1
|
Yusof NA, Masnoddin M, Charles J, Thien YQ, Nasib FN, Wong CMVL, Abdul Murad AM, Mahadi NM, Bharudin I. Can heat shock protein 70 (HSP70) serve as biomarkers in Antarctica for future ocean acidification, warming and salinity stress? Polar Biol 2022. [DOI: 10.1007/s00300-022-03006-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractThe Antarctic Peninsula is one of the fastest-warming places on Earth. Elevated sea water temperatures cause glacier and sea ice melting. When icebergs melt into the ocean, it “freshens” the saltwater around them, reducing its salinity. The oceans absorb excess anthropogenic carbon dioxide (CO2) causing decline in ocean pH, a process known as ocean acidification. Many marine organisms are specifically affected by ocean warming, freshening and acidification. Due to the sensitivity of Antarctica to global warming, using biomarkers is the best way for scientists to predict more accurately future climate change and provide useful information or ecological risk assessments. The 70-kilodalton (kDa) heat shock protein (HSP70) chaperones have been used as biomarkers of stress in temperate and tropical environments. The induction of the HSP70 genes (Hsp70) that alter intracellular proteins in living organisms is a signal triggered by environmental temperature changes. Induction of Hsp70 has been observed both in eukaryotes and in prokaryotes as response to environmental stressors including increased and decreased temperature, salinity, pH and the combined effects of changes in temperature, acidification and salinity stress. Generally, HSP70s play critical roles in numerous complex processes of metabolism; their synthesis can usually be increased or decreased during stressful conditions. However, there is a question as to whether HSP70s may serve as excellent biomarkers in the Antarctic considering the long residence time of Antarctic organisms in a cold polar environment which appears to have greatly modified the response of heat responding transcriptional systems. This review provides insight into the vital roles of HSP70 that make them ideal candidates as biomarkers for identifying resistance and resilience in response to abiotic stressors associated with climate change, which are the effects of ocean warming, freshening and acidification in Antarctic organisms.
Collapse
|
2
|
Agwunobi DO, Wang T, Zhang M, Wang T, Jia Q, Zhang M, Shi X, Yu Z, Liu J. Functional implication of heat shock protein 70/90 and tubulin in cold stress of Dermacentor silvarum. Parasit Vectors 2021; 14:542. [PMID: 34666804 PMCID: PMC8527796 DOI: 10.1186/s13071-021-05056-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
Background The tick Dermacentor silvarum Olenev (Acari: Ixodidae) is a vital vector tick species mainly distributed in the north of China and overwinters in the unfed adult stage. The knowledge of the mechanism that underlies its molecular adaptation against cold is limited. In the present study, genes of hsp70 and hsp90 cDNA, named Dshsp70 and Dshsp90, and tubulin were cloned and characterized from D. silvarum, and their functions in cold stress were further evaluated. Methods The genome of the heat shock proteins and tubulin of D. silvarum were sequenced and analyzed using bioinformatics methods. Each group of 20 ticks were injected in triplicate with Dshsp90-, Dshsp70-, and tubulin-derived dsRNA, whereas the control group was injected with GFP dsRNA. Then, the total RNA was extracted and cDNA was synthesized and subjected to RT-qPCR. After the confirmation of knockdown, the ticks were incubated for 24 h and were exposed to − 20 °C lethal temperature (LT50), and then the mortality was calculated. Results Results indicated that Dshsp70 and Dshsp90 contained an open reading frame of 345 and 2190 nucleotides that encoded 114 and 729 amino acid residues, respectively. The transcript Dshsp70 showed 90% similarity with that identified from Dermacentor variabilis, whereas Dshsp90 showed 85% similarity with that identified from Ixodes scapularis. Multiple sequence alignment indicates that the deduced amino acid sequences of D. silvarum Hsp90, Hsp70, and tubulin show very high sequence identity to their corresponding sequences in other species. Hsp90 and Hsp70 display highly conserved and signature amino acid sequences with well-conserved MEEVD motif at the C-terminal in Hsp90 and a variable C-terminal region with a V/IEEVD-motif in Hsp70 that bind to numerous co-chaperones. RNA interference revealed that the mortality of D. silvarum was significantly increased after injection of dsRNA of Dshsp70 (P = 0.0298) and tubulin (P = 0.0448), whereas no significant increases were observed after the interference of Dshsp90 (P = 0.0709). Conclusions The above results suggested that Dshsp70 and tubulin play an essential role in the low-temperature adaptation of ticks. The results of this study can contribute to the understanding of the survival and acclimatization of overwintering ticks. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05056-y.
Collapse
Affiliation(s)
- Desmond O Agwunobi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Tongxuan Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Meng Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Tianhong Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qingying Jia
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Miao Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xinyue Shi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
3
|
Comparative transcriptome analysis of the invasive weed Mikania micrantha with its native congeners provides insights into genetic basis underlying successful invasion. BMC Genomics 2018; 19:392. [PMID: 29793434 PMCID: PMC5968712 DOI: 10.1186/s12864-018-4784-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023] Open
Abstract
Background Mikania micrantha H.B.K. (Asteraceae) is one of the world’s most invasive weeds which has been rapidly expanding in tropical Asia, including China, while its close relative M. cordata, the only Mikania species native to China, shows no harm to the local ecosystems. These two species are very similar in morphology but differ remarkably in several ecological and physiological traits, representing an ideal system for comparative analysis to investigate the genetic basis underlying invasion success. In this study, we performed RNA-sequencing on the invader M. micrantha and its native congener M. cordata in China, to unravel the genetic basis underlying the strong invasiveness of M. micrantha. For a more robust comparison, another non-invasive congener M. cordifolia was also sequenced and compared. Results A total of 52,179, 55,835, and 52,983 unigenes were obtained for M. micrantha, M. cordata, and M. cordifolia, respectively. Phylogenetic analyses and divergence time dating revealed a relatively recent split between M. micrantha and M. cordata, i.e., approximately 4.81 million years ago (MYA), after their divergence with M. cordifolia (8.70 MYA). Gene ontology classifications, pathway assignments and differential expression analysis revealed higher representation or significant up-regulation of genes associated with photosynthesis, energy metabolism, protein modification and stress response in M. micrantha than in M. cordata or M. cordifolia. Analysis of accelerated evolution and positive selection also suggested the importance of these related genes and processes to the adaptability and invasiveness of M. micrantha. Particularly, most (77 out of 112, i.e. 68.75%) positively selected genes found in M. micrantha could be classified into four groups, i.e., energy acquisition and utilization (10 genes), growth and reproduction (13 genes), protection and repair (34 genes), and signal transduction and expression regulation (20 genes), which may have contributed to the high adaptability of M. micrantha to various new environments and the capability to occupy a wider niche, reflected in its high invasiveness. Conclusions We characterized the transcriptomes of the invasive species M. micrantha and its non-invasive congeners, M. cordata and M. cordifolia. A comparison of their transcriptomes provided insights into the genetic basis of the high invasiveness of M. micrantha. Electronic supplementary material The online version of this article (10.1186/s12864-018-4784-9) contains supplementary material, which is available to authorized users.
Collapse
|
4
|
Zhang H, Yang J, Wu S, Gong W, Chen C, Perrett S. Glutathionylation of the Bacterial Hsp70 Chaperone DnaK Provides a Link between Oxidative Stress and the Heat Shock Response. J Biol Chem 2016; 291:6967-81. [PMID: 26823468 PMCID: PMC4807281 DOI: 10.1074/jbc.m115.673608] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 12/27/2022] Open
Abstract
DnaK is the major bacterial Hsp70, participating in DNA replication, protein folding, and the stress response. DnaK cooperates with the Hsp40 co-chaperone DnaJ and the nucleotide exchange factor GrpE. Under non-stress conditions, DnaK binds to the heat shock transcription factor σ(32)and facilitates its degradation. Oxidative stress results in temporary inactivation of DnaK due to depletion of cellular ATP and thiol modifications such as glutathionylation until normal cellular ATP levels and a reducing environment are restored. However, the biological significance of DnaK glutathionylation remains unknown, and the mechanisms by which glutathionylation may regulate the activity of DnaK are also unclear. We investigated the conditions under which Escherichia coli DnaK undergoesS-glutathionylation. We observed glutathionylation of DnaK in lysates of E. coli cells that had been subjected to oxidative stress. We also obtained homogeneously glutathionylated DnaK using purified DnaK in the apo state. We found that glutathionylation of DnaK reversibly changes the secondary structure and tertiary conformation, leading to reduced nucleotide and peptide binding ability. The chaperone activity of DnaK was reversibly down-regulated by glutathionylation, accompanying the structural changes. We found that interaction of DnaK with DnaJ, GrpE, or σ(32)becomes weaker when DnaK is glutathionylated, and the interaction is restored upon deglutathionylation. This study confirms that glutathionylation down-regulates the functions of DnaK under oxidizing conditions, and this down-regulation may facilitate release of σ(32)from its interaction with DnaK, thus triggering the heat shock response. Such a mechanism provides a link between oxidative stress and the heat shock response in bacteria.
Collapse
Affiliation(s)
- Hong Zhang
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Jie Yang
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China, University of the Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China, and
| | - Si Wu
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Weibin Gong
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Chang Chen
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China, Beijing Institute for Brain Disorders, Beijing 100069, China
| | - Sarah Perrett
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China,
| |
Collapse
|
5
|
Melero R, Moro F, Pérez-Calvo MÁ, Perales-Calvo J, Quintana-Gallardo L, Llorca O, Muga A, Valpuesta JM. Modulation of the chaperone DnaK allosterism by the nucleotide exchange factor GrpE. J Biol Chem 2015; 290:10083-92. [PMID: 25739641 DOI: 10.1074/jbc.m114.623371] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Indexed: 11/06/2022] Open
Abstract
Hsp70 chaperones comprise two domains, the nucleotide-binding domain (Hsp70NBD), responsible for structural and functional changes in the chaperone, and the substrate-binding domain (Hsp70SBD), involved in substrate interaction. Substrate binding and release in Hsp70 is controlled by the nucleotide state of DnaKNBD, with ATP inducing the open, substrate-receptive DnaKSBD conformation, whereas ADP forces its closure. DnaK cycles between the two conformations through interaction with two cofactors, the Hsp40 co-chaperones (DnaJ in Escherichia coli) induce the ADP state, and the nucleotide exchange factors (GrpE in E. coli) induce the ATP state. X-ray crystallography showed that the GrpE dimer is a nucleotide exchange factor that works by interaction of one of its monomers with DnaKNBD. DnaKSBD location in this complex is debated; there is evidence that it interacts with the GrpE N-terminal disordered region, far from DnaKNBD. Although we confirmed this interaction using biochemical and biophysical techniques, our EM-based three-dimensional reconstruction of the DnaK-GrpE complex located DnaKSBD near DnaKNBD. This apparent discrepancy between the functional and structural results is explained by our finding that the tail region of the GrpE dimer in the DnaK-GrpE complex bends and its tip contacts DnaKSBD, whereas the DnaKNBD-DnaKSBD linker contacts the GrpE helical region. We suggest that these interactions define a more complex role for GrpE in the control of DnaK function.
Collapse
Affiliation(s)
- Roberto Melero
- From the Centro de Investigaciones Biológicas (CIB-CSIC), 28040 Madrid
| | - Fernando Moro
- the Unidad de Biofísica (CSIC/UPV-EHU) and Departamento de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, 48080 Bilbao, and
| | | | - Judit Perales-Calvo
- the Unidad de Biofísica (CSIC/UPV-EHU) and Departamento de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, 48080 Bilbao, and
| | | | - Oscar Llorca
- From the Centro de Investigaciones Biológicas (CIB-CSIC), 28040 Madrid,
| | - Arturo Muga
- the Unidad de Biofísica (CSIC/UPV-EHU) and Departamento de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, 48080 Bilbao, and
| | | |
Collapse
|
6
|
Sekhar A, Lam HN, Cavagnero S. Protein folding rates and thermodynamic stability are key determinants for interaction with the Hsp70 chaperone system. Protein Sci 2013; 21:1489-502. [PMID: 22886941 DOI: 10.1002/pro.2139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The Hsp70 family of molecular chaperones participates in vital cellular processes including the heat shock response and protein homeostasis. E. coli's Hsp70, known as DnaK, works in concert with the DnaJ and GrpE co-chaperones (K/J/E chaperone system), and mediates cotranslational and post-translational protein folding in the cytoplasm. While the role of the K/J/E chaperones is well understood in the presence of large substrates unable to fold independently, it is not known if and how K/J/E modulates the folding of smaller proteins able to fold even in the absence of chaperones. Here, we combine experiments and computation to evaluate the significance of kinetic partitioning as a model to describe the interplay between protein folding and binding to the K/J/E chaperone system. First, we target three nonobligatory substrates, that is, proteins that do not require chaperones to fold. The experimentally observed chaperone association of these client proteins during folding is entirely consistent with predictions from kinetic partitioning. Next, we develop and validate a computational model (CHAMP70) that assumes kinetic partitioning of substrates between folding and interaction with K/J/E. CHAMP70 quantitatively predicts the experimentally measured interaction of RNase H(D) as it refolds in the presence of various chaperones. CHAMP70 shows that substrates are posed to interact with K/J/E only if they are slow-folding proteins with a folding rate constant k(f) <50 s⁻¹, and/or thermodynamically unstable proteins with a folding free energy ΔG⁰ (UN) ≥-2 kcal mol⁻¹. Hence, the K/J/E system is tuned to use specific protein folding rates and thermodynamic stabilities as substrate selection criteria.
Collapse
Affiliation(s)
- Ashok Sekhar
- Biophysics Program and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
7
|
Zuiderweg ERP, Bertelsen EB, Rousaki A, Mayer MP, Gestwicki JE, Ahmad A. Allostery in the Hsp70 chaperone proteins. Top Curr Chem (Cham) 2013; 328:99-153. [PMID: 22576356 PMCID: PMC3623542 DOI: 10.1007/128_2012_323] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Heat shock 70-kDa (Hsp70) chaperones are essential to in vivo protein folding, protein transport, and protein re-folding. They carry out these activities using repeated cycles of binding and release of client proteins. This process is under allosteric control of nucleotide binding and hydrolysis. X-ray crystallography, NMR spectroscopy, and other biophysical techniques have contributed much to the understanding of the allosteric mechanism linking these activities and the effect of co-chaperones on this mechanism. In this chapter these findings are critically reviewed. Studies on the allosteric mechanisms of Hsp70 have gained enhanced urgency, as recent studies have implicated this chaperone as a potential drug target in diseases such as Alzheimer's and cancer. Recent approaches to combat these diseases through interference with the Hsp70 allosteric mechanism are discussed.
Collapse
Affiliation(s)
- Erik R P Zuiderweg
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Arockiaraj J, Vanaraja P, Easwvaran S, Singh A, Othman RY, Bhassu S. Molecular functions of chaperonin gene, containing tailless complex polypeptide 1 from Macrobrachium rosenbergii. Gene 2012; 508:241-9. [PMID: 22903032 DOI: 10.1016/j.gene.2012.07.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/25/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
Chaperonin (MrChap) was identified from a constructed transcriptome dataset of freshwater prawn Macrobrachium rosenbergii. The MrChap peptide contains a long chaperone super family domain between 11 and 525. Three chaperone tailless complex polypeptide (TCP-1) signatures are present in the MrChap peptide sequence at 36-48, 57-73 and 85-93. The gene expressions of MrChap in both healthy M. rosenbergii and those infected with infectious hypodermal and hematopoietic necrosis virus (IHHNV) were examined using qRT-PCR. To understand its biological activity, the recombinant MrChap gene was constructed and expressed in Escherichia coli BL21 (DE3). The results of ATPase assay showed that the recombinant MrChap protein exhibited apparent ATPase activity. Chaperone activity assay showed that the recombinant MrChap protein is an active chaperone. These results suggest that MrChap is potentially involved in the immune responses against viral infection in M. rosenbergii. These findings indicate that the recombinant MrChap protein may be used in immunotherapeutic approaches.
Collapse
Affiliation(s)
- Jesu Arockiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM University, SRM Nagar, Kattankulathur 603 203, Chennai, Tamil Nadu, India.
| | | | | | | | | | | |
Collapse
|
9
|
Goswami AV, Samaddar M, Sinha D, Purushotham J, D'Silva P. Enhanced J-protein interaction and compromised protein stability of mtHsp70 variants lead to mitochondrial dysfunction in Parkinson's disease. Hum Mol Genet 2012; 21:3317-32. [PMID: 22544056 PMCID: PMC3392108 DOI: 10.1093/hmg/dds162] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 04/13/2012] [Accepted: 04/20/2012] [Indexed: 12/31/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent progressive neurological disorder commonly associated with impaired mitochondrial function in dopaminergic neurons. Although familial PD is multifactorial in nature, a recent genetic screen involving PD patients identified two mitochondrial Hsp70 variants (P509S and R126W) that are suggested in PD pathogenesis. However, molecular mechanisms underlying how mtHsp70 PD variants are centrally involved in PD progression is totally elusive. In this article, we provide mechanistic insights into the mitochondrial dysfunction associated with human mtHsp70 PD variants. Biochemically, the R126W variant showed severely compromised protein stability and was found highly susceptible to aggregation at physiological conditions. Strikingly, on the other hand, the P509S variant exhibits significantly enhanced interaction with J-protein cochaperones involved in folding and import machinery, thus altering the overall regulation of chaperone-mediated folding cycle and protein homeostasis. To assess the impact of mtHsp70 PD mutations at the cellular level, we developed yeast as a model system by making analogous mutations in Ssc1 ortholog. Interestingly, PD mutations in yeast (R103W and P486S) exhibit multiple in vivo phenotypes, which are associated with 'mitochondrial dysfunction', including compromised growth, impairment in protein translocation, reduced functional mitochondrial mass, mitochondrial DNA loss, respiratory incompetency and increased susceptibility to oxidative stress. In addition to that, R103W protein is prone to aggregate in vivo due to reduced stability, whereas P486S showed enhanced interaction with J-proteins, thus remarkably recapitulating the cellular defects that are observed in human PD variants. Taken together, our findings provide evidence in favor of direct involvement of mtHsp70 as a susceptibility factor in PD.
Collapse
Affiliation(s)
| | | | | | | | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
10
|
Arockiaraj J, Vanaraja P, Easwvaran S, Singh A, Othman RY, Bhassu S. Gene expression and functional studies of small heat shock protein 37 (MrHSP37) from Macrobrachium rosenbergii challenged with infectious hypodermal and hematopoietic necrosis virus (IHHNV). Mol Biol Rep 2012; 39:6671-82. [DOI: 10.1007/s11033-012-1473-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 01/24/2012] [Indexed: 11/29/2022]
|
11
|
Chernikov VA, Gorokhovets NV, Savvateeva LV, Severin SE. Functional characterization of recombinant human HSP70 domains and interdomain interactions. Mol Biol 2011. [DOI: 10.1134/s0026893311040029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Schweizer RS, Aponte RA, Zimmermann S, Weber A, Reinstein J. Fine tuning of a biological machine: DnaK gains improved chaperone activity by altered allosteric communication and substrate binding. Chembiochem 2011; 12:1559-73. [PMID: 21656889 DOI: 10.1002/cbic.201000786] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Indexed: 11/09/2022]
Abstract
DnaK is a member of the Hsp70 family of molecular chaperones. This molecular machine couples the binding and hydrolysis of ATP to binding and release of substrate proteins. The switches that are involved in allosteric communication within this multidomain protein are mostly unknown. Previous insights were largely obtained by mutants, which displayed either wild-type activity or reduced folding assistance of substrate proteins. With a directed evolution approach for improved folding assistance we selected a DnaK variant characterized by a glycine to alanine substitution at position 384 (G384A); this resulted in a 2.5-fold higher chaperone activity in an in vitro DnaK-assisted firefly luciferase refolding assay. Quantitative biochemical characterization revealed several changes of key kinetic parameters compared to the wild type. Most pronounced is a 13-fold reduced rate constant for substrate release in the ATP-bound state, which we assume, in conjunction with the resulting increase in substrate affinity, to be related to improved chaperone activity. As the underlying mechanistic reason for this change we propose an altered interface of allosteric communication of mutant G384A, which is notably located at a hinge position between nucleotide and substrate binding domain.
Collapse
Affiliation(s)
- Regina S Schweizer
- Department for Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
13
|
Taneva SG, Moro F, Velázquez-Campoy A, Muga A. Energetics of nucleotide-induced DnaK conformational states. Biochemistry 2010; 49:1338-45. [PMID: 20078127 DOI: 10.1021/bi901847q] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hsp70 chaperones are molecular switches that use the free energy of ATP binding and hydrolysis to modulate their affinity for protein substrates and, most likely, to remodel non-native interactions allowing proper substrate folding. By means of isothermal titration calorimetry, we have measured the thermodynamics of ATP and ADP binding to (i) wild-type DnaK, the main bacterial Hsp70; (ii) two single-point mutants, DnaK(T199A), which lacks ATPase activity but maintains conformational changes similar to those observed in the wild-type protein, and DnaK(R151A), defective in interdomain communication; and iii) two deletion mutants, the isolated nucleotide binding domain (K-NBD) and a DeltaLid construct [DnaK(1-507)]. At 25 degrees C, ATP binding to DnaK results in a fast endothermic and a slow exothermic process due to ATP hydrolysis. We demonstrate that the endothermic event is due to the allosteric coupling between ATP binding to the nucleotide binding domain and the conformational rearrangement of the substrate binding domain. The interpretation of our data is compatible with domain docking upon ATP binding and shows that this conformational change carries an energy penalty of ca. 1 kcal/mol. The conformational energy stored in the ATP-bound DnaK state, together with the free energy of ATP hydrolysis, can be used in remodeling bound substrates.
Collapse
Affiliation(s)
- Stefka G Taneva
- Unidad de Biofsica (CSIC/UPV-EHU) y Departamento de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain
| | | | | | | |
Collapse
|
14
|
Multifaceted role of heat shock protein 70 in neurons. Mol Neurobiol 2010; 42:114-23. [PMID: 20354811 DOI: 10.1007/s12035-010-8116-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/15/2010] [Indexed: 12/22/2022]
Abstract
Heat shock protein 70 (Hsp70) plays important roles in neural protection from stress by assisting cellular protein folding. In this review we discuss the current understanding of inducible and constitutive Hsp70 in maintaining and protecting neuronal synaptic function under normal and stressed conditions.
Collapse
|
15
|
Sharma D, Masison DC. Hsp70 structure, function, regulation and influence on yeast prions. Protein Pept Lett 2009; 16:571-81. [PMID: 19519514 DOI: 10.2174/092986609788490230] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heat shock proteins protect cells from various conditions of stress. Hsp70, the most ubiquitous and highly conserved Hsp, helps proteins adopt native conformation or regain function after misfolding. Various co-chaperones specify Hsp70 function and broaden its substrate range. We discuss Hsp70 structure and function, regulation by co-factors and influence on propagation of yeast prions.
Collapse
Affiliation(s)
- Deepak Sharma
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive and Kidney Diseases, National institutes of Health, Bethesda, MD 20892-0851, USA
| | | |
Collapse
|
16
|
Moro F, Taneva SG, Velázquez-Campoy A, Muga A. GrpE N-terminal domain contributes to the interaction with Dnak and modulates the dynamics of the chaperone substrate binding domain. J Mol Biol 2007; 374:1054-64. [PMID: 17976642 DOI: 10.1016/j.jmb.2007.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 09/25/2007] [Accepted: 10/01/2007] [Indexed: 11/26/2022]
Abstract
GrpE acts as a nucleotide exchange factor for DnaK, the main Hsp70 protein in bacteria, accelerating ADP/ATP exchange by several orders of magnitude. GrpE is a homodimer, each subunit containing three structural domains: a N-terminal unordered segment, two long coils and a C-terminal globular domain formed by a four-helix bundle, and a beta-subdomain. GrpE association to DnaK nucleotide-binding domain involves side-chain and backbone interactions located within the "headpiece" of the cochaperone, which consists of the C-terminal half of the coils, the four-helix bundle and the beta-subdomain. However, the role of the GrpE N-terminal region in the interaction with DnaK and the activity of the cochaperone remain controversial. In this study we explore the contribution of this domain to the binding reaction, using the wild-type proteins, two deletion mutants of GrpE (GrpE(34-197) and GrpE(69-197)) and the isolated DnaK nucleotide-binding domain. Analysis of the thermodynamic binding parameters obtained by isothermal titration calorimetry shows that both GrpE N-terminal segments, 1-33 and 34-68, contribute to the binding reaction. Partial proteolysis and substrate dissociation kinetics also suggest that the N-terminal half of GrpE coils (residues 34-68) interacts with DnaK interdomain linker, regulates the nucleotide exchange activity of the cochaperone and is required to stabilize DnaK-substrate complexes in the ADP-bound conformation.
Collapse
Affiliation(s)
- Fernando Moro
- Unidad de Biofísica (CSIC/UPV-EHU) y Departamento de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain.
| | | | | | | |
Collapse
|
17
|
Han W, Christen P. cis-Effect of DnaJ on DnaK in ternary complexes with chimeric DnaK/DnaJ-binding peptides. FEBS Lett 2004; 563:146-50. [PMID: 15063739 DOI: 10.1016/s0014-5793(04)00290-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Accepted: 03/05/2004] [Indexed: 11/28/2022]
Abstract
Chimeric peptides, comprising a DnaK-binding sequence of L-amino acid residues (motif k) and an exclusive DnaJ-binding sequence of D-amino acid residues (motif j) connected through a 22-residue linker, were examined as minisubstrates for the DnaK chaperone system. The DnaJ-stimulated ATPase activity of DnaK was three times higher in the presence of the chimeric peptides pjk or pkj than in the simultaneous presence of the corresponding single-motif peptides ala-p5 (k motif) plus D-p5 (j motif). Apparently, pjk and pkj mimic unfolded proteins by forming ternary (ATP x DnaK) x peptide x DnaJ complexes which favor cis-interaction of DnaJ with DnaK. Consistent with this interpretation, the specific stimulatory effect of the chimeric peptides was abolished by either single-motif peptide in excess.
Collapse
Affiliation(s)
- Wanjiang Han
- Biochemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | |
Collapse
|
18
|
Brehmer D, Gässler C, Rist W, Mayer MP, Bukau B. Influence of GrpE on DnaK-substrate interactions. J Biol Chem 2004; 279:27957-64. [PMID: 15102842 DOI: 10.1074/jbc.m403558200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The DnaK chaperone of Escherichia coli assists protein folding by an ATP-dependent interaction with short peptide stretches within substrate polypeptides. This interaction is regulated by the DnaJ and GrpE co-chaperones, which stimulate ATP hydrolysis and nucleotide exchange by DnaK, respectively. Furthermore, GrpE has been claimed to trigger substrate release independent of its role as a nucleotide exchange factor. However, we show here that GrpE can accelerate substrate release from DnaK exclusively in the presence of ATP. In addition, GrpE prevented the association of peptide substrates with DnaK through an activity of its N-terminal 33 amino acids. A ternary complex of GrpE, DnaK, and a peptide substrate could be observed only when the peptide binding to DnaK precedes GrpE binding. Furthermore, we demonstrate that GrpE slows down the release of a protein substrate, sigma(32), from DnaK in the absence of ATP. These findings suggest that the ATP-triggered dissociation of GrpE and substrates from DnaK occurs in a concerted fashion.
Collapse
Affiliation(s)
- Dirk Brehmer
- Zentrum für Molekulare Biologie Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
19
|
Shaner L, Trott A, Goeckeler JL, Brodsky JL, Morano KA. The function of the yeast molecular chaperone Sse1 is mechanistically distinct from the closely related hsp70 family. J Biol Chem 2004; 279:21992-2001. [PMID: 15028727 DOI: 10.1074/jbc.m313739200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Sse1/Hsp110 molecular chaperones are a poorly understood subgroup of the Hsp70 chaperone family. Hsp70 can refold denatured polypeptides via a C-terminal peptide binding domain (PBD), which is regulated by nucleotide cycling in an N-terminal ATPase domain. However, unlike Hsp70, both Sse1 and mammalian Hsp110 bind unfolded peptide substrates but cannot refold them. To test the in vivo requirement for interdomain communication, SSE1 alleles carrying amino acid substitutions in the ATPase domain were assayed for their ability to complement sse1Delta yeast. Surprisingly, all mutants predicted to abolish ATP hydrolysis (D8N, K69Q, D174N, D203N) complemented the temperature sensitivity of sse1Delta and lethality of sse1Deltasse2Delta cells, whereas mutations in predicted ATP binding residues (G205D, G233D) were non-functional. Complementation ability correlated well with ATP binding assessed in vitro. The extreme C terminus of the Hsp70 family is required for substrate targeting and heterocomplex formation with other chaperones, but mutant Sse1 proteins with a truncation of up to 44 C-terminal residues that were not included in the PBD were active. Remarkably, the two domains of Sse1, when expressed in trans, functionally complement the sse1Delta growth phenotype and interact by coimmunoprecipitation analysis. In addition, a functional PBD was required to stabilize the Sse1 ATPase domain, and stabilization also occurred in trans. These data represent the first structure-function analysis of this abundant but ill defined chaperone, and establish several novel aspects of Sse1/Hsp110 function relative to Hsp70.
Collapse
Affiliation(s)
- Lance Shaner
- Department of Microbiology and Molecular Genetics, University of Texas Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
20
|
Grimshaw JPA, Jelesarov I, Siegenthaler RK, Christen P. Thermosensor action of GrpE. The DnaK chaperone system at heat shock temperatures. J Biol Chem 2003; 278:19048-53. [PMID: 12639955 DOI: 10.1074/jbc.m300924200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Temperature directly controls functional properties of the DnaK/DnaJ/GrpE chaperone system. The rate of the high to low affinity conversion of DnaK shows a non-Arrhenius temperature dependence and above approximately 40 degrees C even decreases. In the same temperature range, the ADP/ATP exchange factor GrpE undergoes an extensive, fully reversible thermal transition (Grimshaw, J. P. A., Jelesarov, I., Schönfeld, H. J., and Christen, P. (2001) J. Biol. Chem. 276, 6098-6104). To show that this transition underlies the thermal regulation of the chaperone system, we introduced an intersubunit disulfide bond into the paired long helices of the GrpE dimer. The transition was absent in disulfide-linked GrpE R40C but was restored by reduction. With disulfide-stabilized GrpE, the rate of ADP/ATP exchange and conversion of DnaK from its ADP-liganded high affinity R state to the ATP-liganded low affinity T state continuously increased with increasing temperature. With reduced GrpE R40C, the conversion became slower at temperatures >40 degrees C, as observed with wild-type GrpE. Thus, the long helix pair in the GrpE dimer acts as a thermosensor that, by decreasing its ADP/ATP exchange activity, induces a shift of the DnaK.substrate complexes toward the high affinity R state and in this way adapts the DnaK/DnaJ/GrpE system to heat shock conditions.
Collapse
Affiliation(s)
- John P A Grimshaw
- Biochemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
21
|
Han W, Christen P. Mechanism of the targeting action of DnaJ in the DnaK molecular chaperone system. J Biol Chem 2003; 278:19038-43. [PMID: 12654915 DOI: 10.1074/jbc.m300756200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the DnaK (Hsp70) molecular chaperone system of Escherichia coli, the substrate polypeptide is fed into the chaperone cycle by association with the fast-binding, ATP-liganded form of the DnaK. The substrate binding properties of DnaK are controlled by its two cochaperones DnaJ (Hsp40) and GrpE. DnaJ stimulates the hydrolysis of DnaK-bound ATP, and GrpE accelerates ADP/ATP exchange. DnaJ has been described as targeting the substrate to DnaK, a concept that has remained rather obscure. Based on binding experiments with peptides and polypeptides we propose here a novel mechanism for the targeting action of DnaJ: ATP.DnaK and DnaJ with its substrate-binding domain bind to different segments of one and the same polypeptide chain forming (ATP.DnaK)m.substrate.DnaJn complexes; in these ternary complexes efficient cis-interaction of the J-domain of DnaJ with DnaK is favored by their propinquity and triggers the hydrolysis of DnaK-bound ATP, converting DnaK to its ADP-liganded high affinity state and thus locking it onto the substrate polypeptide.
Collapse
Affiliation(s)
- Wanjiang Han
- Biochemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | |
Collapse
|