent α-granule secretion and thrombus formation are mediated by the conventional PKC isoforms, PKCα and PKCβ, whereas the novel isoform, PKCθ, negatively regulates these events. PKCδ also negatively regulates thrombus formation but not α-granule secretion. In addition, we demonstrate for the first time that individual PKC isoforms differentially regulate platelet calcium signaling and exposure of phosphatidylserine under flow. Although platelet deficient in PKCα or PKCβ showed reduced calcium signaling and phosphatidylserine exposure, these responses were enhanced in the absence of PKCθ. In summary therefore, this direct comparison between individual subtypes of PKC, by standardized methodology under flow conditions, reveals that the four major PKCs expressed in platelets play distinct non-redundant roles, where conventional PKCs promote and novel PKCs inhibit thrombus formation on collagen.
Collapse
Affiliation(s)
- Karen Gilio
- Department of Physiology and Pharmacology, School of Medical Sciences, Bristol University, Bristol BS8 1TD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jackson SP, Schoenwaelder SM. PI 3-Kinase p110β regulation of platelet integrin α(IIb)β3. Curr Top Microbiol Immunol 2010; 346:203-24. [PMID: 20517720 DOI: 10.1007/82_2010_61] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hemopoietic cells express relatively high levels of the type I phosphoinositide (PI) 3-kinase isoforms, with p110δ and γ exhibiting specialized signaling functions in neutrophils, monocytes, mast cells, and lymphocytes. In platelets, p110β appears to be the dominant PI 3-kinase isoform regulating platelet activation, irrespective of the nature of the primary platelet activating stimulus. Based on findings with isoform-selective p110β pharmacological inhibitors and more recently with p110β-deficient platelets, p110β appears to primarily signal downstream of G(i)- and tyrosine kinase-coupled receptors. Functionally, inhibition of p110β kinase function leads to a marked defect in integrin α(IIb)β₃ adhesion and reduced platelet thrombus formation in vivo. This defect in platelet adhesive function is not associated with increased bleeding, suggesting that therapeutic targeting of p110β may represent a safe approach to reduce thrombotic complications in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Shaun P Jackson
- Australian Centre for Blood Diseases, Alfred Medical Research and Education Precinct (AMREP), Monash University, Melbourne, VIC, 3004, Australia.
| | | |
Collapse
|
8
|
Nesbitt WS, Westein E, Tovar-Lopez FJ, Tolouei E, Mitchell A, Fu J, Carberry J, Fouras A, Jackson SP. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat Med 2009; 15:665-73. [PMID: 19465929 DOI: 10.1038/nm.1955] [Citation(s) in RCA: 589] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 03/27/2009] [Indexed: 01/28/2023]
Abstract
Platelet aggregation at sites of vascular injury is essential for hemostasis and arterial thrombosis. It has long been assumed that platelet aggregation and thrombus growth are initiated by soluble agonists generated at sites of vascular injury. By using high-resolution intravital imaging techniques and hydrodynamic analyses, we show that platelet aggregation is primarily driven by changes in blood flow parameters (rheology), with soluble agonists having a secondary role, stabilizing formed aggregates. We find that in response to vascular injury, thrombi initially develop through the progressive stabilization of discoid platelet aggregates. Analysis of blood flow dynamics revealed that discoid platelets preferentially adhere in low-shear zones at the downstream face of forming thrombi, with stabilization of aggregates dependent on the dynamic restructuring of membrane tethers. These findings provide insight into the prothrombotic effects of disturbed blood flow parameters and suggest a fundamental reinterpretation of the mechanisms driving platelet aggregation and thrombus growth.
Collapse
Affiliation(s)
- Warwick S Nesbitt
- The Australian Centre for Blood Diseases, Monash University, Alfred Medical Research and Educational Precinct, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Strehl A, Munnix ICA, Kuijpers MJE, van der Meijden PEJ, Cosemans JMEM, Feijge MAH, Nieswandt B, Heemskerk JWM. Dual Role of Platelet Protein Kinase C in Thrombus Formation. J Biol Chem 2007; 282:7046-55. [PMID: 17210570 DOI: 10.1074/jbc.m611367200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Protein kinase C (PKC) isoforms regulate many platelet responses in a still incompletely understood manner. Here we investigated the roles of PKC in the platelet reactions implicated in thrombus formation as follows: secretion aggregate formation and coagulation-stimulating activity, using inhibitors with proven activity in plasma. In human and mouse platelets, PKC regulated aggregation by mediating secretion and contributing to alphaIIbbeta3 activation. Strikingly, PKC suppressed Ca(2+) signal generation and Ca(2+)-dependent exposure of procoagulant phosphatidylserine. Furthermore, under coagulant conditions, PKC suppressed the thrombin-generating capacity of platelets. In flowing human and mouse blood, PKC contributed to platelet adhesion and controlled secretion-dependent thrombus formation, whereas it down-regulated Ca(2+) signaling and procoagulant activity. In murine platelets lacking G(q)alpha, where secretion reactions were reduced in comparison with wild type mice, PKC still positively regulated platelet aggregation and down-regulated procoagulant activity. We conclude that platelet PKC isoforms have a dual controlling role in thrombus formation as follows: (i) by mediating secretion and integrin activation required for platelet aggregation under flow, and (ii) by suppressing Ca(2+)-dependent phosphatidylserine exposure, and consequently thrombin generation and coagulation. This platelet signaling protein is the first one identified to balance the pro-aggregatory and procoagulant functions of thrombi.
Collapse
Affiliation(s)
- Amrei Strehl
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University of Maastricht, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Thornber K, McCarty OJT, Watson SP, Pears CJ. Distinct but critical roles for integrin ?IIb?3in platelet lamellipodia formation on fibrinogen, collagen-related peptide and thrombin. FEBS J 2006; 273:5032-43. [PMID: 17032352 DOI: 10.1111/j.1742-4658.2006.05500.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Integrins are the major receptor type known to facilitate cell adhesion and lamellipodia formation on extracellular matrix proteins. However, collagen-related peptide and thrombin have recently been shown to mediate platelet lamellipodia formation when presented as immobilized surfaces. The aims of this study were to establish if there exists a role for the platelet integrin alpha(IIb)beta(3) in this response; and if so, whether signalling from the integrin is required for lamellipodia formation on these surfaces. Real-time analysis was used to compare platelet morphological changes on surfaces of fibrinogen, collagen-related peptide or thrombin in the presence of various pharmacological inhibitors and platelets from 'knockout' mice. We demonstrate that collagen-related peptide and thrombin stimulate distinct patterns of platelet lamellipodia formation and elevation of intracellular Ca(2+) to that induced by the integrin alpha(IIb)beta(3) ligand, fibrinogen. Nevertheless, lamellipodia formation on collagen-related peptide and thrombin is dependent upon engagement of alpha(IIb)beta(3), consistent with release of alpha(IIb)beta(3) ligand(s) from platelet granules. However, the requirement for signalling by the integrin on fibrinogen can be bypassed by the addition of thrombin to the solution. These observations reveal a critical role for alpha(IIb)beta(3) in forming lamellipodia on collagen-related peptide and thrombin which is dependent on its ability to function as an adhesive receptor but not necessarily on its ability to signal. These results suggest that integrins may play an important role in lamellipodia formation triggered by nonintegrin ligands in platelets and possibly in other cell types.
Collapse
|
11
|
Van de Walle GR, Schoolmeester A, Iserbyt BF, Cosemans JMEM, Heemskerk JWM, Hoylaerts MF, Nurden A, Vanhoorelbeke K, Deckmyn H. Activation of αIIbβ3 is a sufficient but also an imperative prerequisite for activation of α2β1 on platelets. Blood 2006; 109:595-602. [PMID: 16985184 DOI: 10.1182/blood-2005-11-011775] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractPlatelet integrins α2β1 and αIIbβ3 play critical roles in platelet adhesion and thrombus formation after vascular injury. On resting platelets, both integrins are in a low-affinity state. However, agonist stimulation results in conformational changes that enable ligand binding that can be detected with conformation dependent monoclonal antibodies (mAbs). By using such conformation-dependent mAbs, we could demonstrate that activation of integrin αIIbβ3 is not only sufficient, but also a prerequisite for α2β1 activation. Compared with platelets in plasma, stimulation of washed platelets resulted in only a minor activation of α2β1, as detected with the activation-sensitive mAb IAC-1. Addition of fibrinogen to stimulated washed platelets greatly potentiated activation of this integrin. Also, treatment of αIIbβ3 with the ligand-mimetic peptide RGDS, resulting in outside-in signaling, led to a powerful α2β1 activation, even in the absence of overall platelet activation, involving tyrosine kinase activity but no protein kinase C activation. The absolute necessity of αIIbβ3 for proper α2β1 activation on platelets was demonstrated by using the αIIbβ3 antagonist aggrastat, which was able to completely abolish α2β1 activation, both under static and flow conditions. In addition, analogous experiments with Glanzmann platelets lacking αIIbβ3 confirmed the indispensability of αIIbβ3 for α2β1 activation.
Collapse
Affiliation(s)
- Gerlinde R Van de Walle
- Laboratory for Thrombosis Research, Katholieke Universiteit Leuven, KU Leuven Campus Kortrijk, E. Sabbelaan 53, B-8500 Kortrijk, Belgium, and Institut Fédératif No. 4, Hôpital Cardiologique, Pessac, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Canobbio I, Balduini C, Torti M. Signalling through the platelet glycoprotein Ib-V–IX complex. Cell Signal 2004; 16:1329-44. [PMID: 15381249 DOI: 10.1016/j.cellsig.2004.05.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 05/12/2004] [Indexed: 11/16/2022]
Abstract
The glycoprotein Ib-V-IX is one of the major adhesive receptors expressed on the surface of circulating platelets. It is composed of four different polypeptides-GPIbalpha, GPIbbeta, GPIX, and GPV-and represents a multifunctional receptor able to interact with a number of ligands, including the adhesive protein von Willebrand factor, the coagulation factors thrombin, factors XI and XII, and the membrane glycoproteins P-selectin and Mac-1. Interaction of GPIb-V-IX with the subendothelial von Willebrand factor is essential for primary haemostasis, as it initiates platelet adhesion to the subendothelial matrix at the sites of vascular injury even under high flow conditions. Upon interaction with von Willebrand factor, GPIb-V-IX initiates transmembrane signalling events for platelet activation, which eventually result in integrin alpha(IIb)beta(3) stimulation and platelet aggregation. The investigation of the biochemical mechanisms for platelet activation by GPIb-V-IX has attracted increasing attention during the last years. This review will describe and discuss recent findings that have provided new insights into the events underlying GPIb-V-IX transmembrane signalling. In particular, it will summarise basic concepts on the structure of this receptor, extracellular ligands, and intracellular interactors potentially involved in transmembrane signalling. The recently suggested role of membrane Fc receptors in GPIb-V-IX-initiated platelet activation will also be discussed, along with the involvement of lipid metabolising enzymes, tyrosine kinases, and the cytoskeleton in the crosstalk between GPIb-V-IX and integrin alpha(IIb)beta(3).
Collapse
Affiliation(s)
- Ilaria Canobbio
- Center of Excellence for Applied Biology, Department of Biochemistry, University of Pavia, via Bassi 21, Pavia 27100, Italy
| | | | | |
Collapse
|
13
|
Alonso-Escolano D, Strongin AY, Chung AW, Deryugina EI, Radomski MW. Membrane type-1 matrix metalloproteinase stimulates tumour cell-induced platelet aggregation: role of receptor glycoproteins. Br J Pharmacol 2003; 141:241-52. [PMID: 14691052 PMCID: PMC1574193 DOI: 10.1038/sj.bjp.0705606] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
1. Matrix metalloproteinase-2 (MMP-2) plays a role in agonist- and tumour cell-induced platelet aggregation (TCIPA). 2. MMP-2 is synthesized as a proenzyme and is activated at the cell surface by membrane type-1 matrix metalloproteinase (MT1-MMP, MMP-14). 3. The significance of tumour cell-associated MT1-MMP for TCIPA was investigated using human breast carcinoma MCF7 cells stably coexpressing the integrin alphavbeta3 with MT1-MMP, cells expressing alphavbeta3 alone and mock-transfected cells. 4. Western blot and zymography confirmed that alphavbeta3/MT1-MMP cells expressed MT1-MMP and efficiently processed proMMP-2 to MMP-2. 5. Aggregometry, phase-contrast and transmission electron microscopy and flow cytometry were used to characterize TCIPA induced by MCF7 cell lines. 6. The aggregating potency of cells was: alphavbeta3/MT1-MMP >alphavbeta3=mock cells, as shown by aggregometry and phase-contrast microscopy. 7. Electron microscopy revealed close, membrane-membrane interactions between activated platelets and alphavbeta3/MT1-MMP cells during TCIPA. 8. Inhibition of MMP-2 with the neutralizing anti-MMP-2 antibody (5 microg ml(-1)) and o-phenanthroline (100 microm) reduced aggregation induced by alphavbeta3/MT1-MMP cells. 9. TCIPA induced by alphavbeta3/MT1-MMP cells was also reduced by inhibiting the generation and actions of ADP with apyrase (250 microg ml(-1)) and 2-methylthio-AMP (2-MeSAMP) (30 microm), but not N(6)-methyl-2'-deoxyadenosine-3',5'-bisphosphate (MRS2179) (30 microm). 10. Flow cytometry demonstrated that TCIPA enhanced expression of glycoprotein (GP) Ib and IIb/IIIa receptors not only on platelets but also on breast cancer cells. 11. Thus, (a) human breast carcinoma cell surface-associated MT1-MMP, via activating proMMP-2, stimulates TCIPA; (b) ADP amplifies the effects of MMPs via stimulation of P2Y(12) receptors and (c) both tumour- and platelet-derived GPIb and GPIIb/IIIa are involved in the aggregatory effects of MT1-MMP.
Collapse
Affiliation(s)
- David Alonso-Escolano
- Department of Integrative Biology and Pharmacology, University of Texas, Houston, TX 77030, USA
- Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas, Houston, TX 77030, USA
- University of Alberta, Edmonton, AB T6G2H7, Canada
| | - Alex Y Strongin
- Cancer Research Center, The Burnham Institute, La Jolla, CA 92037, USA
| | - Ada W Chung
- University of Alberta, Edmonton, AB T6G2H7, Canada
| | - Elena I Deryugina
- Cancer Research Center, The Burnham Institute, La Jolla, CA 92037, USA
| | - Marek W Radomski
- Department of Integrative Biology and Pharmacology, University of Texas, Houston, TX 77030, USA
- Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas, Houston, TX 77030, USA
- University of Alberta, Edmonton, AB T6G2H7, Canada
- Author for correspondence:
| |
Collapse
|
14
|
Affiliation(s)
- S S Smyth
- Carolina Cardiovascular Biology Center, Department of Medicine/Cardiology, 5109 Neuroscience Research Building CB #7126, The University of North Carolina, Chapel Hill, NC 27599-7126, USA.
| |
Collapse
|