1
|
Kügler JH, Le Roes-Hill M, Syldatk C, Hausmann R. Surfactants tailored by the class Actinobacteria. Front Microbiol 2015; 6:212. [PMID: 25852670 PMCID: PMC4365757 DOI: 10.3389/fmicb.2015.00212] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/02/2015] [Indexed: 12/20/2022] Open
Abstract
Globally the change towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application.
Collapse
Affiliation(s)
- Johannes H. Kügler
- Technical Biology, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of TechnologyKarlsruhe, Germany
| | - Marilize Le Roes-Hill
- Biocatalysis and Technical Biology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of TechnologyBellville, South Africa
| | - Christoph Syldatk
- Technical Biology, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of TechnologyKarlsruhe, Germany
| | - Rudolf Hausmann
- Bioprocess Engineering, Institute of Food Science and Biotechnology, University of HohenheimStuttgart, Germany
| |
Collapse
|
2
|
Vergne I, Gilleron M, Nigou J. Manipulation of the endocytic pathway and phagocyte functions by Mycobacterium tuberculosis lipoarabinomannan. Front Cell Infect Microbiol 2015; 4:187. [PMID: 25629008 PMCID: PMC4290680 DOI: 10.3389/fcimb.2014.00187] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/15/2014] [Indexed: 12/11/2022] Open
Abstract
Lipoarabinomannan is a major immunomodulatory lipoglycan found in the cell envelope of Mycobacterium tuberculosis and related human pathogens. It reproduces several salient properties of M. tuberculosis in phagocytic cells, including inhibition of pro-inflammatory cytokine production, inhibition of phagolysosome biogenesis, and inhibition of apoptosis as well as autophagy. In this review, we present our current knowledge on lipoarabinomannan structure and ability to manipulate the endocytic pathway as well as phagocyte functions. A special focus is put on the molecular mechanisms employed and the signaling pathways hijacked. Available information is discussed in the context of M. tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Isabelle Vergne
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique Toulouse, France ; Institut de Pharmacologie et de Biologie Structurale, Université Toulouse III - Paul Sabatier Toulouse, France
| | - Martine Gilleron
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique Toulouse, France ; Institut de Pharmacologie et de Biologie Structurale, Université Toulouse III - Paul Sabatier Toulouse, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique Toulouse, France ; Institut de Pharmacologie et de Biologie Structurale, Université Toulouse III - Paul Sabatier Toulouse, France
| |
Collapse
|
3
|
Turnbull WB, Stalford SA. Methylthioxylose--a jewel in the mycobacterial crown? Org Biomol Chem 2012; 10:5698-706. [PMID: 22575989 DOI: 10.1039/c2ob25630d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ten years ago an unusual sugar was discovered in a cell wall polysaccharide of Mycobacterium tuberculosis. Structural elucidation revealed the presence of the first thiosugar in a bacterial polysaccharide. Synthetic studies have helped to define its relative and absolute configuration as α-D-methylthioxylofuranosyl. While its biosynthetic origins remain the subject of speculation, work has begun to define its possible biological roles.
Collapse
Affiliation(s)
- W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | | |
Collapse
|
4
|
Gao B, Gupta RS. Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 2012; 76:66-112. [PMID: 22390973 PMCID: PMC3294427 DOI: 10.1128/mmbr.05011-11] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The phylum Actinobacteria harbors many important human pathogens and also provides one of the richest sources of natural products, including numerous antibiotics and other compounds of biotechnological interest. Thus, a reliable phylogeny of this large phylum and the means to accurately identify its different constituent groups are of much interest. Detailed phylogenetic and comparative analyses of >150 actinobacterial genomes reported here form the basis for achieving these objectives. In phylogenetic trees based upon 35 conserved proteins, most of the main groups of Actinobacteria as well as a number of their superageneric clades are resolved. We also describe large numbers of molecular markers consisting of conserved signature indels in protein sequences and whole proteins that are specific for either all Actinobacteria or their different clades (viz., orders, families, genera, and subgenera) at various taxonomic levels. These signatures independently support the existence of different phylogenetic clades, and based upon them, it is now possible to delimit the phylum Actinobacteria (excluding Coriobacteriia) and most of its major groups in clear molecular terms. The species distribution patterns of these markers also provide important information regarding the interrelationships among different main orders of Actinobacteria. The identified molecular markers, in addition to enabling the development of a stable and reliable phylogenetic framework for this phylum, also provide novel and powerful means for the identification of different groups of Actinobacteria in diverse environments. Genetic and biochemical studies on these Actinobacteria-specific markers should lead to the discovery of novel biochemical and/or other properties that are unique to different groups of Actinobacteria.
Collapse
Affiliation(s)
- Beile Gao
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
5
|
Chlubnová I, Sylla B, Nugier-Chauvin C, Daniellou R, Legentil L, Kralová B, Ferrières V. Natural glycans and glycoconjugates as immunomodulating agents. Nat Prod Rep 2011; 28:937-52. [DOI: 10.1039/c1np00005e] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2003-2004. MASS SPECTROMETRY REVIEWS 2009; 28:273-361. [PMID: 18825656 PMCID: PMC7168468 DOI: 10.1002/mas.20192] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 07/07/2008] [Accepted: 07/07/2008] [Indexed: 05/13/2023]
Abstract
This review is the third update of the original review, published in 1999, on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings the topic to the end of 2004. Both fundamental studies and applications are covered. The main topics include methodological developments, matrices, fragmentation of carbohydrates and applications to large polymeric carbohydrates from plants, glycans from glycoproteins and those from various glycolipids. Other topics include the use of MALDI MS to study enzymes related to carbohydrate biosynthesis and degradation, its use in industrial processes, particularly biopharmaceuticals and its use to monitor products of chemical synthesis where glycodendrimers and carbohydrate-protein complexes are highlighted.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
7
|
Vissa VD, Sakamuri RM, Li W, Brennan PJ. Defining mycobacteria: Shared and specific genome features for different lifestyles. Indian J Microbiol 2009; 49:11-47. [PMID: 23100749 DOI: 10.1007/s12088-009-0006-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 08/16/2008] [Indexed: 11/28/2022] Open
Abstract
During the last decade, the combination of rapid whole genome sequencing capabilities, application of genetic and computational tools, and establishment of model systems for the study of a range of species for a spectrum of biological questions has enhanced our cumulative knowledge of mycobacteria in terms of their growth properties and requirements. The adaption of the corynebacterial surrogate system has simplified the study of cell wall biosynthetic machinery common to actinobacteria. Comparative genomics supported by experimentation reveals that superimposed on a common core of 'mycobacterial' gene set, pathogenic mycobacteria are endowed with multiple copies of several protein families that encode novel secretion and transport systems such as mce and esx; immunomodulators named PE/PPE proteins, and polyketide synthases for synthesis of complex lipids. The precise timing of expression, engagement and interactions involving one or more of these redundant proteins in their host environments likely play a role in the definition and differentiation of species and their disease phenotypes. Besides these, only a few species specific 'virulence' factors i.e., macromolecules have been discovered. Other subtleties may also arise from modifications of shared macromolecules. In contrast, to cope with the broad and changing growth conditions, their saprophytic relatives have larger genomes, in which the excess coding capacity is dedicated to transcriptional regulators, transporters for nutrients and toxic metabolites, biosynthesis of secondary metabolites and catabolic pathways. In this review, we present a sampling of the tools and techniques that are being implemented to tease apart aspects of physiology, phylogeny, ecology and pathology and illustrate the dominant genomic characteristics of representative species. The investigation of clinical isolates, natural disease states and discovery of new diagnostics, vaccines and drugs for existing and emerging mycobacterial diseases, particularly for multidrug resistant strains are the challenges in the coming decades.
Collapse
Affiliation(s)
- Varalakshmi D Vissa
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO-80523-1628 USA
| | | | | | | |
Collapse
|
8
|
Moreira LO, Mattos-Guaraldi AL, Andrade AFB. Novel lipoarabinomannan-like lipoglycan (CdiLAM) contributes to the adherence of Corynebacterium diphtheriae to epithelial cells. Arch Microbiol 2008; 190:521-30. [PMID: 18575847 DOI: 10.1007/s00203-008-0398-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 04/20/2008] [Accepted: 06/09/2008] [Indexed: 10/21/2022]
Abstract
The genus Corynebacterium is part of the phylogenetic group nocardioform actinomycetes. Members of this group have a characteristic cell envelope structure composed primarily of branched long-chain lipids, termed mycolic acids, and a rich number of lipoglycans such as lipoarabinomanans (LAM) and lipomannans. In this study, we identified a novel LAM variant isolated from Corynebacterium diphtheriae named CdiLAM. The key structural features of CdiLAM are a linear alpha-1-->6-mannan with side chains containing 2-linked alpha-D-Manp and 4-linked alpha-D-Araf residues. The polysaccharide backbone is linked to a phosphatidylinositol anchor. In contrast to the LAMs of other members of actinomycetales, CdiLAM presents an unusual substitution at position 4 of alpha-1-->6-mannan backbone by alpha-D-Araf. Unlike the non-fimbrial adhesin 62-72p, CdiLAM did not function as a hemagglutinin to human red blood cells. Experimental evidences pointed to CdiLAM as an adhesin of C. diphtheriae to human respiratory epithelial cells, thereby, contributing to the pathogenesis of diphtheria.
Collapse
Affiliation(s)
- L O Moreira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | |
Collapse
|
9
|
Pitarque S, Larrouy-Maumus G, Payré B, Jackson M, Puzo G, Nigou J. The immunomodulatory lipoglycans, lipoarabinomannan and lipomannan, are exposed at the mycobacterial cell surface. Tuberculosis (Edinb) 2008; 88:560-5. [PMID: 18539533 DOI: 10.1016/j.tube.2008.04.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 04/11/2008] [Accepted: 04/12/2008] [Indexed: 01/29/2023]
Abstract
By labeling surface carbohydrates, we found that a pool of lipoglycans, cell wall associated, is exposed at the cell surface of mycobacteria and thus, most probably, inserted in the outer leaflet of the outer membrane. In contrast, plasma membrane anchored lipoglycans are not accessible to surface labeling. This result supports the role of lipoglycans as key immunomodulatory molecules but raises the question of their transport from the plasma membrane, where they are synthesized, to the outermost layers of the envelope, where they can act as modulins. The data are discussed in terms of consequences for cell envelope organization.
Collapse
Affiliation(s)
- Sylvain Pitarque
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, Département Mécanismes Moléculaires des Infections Mycobactériennes, 205 Route de Narbonne, 31077 Toulouse Cedex 4, France
| | | | | | | | | | | |
Collapse
|
10
|
Ridgway KM, Shi W, Lin SJ, Palcic MM, Lowary TL. Chemical and chemoenzymatic synthesis of a trisaccharide fragment of Tsukamurella paurometabola lipoarabinomannan. CAN J CHEM 2006. [DOI: 10.1139/v06-049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The synthesis of a trisaccharide fragment (1) of the lipoarabinomannan from Tsukamurella paurometabola is reported. Two approaches were investigated for the synthesis of the target. One was purely chemical, while the other involved the addition of one of the monosaccharide residues via a mannosyltransferase-catalyzed reaction. Both approaches produced the target in good overall yields. Thus, this chemoenzymatic approach appears to be a useful addition to the arsenal of methods for the synthesis of lipoarabinomannan-derived oligosaccharides.Key words: lipoarabinomannan, oligosaccharide, mannosyltransferase, enzymatic synthesis.
Collapse
|
11
|
Kovacevic S, Anderson D, Morita YS, Patterson J, Haites R, McMillan BNI, Coppel R, McConville MJ, Billman-Jacobe H. Identification of a novel protein with a role in lipoarabinomannan biosynthesis in mycobacteria. J Biol Chem 2006; 281:9011-7. [PMID: 16455649 DOI: 10.1074/jbc.m511709200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All species of Mycobacteria synthesize distinctive cell walls that are rich in phosphatidylinositol mannosides (PIMs), lipomannan (LM), and lipoarabinomannan (LAM). PIM glycolipids, having 2-4 mannose residues, can either be channeled into polar PIM species (with 6 Man residues) or hypermannosylated to form LM and LAM. In this study, we have identified a Mycobacterium smegmatis gene, termed lpqW, that is required for the conversion of PIMs to LAM and is highly conserved in all mycobacteria. A transposon mutant, Myco481, containing an insertion near the 3' end of lpqW exhibited altered colony morphology on complex agar medium. This mutant was unstable and was consistently overgrown by a second mutant, represented by Myco481.1, that had normal growth and colony characteristics. Biochemical analysis and metabolic labeling studies showed that Myco481 synthesized the complete spectrum of apolar and polar PIMs but was unable to make LAM. LAM biosynthesis was restored to near wild type levels in Myco481.1. However, this mutant was unable to synthesize the major polar PIM (AcPIM6) and accumulated a smaller intermediate, AcPIM4. Targeted disruption of the lpqW gene and complementation of the initial Myco481 mutant with the wild type gene confirmed that the phenotype of this mutant was due to loss of LpqW. These studies suggest that LpqW has a role in regulating the flux of early PIM intermediates into polar PIM or LAM biosynthesis. They also suggest that AcPIM4 is the likely branch point intermediate in polar PIM and LAM biosynthesis.
Collapse
Affiliation(s)
- Svetozar Kovacevic
- ARC Centre for Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gibson KJC, Gilleron M, Constant P, Sichi B, Puzo G, Besra GS, Nigou J. A lipomannan variant with strong TLR-2-dependent pro-inflammatory activity in Saccharothrix aerocolonigenes. J Biol Chem 2005; 280:28347-56. [PMID: 15955814 DOI: 10.1074/jbc.m505498200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipomannans (LMs) are powerful pro-inflammatory lipoglycans found in mycobacteria and related genera, however the molecular bases of their activity are not fully understood. We report here the isolation and the structural and functional characterization of a new lipomannan variant present in the Pseudonocardineae, Saccharothrix aerocolonigenes, designated SaeLM. Using a range of chemical degradations, NMR experiments, and mass spectrometry analyses, SaeLM revealed a mannosylphosphatidyl-myo-inositol (MPI) anchor glycosylated by an original carbohydrate structure whereby an (alpha1-->6)-Manp backbone is substituted at >80% of the O-2 position by side chains composed of Manp-(alpha1-->2)-Manp-(alpha1-->. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis indicated a distribution of SaeLM glyco-forms ranging from 19 to 61 Manp units, which centered on species containing 37 or 40 Manp units. SaeLM induced a Toll-like receptor 2 (TLR-2)-dependent production of tumor necrosis factor-alpha (TNF-alpha) by human THP-1 monocyte/macrophage cell lines and interestingly was found to be the strongest inducer of this pro-inflammatory cytokine when compared with other LAM/LM-like molecules. We previously established that a linear (alpha1-->6)-Manp chain, linked to the MPI anchor, is sufficient in providing pro-inflammatory activity. We demonstrate here that by adding side chains and increasing their size, one may potentiate this activity. These findings should enable a better understanding of the structure/function relationships of TLR-2-dependent lipoglycan signaling.
Collapse
Affiliation(s)
- Kevin J C Gibson
- School of Bioscience, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
13
|
Completo G, Ponto J, Lowary T. Synthesis of Oligosaccharide Fragments of the Lipoarabinomannan from Rhodococcus ruber *. J Carbohydr Chem 2005. [DOI: 10.1081/car-200067114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Furneaux RH, Landersjö CL, McCullough JL, Severn WB. A novel phosphatidylinositol manno-oligosaccharide (dPIM-8) from Gordonia sputi. Carbohydr Res 2005; 340:1618-24. [PMID: 15907815 DOI: 10.1016/j.carres.2005.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 03/31/2005] [Indexed: 11/23/2022]
Abstract
The deacylated phosphatidylinositol manno-oligosaccharides (dPIMs) from the glycosyl phosphatidylinositol (GPI) carbohydrate antigen anchor of Gordonia sputi were the known 2,6-di-O-alpha-mannopyranosyl-myo-inositol glycerophosphate (dPIM-2) and the illustrated novel compound (dPIM-8), which could not be separated from dPIM-7 and dPIM-6, these three compounds being present in the mixture in the molar ratios 1.0:0.65:0.4. dPIM-8 is an analogue of dPIM-2 (and also of dPIM-7 and dPIM-6) in having alpha-mannopyranose and an alpha-mannopyranosyl linked heptasaccharide bonded to O-2 and O-6, respectively, of the inositol. The dPIM-8 species has not been found previously. [structure: see text]
Collapse
|
15
|
Sutcliffe I. Lipoarabinomannans--structurally diverse and functionally enigmatic macroamphiphiles of mycobacteria and related actinomycetes. Tuberculosis (Edinb) 2005; 85:205-6. [PMID: 15922670 DOI: 10.1016/j.tube.2004.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 11/26/2004] [Accepted: 12/16/2004] [Indexed: 11/19/2022]
|
16
|
Gilleron M, Garton NJ, Nigou J, Brando T, Puzo G, Sutcliffe IC. Characterization of a truncated lipoarabinomannan from the Actinomycete Turicella otitidis. J Bacteriol 2005; 187:854-61. [PMID: 15659663 PMCID: PMC545729 DOI: 10.1128/jb.187.3.854-861.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipoarabinomannan (LAM) lipoglycans have been characterized from a range of mycolic acid-containing actinomycetes and from the amycolate actinomycete Amycolatopsis sulphurea. To further understand the structural diversity of this family, we have characterized the lipoglycan of the otic commensal Turicella otitidis. T. otitidis LAM (TotLAM) has been determined to consist of a mannosyl phosphatidylinositol anchor unit carrying an (alpha 1-->6)-linked mannan core and substituted with terminal-arabinosyl branches. Thus, TotLAM has a novel truncated LAM structure. Using the human monocytic THP-1 cell line, it was found that TotLAM exhibited only minimal ability to induce tumor necrosis factor alpha. These findings contribute further to our understanding of actinomycete LAM diversity and allow further speculation as to the correlation between LAM structure and the immunomodulatory activities of these lipoglycans.
Collapse
Affiliation(s)
- Martine Gilleron
- Institut de Pharmacologie et de Biologie Structurale du Centre National de la Recherche Scientifique, Toulouse, France
| | | | | | | | | | | |
Collapse
|
17
|
Subramaniam V, Gurcha SS, Besra GS, Lowary TL. Modified mannose disaccharides as substrates and inhibitors of a polyprenol monophosphomannose-dependent α-(1→6)-mannosyltransferase involved in mycobacterial lipoarabinomannan biosynthesis. Bioorg Med Chem 2005; 13:1083-94. [PMID: 15670916 DOI: 10.1016/j.bmc.2004.11.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 11/15/2004] [Accepted: 11/15/2004] [Indexed: 10/26/2022]
Abstract
A panel of alpha-(1-->6)-linked mannose disaccharides (5-8) in which the 2'-OH group has been replaced, independently, by deoxy, fluoro, amino, and methoxy functionalities has been synthesized. Evaluation of these compounds as potential substrates or inhibitors of a polyprenol monophosphomannose-dependent alpha-(1-->6)-mannosyltransferase involved in mycobacterial LAM biosynthesis demonstrated that the enzyme is somewhat tolerant substitution at this site. The enzyme recognizes the disaccharides with groups similar or smaller in size than the native hydroxyl (6-8), but not the disaccharide with the more sterically demanding methoxy group (5). The 2'-OH appears not form a critical hydrogen bonding interaction with the protein as the 2'-deoxy analog is a substrate for the enzyme.
Collapse
Affiliation(s)
- Vinodhkumar Subramaniam
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
18
|
Briken V, Porcelli SA, Besra GS, Kremer L. Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol Microbiol 2004; 53:391-403. [PMID: 15228522 DOI: 10.1111/j.1365-2958.2004.04183.x] [Citation(s) in RCA: 318] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cell wall component lipoarabinomannan (ManLAM) from Mycobacterium tuberculosis is involved in the inhibition of phagosome maturation, apoptosis and interferon (IFN)-gamma signalling in macrophages and interleukin (IL)-12 cytokine secretion of dendritic cells (DC). All these processes are important for the host to mount an efficient immune response. Conversely, LAM isolated from non-pathogenic mycobacteria (PILAM) have the opposite effect, by inducing a potent proinflammatory response in macrophages and DCs. LAMs from diverse mycobacterial species differ in the modification of their terminal arabinose residues. The strong proinflammatory response induced by PILAM correlates with the presence of phospho-myo-inositol on the terminal arabinose. Interestingly, recent work indicates that the biosynthetic precursor of LAM, lipomannan (LM), which is also present in the cell wall, displays strong proinflammatory effects, independently of which mycobacterial species it is isolated from. Results from in vitro assays and knock-out mice suggest that LM, like PILAM, mediates its biological activity via Toll-like receptor 2. We hypothesize that the LAM/LM ratio might be a crucial factor in determining the virulence of a mycobacterial species and the outcome of the infection. Recent progress in the identification of genes involved in the biosynthesis of LAM is discussed, in particular with respect to the fact that enzymes controlling the LAM/LM balance might represent targets for new antitubercular drugs. In addition, inactivation of these genes may lead to attenuated strains of M. tuberculosis for the development of new vaccine candidates.
Collapse
Affiliation(s)
- Volker Briken
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
19
|
Gibson KJC, Gilleron M, Constant P, Brando T, Puzo G, Besra GS, Nigou J. Tsukamurella paurometabola Lipoglycan, a New Lipoarabinomannan Variant with Pro-inflammatory Activity. J Biol Chem 2004; 279:22973-82. [PMID: 15031299 DOI: 10.1074/jbc.m310906200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The genus Tsukamurella is a member of the phylogenetic group nocardioform actinomycetes and is closely related to the genus Mycobacterium. The mycobacterial cell envelope contains lipoglycans, and of particular interest is lipoarabinomannan, one of the most potent mycobacterial immunomodulatory molecules. We have investigated the presence of lipoglycans in Tsukamurella paurometabola and report here the isolation and structural characterization of a new lipoarabinomannan variant, designated TpaLAM. Matrix-assisted laser desorption ionization-mass spectrometric analysis revealed that TpaLAM had an average molecular mass of 12.5 kDa and consequently was slightly smaller than Mycobacterium tuberculosis lipoarabinomannan. Using a range of chemical degradations, NMR experiments, capillary electrophoresis, and mass spectrometry analyses, TpaLAM revealed an original carbohydrate structure. Indeed, TpaLAM contained a mannosylphosphatidyl-myo-inositol (MPI) anchor glycosylated by a linear (alpha1-->6)-Manp mannan domain, which is further substituted by an (alpha1-->5)-Araf chain. Half of the Araf units are further substituted at the O-2 position by a Manp-(alpha1-->2)-Manp-(alpha1--> dimannoside motif. Altogether, TpaLAM appears to be the most elaborated non-mycobacterial LAM molecule identified to date. TpaLAM was found to induce the pro-inflammatory cytokine tumor necrosis factor (TNF)-alpha when tested with either human or murine monocyte/macrophage cell lines. This induction was completely abrogated in the presence of an anti-toll-like receptor-2 (TLR-2) antibody, suggesting that TLR-2 participates in the mediation of TNF-alpha production in response to TpaLAM. Moreover, we established that the lipomannan core of TpaLAM is the primary moiety responsible for the observed TNF-alpha-inducing activity. This conclusively demonstrates that a linear (alpha1-->6)-Manp chain, linked to the MPI anchor, is sufficient in providing pro-inflammatory activity.
Collapse
Affiliation(s)
- Kevin J C Gibson
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
20
|
Gibson KJC, Eggeling L, Maughan WN, Krumbach K, Gurcha SS, Nigou J, Puzo G, Sahm H, Besra GS. Disruption of Cg-Ppm1, a polyprenyl monophosphomannose synthase, and the generation of lipoglycan-less mutants in Corynebacterium glutamicum. J Biol Chem 2003; 278:40842-50. [PMID: 12904287 DOI: 10.1074/jbc.m307988200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glycosyl donor, polyprenyl monophosphomannose (PPM), has been shown to be involved in the biosynthesis of the mycobacterial lipoglycans: lipomannan and lipoarabinomannan. The mycobacterial PPM synthase (Mt-ppm1) catalyzes the transfer of mannose from GDP-mannose to polyprenyl phosphates. Based on sequence homology to Mt-ppm1, we have identified the PPM synthase from Corynebacterium glutamicum. In the present study, we demonstrate that the corynebacterial synthase is composed of two distinct domains; a catalytic domain (Cg-ppm1) and a membrane domain (Cg-ppm2). Through the inactivation of Cg-ppm1, we observed a complex phenotype that included altered cell growth rate and inability to synthesize PPM molecules and lipoglycans. When Cg-ppm2 was deleted, no observable phenotype was noted, indicating the clear organization of the two domains. The complementation of the inactivated Cg-ppm1 strain with the corresponding mycobacterial enzyme (Mt-Ppm1/D2) led to the restoration of a wild type phenotype. The present study illustrates, for the first time, the generation of a lipoglycan-less mutant based on a molecular strategy in a member of the Corynebacterianeae family. Lipoglycans are important immunomodulatory molecules involved in determining the outcome of infection, and so the generation of defined mutants and their subsequent immunological characterization is timely.
Collapse
Affiliation(s)
- Kevin J C Gibson
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|