1
|
Li ST, Hirayama H, Huang C, Matsuda T, Oka R, Yamasaki T, Kohda D, Suzuki T. Hydrolytic activity of yeast oligosaccharyltransferase is enhanced when misfolded proteins accumulate in the endoplasmic reticulum. FEBS J 2024; 291:884-896. [PMID: 37997624 DOI: 10.1111/febs.17011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/06/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
It is known that oligosaccharyltransferase (OST) has hydrolytic activity toward dolichol-linked oligosaccharides (DLO), which results in the formation of free N-glycans (FNGs), i.e. unconjugated oligosaccharides with structural features similar to N-glycans. The functional importance of this hydrolytic reaction, however, remains unknown. In this study, the hydrolytic activity of OST was characterized in yeast. It was shown that the hydrolytic activity of OST is enhanced in ubiquitin ligase mutants that are involved in endoplasmic reticulum-associated degradation. Interestingly, this enhanced hydrolysis activity is completely suppressed in asparagine-linked glycosylation (alg) mutants, bearing mutations related to the biosynthesis of DLO, indicating that the effect of ubiquitin ligase on OST-mediated hydrolysis is context-dependent. The enhanced hydrolysis activity in ubiquitin ligase mutants was also found to be canceled upon treatment of the cells with dithiothreitol, a reagent that potently induces protein unfolding in the endoplasmic reticulum (ER). Our results clearly suggest that the hydrolytic activity of OST is enhanced under conditions in which the formation of unfolded proteins is promoted in the ER in yeast. The possible role of FNGs on protein folding is discussed.
Collapse
Affiliation(s)
- Sheng-Tao Li
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Chengcheng Huang
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Tsugiyo Matsuda
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Ritsuko Oka
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Takahiro Yamasaki
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| |
Collapse
|
2
|
Zhang J, Wang YY, Pan ZQ, Li Y, Sui J, Du LL, Ye K. Structural mechanism of protein recognition by the FW domain of autophagy receptor Nbr1. Nat Commun 2022; 13:3650. [PMID: 35752625 PMCID: PMC9233695 DOI: 10.1038/s41467-022-31439-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/16/2022] [Indexed: 12/21/2022] Open
Abstract
Neighbor of BRCA1 (Nbr1) is a conserved autophagy receptor that provides cargo selectivity to autophagy. The four-tryptophan (FW) domain is a signature domain of Nbr1, but its exact function remains unclear. Here, we show that Nbr1 from the filamentous fungus Chaetomium thermophilum uses its FW domain to bind the α-mannosidase Ams1, a cargo of selective autophagy in both budding yeast and fission yeast, and delivers Ams1 to the vacuole by conventional autophagy in heterologous fission yeast. The structure of the Ams1-FW complex was determined at 2.2 Å resolution by cryo-electron microscopy. The FW domain adopts an immunoglobulin-like β-sandwich structure and recognizes the quaternary structure of the Ams1 tetramer. Notably, the N-terminal di-glycine of Ams1 is specifically recognized by a conserved pocket of the FW domain. The FW domain becomes degenerated in fission yeast Nbr1, which binds Ams1 with a ZZ domain instead. Our findings illustrate the protein binding mode of the FW domain and reveal the versatility of Nbr1-mediated cargo recognition. Nbr1 recognizes cargos in selective autophagy. Here, authors show filamentous yeast Nbr1 binds Ams1 via an FW domain, and the cryo-EM structure reveals that Nbr1 recognizes the N-terminal di-glycine and tetrameric assembly of Ams1.
Collapse
Affiliation(s)
- Jianxiu Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying-Ying Wang
- College of Life Sciences, Beijing Normal University, 100875, Beijing, China.,National Institute of Biological Sciences, 102206, Beijing, China.,School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Zhao-Qian Pan
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Yulu Li
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Jianhua Sui
- National Institute of Biological Sciences, 102206, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China
| | - Li-Lin Du
- National Institute of Biological Sciences, 102206, Beijing, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China.
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Abstract
Folding of proteins is essential so that they can exert their functions. For proteins that transit the secretory pathway, folding occurs in the endoplasmic reticulum (ER) and various chaperone systems assist in acquiring their correct folding/subunit formation. N-glycosylation is one of the most conserved posttranslational modification for proteins, and in eukaryotes it occurs in the ER. Consequently, eukaryotic cells have developed various systems that utilize N-glycans to dictate and assist protein folding, or if they consistently fail to fold properly, to destroy proteins for quality control and the maintenance of homeostasis of proteins in the ER.
Collapse
|
4
|
Zhang J, Wang YY, Du LL, Ye K. Cryo-EM structure of fission yeast tetrameric α-mannosidase Ams1. FEBS Open Bio 2020; 10:2437-2451. [PMID: 32981237 PMCID: PMC7609781 DOI: 10.1002/2211-5463.12988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/20/2020] [Accepted: 09/22/2020] [Indexed: 12/29/2022] Open
Abstract
Fungal α‐mannosidase Ams1 and its mammalian homolog MAN2C1 hydrolyze terminal α‐linked mannoses in free oligosaccharides released from misfolded glycoproteins or lipid‐linked oligosaccharide donors. Ams1 is transported by selective autophagy into vacuoles. Here, we determine the tetrameric structure of Ams1 from the fission yeast Schizosaccharomyces pombe at 3.2 Å resolution by cryo‐electron microscopy. Distinct from a low resolution structure of S. cerevisiae Ams1, S. pombe Ams1 has a prominent N‐terminal tail that mediates tetramerization and an extra β‐sheet domain. Ams1 shares a conserved active site with other enzymes in glycoside hydrolase family 38, to which Ams1 belongs, but contains extra N‐terminal domains involved in tetramerization. The atomic structure of Ams1 reported here will aid understanding of its enzymatic activity and transport mechanism.
Collapse
Affiliation(s)
- Jianxiu Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Ying Wang
- National Institute of Biological Sciences, Beijing, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Umekawa M, Shiraishi D, Fuwa M, Sawaguchi K, Mashima Y, Katayama T, Karita S. Mitotic cyclin Clb4 is required for the intracellular adaptation to glucose starvation inSaccharomyces cerevisiae. FEBS Lett 2019; 594:1329-1338. [DOI: 10.1002/1873-3468.13722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Midori Umekawa
- Graduate School of Bioresources Mie University Tsu Japan
| | | | - Marin Fuwa
- Faculty of Bioresources Mie University Tsu Japan
| | | | | | | | - Shuichi Karita
- Graduate School of Bioresources Mie University Tsu Japan
| |
Collapse
|
6
|
Porras-Agüera JA, Moreno-García J, Mauricio JC, Moreno J, García-Martínez T. First Proteomic Approach to Identify Cell Death Biomarkers in Wine Yeasts during Sparkling Wine Production. Microorganisms 2019; 7:microorganisms7110542. [PMID: 31717411 PMCID: PMC6920952 DOI: 10.3390/microorganisms7110542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/22/2019] [Accepted: 11/07/2019] [Indexed: 12/22/2022] Open
Abstract
Apoptosis and later autolysis are biological processes which take place in Saccharomyces cerevisiae during industrial fermentation processes, which involve costly and time-consuming aging periods. Therefore, the identification of potential cell death biomarkers can contribute to the creation of a long-term strategy in order to improve and accelerate the winemaking process. Here, we performed a proteomic analysis based on the detection of possible apoptosis and autolysis protein biomarkers in two industrial yeast strains commonly used in post-fermentative processes (sparkling wine secondary fermentation and biological aging) under typical sparkling wine elaboration conditions. Pressure had a negatively effect on viability for flor yeast, whereas the sparkling wine strain seems to be more adapted to these conditions. Flor yeast strain experienced an increase in content of apoptosis-related proteins, glucanases and vacuolar proteases at the first month of aging. Significant correlations between viability and apoptosis proteins were established in both yeast strains. Multivariate analysis based on the proteome of each process allowed to distinguish among samples and strains. The proteomic profile obtained in this study could provide useful information on the selection of wine strains and yeast behavior during sparkling wine elaboration. Additionally, the use of flor yeasts for sparkling wine improvement and elaboration is proposed.
Collapse
Affiliation(s)
- Juan Antonio Porras-Agüera
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (J.A.P.-A.); (J.M.-G.); (T.G.-M.)
| | - Jaime Moreno-García
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (J.A.P.-A.); (J.M.-G.); (T.G.-M.)
| | - Juan Carlos Mauricio
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (J.A.P.-A.); (J.M.-G.); (T.G.-M.)
- Correspondence: ; Tel.: +34-957-218640; Fax: +34-957-218650
| | - Juan Moreno
- Department of Agricultural Chemistry, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain;
| | - Teresa García-Martínez
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (J.A.P.-A.); (J.M.-G.); (T.G.-M.)
| |
Collapse
|
7
|
Hirayama H, Matsuda T, Tsuchiya Y, Oka R, Seino J, Huang C, Nakajima K, Noda Y, Shichino Y, Iwasaki S, Suzuki T. Free glycans derived from O-mannosylated glycoproteins suggest the presence of an O-glycoprotein degradation pathway in yeast. J Biol Chem 2019; 294:15900-15911. [PMID: 31311856 DOI: 10.1074/jbc.ra119.009491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/04/2019] [Indexed: 11/06/2022] Open
Abstract
In eukaryotic cells, unconjugated oligosaccharides that are structurally related to N-glycans (i.e. free N-glycans) are generated either from misfolded N-glycoproteins destined for the endoplasmic reticulum-associated degradation or from lipid-linked oligosaccharides, donor substrates for N-glycosylation of proteins. The mechanism responsible for the generation of free N-glycans is now well-understood, but the issue of whether other types of free glycans are present remains unclear. Here, we report on the accumulation of free, O-mannosylated glycans in budding yeast that were cultured in medium containing mannose as the carbon source. A structural analysis of these glycans revealed that their structures are identical to those of O-mannosyl glycans that are attached to glycoproteins. Deletion of the cyc8 gene, which encodes for a general transcription repressor, resulted in the accumulation of excessive amounts of free O-glycans, concomitant with a severe growth defect, a reduction in the level of an O-mannosylated protein, and compromised cell wall integrity. Our findings provide evidence in support of a regulated pathway for the degradation of O-glycoproteins in yeast and offer critical insights into the catabolic mechanisms that control the fate of O-glycosylated proteins.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Tsugiyo Matsuda
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Yae Tsuchiya
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Ritsuko Oka
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Junichi Seino
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Chengcheng Huang
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Kazuki Nakajima
- Department of Academic Research Support Promotion Facility, Center for Research Promotion and Support, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yoichi Noda
- Collaborative Research Institute for Innovative Microbiology, Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
8
|
Parzych KR, Klionsky DJ. Vacuolar hydrolysis and efflux: current knowledge and unanswered questions. Autophagy 2018; 15:212-227. [PMID: 30422029 DOI: 10.1080/15548627.2018.1545821] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Hydrolysis within the vacuole in yeast and the lysosome in mammals is required for the degradation and recycling of a multitude of substrates, many of which are delivered to the vacuole/lysosome by autophagy. In humans, defects in lysosomal hydrolysis and efflux can have devastating consequences, and contribute to a class of diseases referred to as lysosomal storage disorders. Despite the importance of these processes, many of the proteins and regulatory mechanisms involved in hydrolysis and efflux are poorly understood. In this review, we describe our current knowledge of the vacuolar/lysosomal degradation and efflux of a vast array of substrates, focusing primarily on what is known in the yeast Saccharomyces cerevisiae. We also highlight many unanswered questions, the answers to which may lead to new advances in the treatment of lysosomal storage disorders. Abbreviations: Ams1: α-mannosidase; Ape1: aminopeptidase I; Ape3: aminopeptidase Y; Ape4: aspartyl aminopeptidase; Atg: autophagy related; Cps1: carboxypeptidase S; CTNS: cystinosin, lysosomal cystine transporter; CTSA: cathepsin A; CTSD: cathepsin D; Cvt: cytoplasm-to-vacuole targeting; Dap2: dipeptidyl aminopeptidase B; GS-bimane: glutathione-S-bimane; GSH: glutathione; LDs: lipid droplets; MVB: multivesicular body; PAS: phagophore assembly site; Pep4: proteinase A; PolyP: polyphosphate; Prb1: proteinase B; Prc1: carboxypeptidase Y; V-ATPase: vacuolar-type proton-translocating ATPase; VTC: vacuolar transporter chaperone.
Collapse
Affiliation(s)
- Katherine R Parzych
- a Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| | - Daniel J Klionsky
- a Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
9
|
The signaling pathways underlying starvation-induced upregulation of α-mannosidase Ams1 in Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2016; 1860:1192-201. [DOI: 10.1016/j.bbagen.2016.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 02/10/2016] [Accepted: 02/28/2016] [Indexed: 12/22/2022]
|
10
|
Dwivedi R, Nothaft H, Reiz B, Whittal RM, Szymanski CM. Generation of free oligosaccharides from bacterial protein N-linked glycosylation systems. Biopolymers 2016; 99:772-83. [PMID: 23749285 DOI: 10.1002/bip.22296] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 05/28/2013] [Indexed: 11/10/2022]
Abstract
All Campylobacter species are capable of N-glycosylating their proteins and releasing the same oligosaccharides into the periplasm as free oligosaccharides (fOS). Previously, analysis of fOS production in Campylobacter required fOS derivatization or large culture volumes and several chromatography steps prior to fOS analysis. In this study, label-free fOS extraction and purification methods were developed and coupled with quantitative analysis techniques. Our method follows three simple steps: (1) fOS extraction from the periplasmic space, (2) fOS purification using silica gel chromatography followed by porous graphitized carbon purification and (3) fOS analysis and accurate quantitation using a combination of thin-layer chromatography, mass spectrometry, NMR, and high performance anion exchange chromatography with pulsed amperometric detection. We applied our techniques to analyze fOS from C. jejuni, C. lari, C. rectus, and C. fetus fetus that produce different fOS structures. We accurately quantified fOS in Campylobacter species that ranged from 7.80 (±0.84) to 49.82 (±0.46) nmoles per gram of wet cell pellet and determined that the C. jejuni fOS comprises 2.5% of the dry cell weight. In addition, a novel di-phosphorylated fOS species was identified in C. lari. This method provides a sensitive and quantitative method to investigate the genesis, biology and breakdown of fOS in the bacterial N-glycosylation systems.
Collapse
Affiliation(s)
- Ritika Dwivedi
- Alberta Glycomics Center and Department of Biological Sciences, University of Alberta, Canada
| | | | | | | | | |
Collapse
|
11
|
Hossain TJ, Harada Y, Hirayama H, Tomotake H, Seko A, Suzuki T. Structural Analysis of Free N-Glycans in α-Glucosidase Mutants of Saccharomyces cerevisiae: Lack of the Evidence for the Occurrence of Catabolic α-Glucosidase Acting on the N-Glycans. PLoS One 2016; 11:e0151891. [PMID: 27010459 PMCID: PMC4807098 DOI: 10.1371/journal.pone.0151891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/04/2016] [Indexed: 11/19/2022] Open
Abstract
Saccharomyces cerevisiae produces two different α-glucosidases, Glucosidase 1 (Gls1) and Glucosidase 2 (Gls2), which are responsible for the removal of the glucose molecules from N-glycans (Glc3Man9GlcNAc2) of glycoproteins in the endoplasmic reticulum. Whether any additional α-glucosidases playing a role in catabolizing the glucosylated N-glycans are produced by this yeast, however, remains unknown. We report herein on a search for additional α-glucosidases in S. cerevisiae. To this end, the precise structures of cytosolic free N-glycans (FNGs), mainly derived from the peptide:N-glycanase (Png1) mediated deglycosylation of N-glycoproteins were analyzed in the endoplasmic reticulum α-glucosidase-deficient mutants. 12 new glucosylated FNG structures were successfully identified through 2-dimentional HPLC analysis. On the other hand, non-glucosylated FNGs were not detected at all under any culture conditions. It can therefore be safely concluded that no catabolic α-glucosidases acting on N-glycans are produced by this yeast.
Collapse
Affiliation(s)
- Tanim Jabid Hossain
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, Japan
- Graduate School of Science and Engineering, Saitama University, Sakura, Saitama, Japan
| | - Yoichiro Harada
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, Japan
| | - Hiroto Hirayama
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, Japan
| | - Haruna Tomotake
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, Japan
- Graduate School of Science and Engineering, Saitama University, Sakura, Saitama, Japan
| | - Akira Seko
- Japan Science and Technology Agency (JST), ERATO Ito Glycotrilogy Project, Wako, Saitama, Japan
| | - Tadashi Suzuki
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, Japan
- Graduate School of Science and Engineering, Saitama University, Sakura, Saitama, Japan
- * E-mail:
| |
Collapse
|
12
|
Hossain TJ, Hirayama H, Harada Y, Suzuki T. Lack of the evidence for the enzymatic catabolism of Man1GlcNAc2 in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2015; 80:152-7. [PMID: 26264652 DOI: 10.1080/09168451.2015.1072464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In the cytosol of Saccharomyces cerevisiae, most of the free N-glycans (FNGs) are generated from misfolded glycoproteins by the action of the cytoplasmic peptide: N-glycanase (Png1). A cytosol/vacuole α-mannosidase, Ams1, then trims the FNGs to eventually form a trisaccharide composed of Manβ1,4GlcNAc β1,4GlcNAc (Man1GlcNAc2). Whether or not the resulting Man1GlcNAc2 is enzymatically degraded further, however, is currently unknown. The objective of this study was to unveil the fate of Man1GlcNAc2 in S. cerevisiae. Quantitative analyses of the FNGs revealed a steady increase in the amount of Man1GlcNAc2 produced in the post-diauxic and stationary phases, suggesting that this trisaccharide is not catabolized during this period. Inoculation of the stationary phase cells into fresh medium resulted in a reduction in the levels of Man1GlcNAc2. However, this reduction was caused by its dilution due to cell division in the fresh medium. Our results thus indicate that Man1GlcNAc2 is not enzymatically catabolized in S. cerevisiae.
Collapse
Affiliation(s)
- Tanim Jabid Hossain
- a Glycometabolome Team, Systems Glycobiology Research Group , RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster , Saitama , Japan.,b Graduate School of Science and Engineering , Saitama University , Saitama , Japan
| | - Hiroto Hirayama
- a Glycometabolome Team, Systems Glycobiology Research Group , RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster , Saitama , Japan
| | - Yoichiro Harada
- a Glycometabolome Team, Systems Glycobiology Research Group , RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster , Saitama , Japan.,c Department of Systems Biology in Thromboregulation , Kagoshima University Graduate School of Medical and Dental Sciences , Kagoshima , Japan
| | - Tadashi Suzuki
- a Glycometabolome Team, Systems Glycobiology Research Group , RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster , Saitama , Japan.,b Graduate School of Science and Engineering , Saitama University , Saitama , Japan
| |
Collapse
|
13
|
Harada Y, Masahara-Negishi Y, Suzuki T. Cytosolic-free oligosaccharides are predominantly generated by the degradation of dolichol-linked oligosaccharides in mammalian cells. Glycobiology 2015. [DOI: 10.1093/glycob/cwv055] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Harada Y, Hirayama H, Suzuki T. Generation and degradation of free asparagine-linked glycans. Cell Mol Life Sci 2015; 72:2509-33. [PMID: 25772500 PMCID: PMC11113800 DOI: 10.1007/s00018-015-1881-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/19/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
Abstract
Asparagine (N)-linked protein glycosylation, which takes place in the eukaryotic endoplasmic reticulum (ER), is important for protein folding, quality control and the intracellular trafficking of secretory and membrane proteins. It is known that, during N-glycosylation, considerable amounts of lipid-linked oligosaccharides (LLOs), the glycan donor substrates for N-glycosylation, are hydrolyzed to form free N-glycans (FNGs) by unidentified mechanisms. FNGs are also generated in the cytosol by the enzymatic deglycosylation of misfolded glycoproteins during ER-associated degradation. FNGs derived from LLOs and misfolded glycoproteins are eventually merged into one pool in the cytosol and the various glycan structures are processed to a near homogenous glycoform. This article summarizes the current state of our knowledge concerning the formation and catabolism of FNGs.
Collapse
Affiliation(s)
- Yoichiro Harada
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| | - Hiroto Hirayama
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| | - Tadashi Suzuki
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| |
Collapse
|
15
|
Hirayama H, Hosomi A, Suzuki T. Physiological and molecular functions of the cytosolic peptide:N-glycanase. Semin Cell Dev Biol 2015; 41:110-20. [DOI: 10.1016/j.semcdb.2014.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 01/04/2023]
|
16
|
Suzuki T. The cytoplasmic peptide:N-glycanase (Ngly1)--basic science encounters a human genetic disorder. J Biochem 2014; 157:23-34. [DOI: 10.1093/jb/mvu068] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Suzuki T, Harada Y. Non-lysosomal degradation pathway for N-linked glycans and dolichol-linked oligosaccharides. Biochem Biophys Res Commun 2014; 453:213-9. [PMID: 24866240 DOI: 10.1016/j.bbrc.2014.05.075] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/16/2014] [Indexed: 01/11/2023]
Abstract
There is growing evidence that asparagine (N)-linked glycans play pivotal roles in protein folding and intra- or intercellular trafficking of N-glycosylated proteins. During the N-glycosylation of proteins, significant amounts of free oligosaccharides (fOSs) and phosphorylated oligosaccharides (POSs) are generated at the endoplasmic reticulum (ER) membrane by unclarified mechanisms. fOSs are also formed in the cytosol by the enzymatic deglycosylation of misfolded glycoproteins destined for proteasomal degradation. This article summarizes the current knowledge of the molecular and regulatory mechanisms underlying the formation of fOSs and POSs in mammalian cells and Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Tadashi Suzuki
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Japan.
| | - Yoichiro Harada
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Japan
| |
Collapse
|
18
|
Harada Y, Buser R, Ngwa EM, Hirayama H, Aebi M, Suzuki T. Eukaryotic oligosaccharyltransferase generates free oligosaccharides during N-glycosylation. J Biol Chem 2013; 288:32673-32684. [PMID: 24062310 DOI: 10.1074/jbc.m113.486985] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Asparagine (N)-linked glycosylation regulates numerous cellular activities, such as glycoprotein quality control, intracellular trafficking, and cell-cell communications. In eukaryotes, the glycosylation reaction is catalyzed by oligosaccharyltransferase (OST), a multimembrane protein complex that is localized in the endoplasmic reticulum (ER). During N-glycosylation in the ER, the protein-unbound form of oligosaccharides (free oligosaccharides; fOSs), which is structurally related to N-glycan, is released into the ER lumen. However, the enzyme responsible for this process remains unidentified. Here, we demonstrate that eukaryotic OST generates fOSs. Biochemical and genetic analyses using mutant strains of Saccharomyces cerevisiae revealed that the generation of fOSs is tightly correlated with the N-glycosylation activity of OST. Furthermore, we present evidence that the purified OST complex can generate fOSs by hydrolyzing dolichol-linked oligosaccharide, the glycan donor substrate for N-glycosylation. The heterologous expression of a single subunit of OST from the protozoan Leishmania major in S. cerevisiae demonstrated that this enzyme functions both in N-glycosylation and generation of fOSs. This study provides insight into the mechanism of PNGase-independent formation of fOSs.
Collapse
Affiliation(s)
- Yoichiro Harada
- From the Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Reto Buser
- the Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Elsy M Ngwa
- the Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Hiroto Hirayama
- From the Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Markus Aebi
- the Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Tadashi Suzuki
- From the Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
19
|
Liang CY, Wang LC, Lo WS. Dissociation of the H3K36 demethylase Rph1 from chromatin mediates derepression of environmental stress-response genes under genotoxic stress in Saccharomyces cerevisiae. Mol Biol Cell 2013; 24:3251-62. [PMID: 23985319 PMCID: PMC3806659 DOI: 10.1091/mbc.e12-11-0820] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The H3K36 demethylase Rph1 is a transcriptional repressor for stress-responsive genes in yeast. Rph1-mediated transcriptional repression is relieved by phosphorylation of Rph1, reduced Rph1 level, and dissociation of Rph1 from chromatin with genotoxic stress. Rph1 may function as a regulatory node in different stress-signaling pathways. Cells respond to environmental signals by altering gene expression through transcription factors. Rph1 is a histone demethylase containing a Jumonji C (JmjC) domain and belongs to the C2H2 zinc-finger protein family. Here we investigate the regulatory network of Rph1 in yeast by expression microarray analysis. More than 75% of Rph1-regulated genes showed increased expression in the rph1-deletion mutant, suggesting that Rph1 is mainly a transcriptional repressor. The binding motif 5′-CCCCTWA-3′, which resembles the stress response element, is overrepresented in the promoters of Rph1-repressed genes. A significant proportion of Rph1-regulated genes respond to DNA damage and environmental stress. Rph1 is a labile protein, and Rad53 negatively modulates Rph1 protein level. We find that the JmjN domain is important in maintaining protein stability and the repressive effect of Rph1. Rph1 is directly associated with the promoter region of targeted genes and dissociated from chromatin before transcriptional derepression on DNA damage and oxidative stress. Of interest, the master stress-activated regulator Msn2 also regulates a subset of Rph1-repressed genes under oxidative stress. Our findings confirm the regulatory role of Rph1 as a transcriptional repressor and reveal that Rph1 might be a regulatory node connecting different signaling pathways responding to environmental stresses.
Collapse
Affiliation(s)
- Chung-Yi Liang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | | | | |
Collapse
|
20
|
Murakami S, Takaoka Y, Ashida H, Yamamoto K, Narimatsu H, Chiba Y. Identification and characterization of endo-β-N-acetylglucosaminidase from methylotrophic yeast Ogataea minuta. Glycobiology 2013; 23:736-44. [PMID: 23436287 DOI: 10.1093/glycob/cwt012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In four yeast strains, Ogataea minuta, Candida parapolymorpha, Pichia anomala and Zygosaccharomyces rouxii, we identified endo-β-N-acetylglucosaminidase (ENGase) homologous sequences by database searches; in each of the four species, a corresponding enzyme activity was also confirmed in crude cell extract obtained from each strain. The O. minuta ENGase (Endo-Om)-encoding gene was directly amplified from O. minuta genomic DNA and sequenced. The Endo-Om-encoding gene contained a 2319-bp open-reading frame; the deduced amino acid sequence indicated that the putative protein belonged to glycoside hydrolase family 85. The gene was introduced into O. minuta, and the recombinant Endo-Om was overexpressed and purified. When the enzyme assay was performed using an agalacto-biantennary oligosaccharide as a substrate, Endo-Om exhibited both hydrolysis and transglycosylation activities. Endo-Om exhibited hydrolytic activity for high-mannose, hybrid, biantennary and (2,6)-branched triantennary N-linked oligosaccharides, but not for tetraantennary, (2,4)-branched triantennary, bisecting N-acetylglucosamine structure and core-fucosylated biantennary N-linked oligosaccharides. Endo-Om also was able to hydrolyze N-glycans attached to RNase B and human transferrin under both denaturing and nondenaturing conditions. Thus, the present study reports the detection and characterization of a novel yeast ENGase.
Collapse
Affiliation(s)
- Satoshi Murakami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Functional analysis of glycoside hydrolase family 18 and 20 genes in Neurospora crassa. Fungal Genet Biol 2012; 49:717-30. [DOI: 10.1016/j.fgb.2012.06.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 12/14/2022]
|
22
|
Chantret I, Kodali VP, Lahmouich C, Harvey DJ, Moore SEH. Endoplasmic reticulum-associated degradation (ERAD) and free oligosaccharide generation in Saccharomyces cerevisiae. J Biol Chem 2011; 286:41786-41800. [PMID: 21979948 DOI: 10.1074/jbc.m111.251371] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Saccharomyces cerevisiae, proteins with misfolded lumenal, membrane, and cytoplasmic domains are cleared from the endoplasmic reticulum (ER) by ER-associated degradation (ERAD)-L, -M, and -C, respectively. ERAD-L is N-glycan-dependent and is characterized by ER mannosidase (Mns1p) and ER mannosidase-like protein (Mnl1p), which generate Man(7)GlcNAc(2) (d1) N-glycans with non-reducing α1,6-mannosyl residues. Glycoproteins bearing this motif bind Yos9p and are dislocated into the cytoplasm and then deglycosylated by peptide N-glycanase (Png1p) to yield free oligosaccharides (fOS). Here, we examined yeast fOS metabolism as a function of cell growth in order to obtain quantitative and mechanistic insights into ERAD. We demonstrate that both Png1p-dependent generation of Man(7-10)GlcNAc(2) fOS and vacuolar α-mannosidase (Ams1p)-dependent fOS demannosylation to yield Man(1)GlcNAc(2) are strikingly up-regulated during post-diauxic growth which occurs when the culture medium is depleted of glucose. Gene deletions in the ams1Δ background revealed that, as anticipated, Mns1p and Mnl1p are required for efficient generation of the Man(7)GlcNAc(2) (d1) fOS, but for the first time, we demonstrate that small amounts of this fOS are generated in an Mnl1p-independent, Mns1p-dependent pathway and that a Man(8)GlcNAc(2) fOS that is known to bind Yos9p is generated in an Mnl1p-dependent, Mns1p-independent manner. This latter observation adds mechanistic insight into a recently described Mnl1p-dependent, Mns1p-independent ERAD pathway. Finally, we show that 50% of fOS generation is independent of ERAD-L, and because our data indicate that ERAD-M and ERAD-C contribute little to fOS levels, other important processes underlie fOS generation in S. cerevisiae.
Collapse
Affiliation(s)
- Isabelle Chantret
- INSERM U773 CRB3, Paris 75018, France; Université Denis Diderot, Paris 7, Paris, France
| | - Vidya P Kodali
- INSERM U773 CRB3, Paris 75018, France; Université Denis Diderot, Paris 7, Paris, France
| | - Chaïmaâ Lahmouich
- INSERM U773 CRB3, Paris 75018, France; Université Denis Diderot, Paris 7, Paris, France
| | - David J Harvey
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Stuart E H Moore
- INSERM U773 CRB3, Paris 75018, France; Université Denis Diderot, Paris 7, Paris, France.
| |
Collapse
|
23
|
Protein Glycosylation in Aspergillus fumigatus Is Essential for Cell Wall Synthesis and Serves as a Promising Model of Multicellular Eukaryotic Development. Int J Microbiol 2011; 2012:654251. [PMID: 21977037 PMCID: PMC3184424 DOI: 10.1155/2012/654251] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 07/19/2011] [Indexed: 02/05/2023] Open
Abstract
Glycosylation is a conserved posttranslational modification that is found in all eukaryotes, which helps generate proteins with multiple functions. Our knowledge of glycosylation mainly comes from the investigation of the yeast Saccharomyces cerevisiae and mammalian cells. However, during the last decade, glycosylation in the human pathogenic mold Aspergillus fumigatus has drawn significant attention. It has been revealed that glycosylation in A. fumigatus is crucial for its growth, cell wall synthesis, and development and that the process is more complicated than that found in the budding yeast S. cerevisiae. The present paper implies that the investigation of glycosylation in A. fumigatus is not only vital for elucidating the mechanism of fungal cell wall synthesis, which will benefit the design of new antifungal therapies, but also helps to understand the role of protein glycosylation in the development of multicellular eukaryotes. This paper describes the advances in functional analysis of protein glycosylation in A. fumigatus.
Collapse
|
24
|
Hirayama H, Suzuki T. Metabolism of free oligosaccharides is facilitated in the och1Δ mutant of Saccharomyces cerevisiae. Glycobiology 2011; 21:1341-8. [PMID: 21622726 DOI: 10.1093/glycob/cwr073] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In eukaryotic cells, it is known that N-glycans play a pivotal role in quality control of carrier proteins. Although "free" forms of oligosaccharides (fOSs) are known to be accumulated in the cytosol, the precise mechanism of their formation, degradation and biological relevance remains poorly understood. It has been shown that, in budding yeast, almost all fOSs are formed from misfolded glycoproteins. Precise structural analysis of fOSs revealed that several yeast fOSs bear a yeast-specific modification by Golgi-resident α-1,6-mannosyltransferase, Och1. In this study, structural diversity of fOSs in och1Δ cells was analyzed. To our surprise, several fOSs in och1Δ cells have unusual α-1,3-linked mannose residues at their non-reducing termini. These mannose residues were not observed in wild-type cells, suggesting that the addition of these unique mannoses occurred as a compensation of Och1 defect. A significant increase in the amount of fOSs modified by Golgi-localized mannosyltransferases was also observed in och1Δ cells. Moreover, the amount of processed fOSs and intracellular α-mannosidase (Ams1) both increased in this mutant. Up-regulation of Ams1 activity was also apparent for cells treated with cell wall perturbation reagent. These results provide an insight into a possible link between catabolism of fOSs and cell wall stress.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako Saitama 351-0198, Japan
| | | |
Collapse
|
25
|
Kato A, Wang L, Ishii K, Seino J, Asano N, Suzuki T. Calystegine B3 as a specific inhibitor for cytoplasmic alpha-mannosidase, Man2C1. J Biochem 2011; 149:415-22. [PMID: 21217149 DOI: 10.1093/jb/mvq153] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cytoplasmic α-mannosidase (Man2C1) has been implicated in non-lysosomal catabolism of free oligosaccharides derived from N-linked glycans accumulated in the cytosol. Suppression of Man2C1 expression reportedly induces apoptosis in various cell lines, but its molecular mechanism remains unclear. Development of a specific inhibitor for Man2C1 is critical to understanding its biological significance. In this study, we identified a plant-derived alkaloid, calystegine B(3), as a potent specific inhibitor for Man2C1 activity. Biochemical enzyme assay revealed that calystegine B(3) was a highly specific inhibitor for Man2C1 among various α-mannosidases prepared from rat liver. Consistent with this in vitro result, an in vivo experiment also showed that treatment of mammalian-derived cultured cells with this compound resulted in drastic change in both structure and quantity of free oligosaccharides in the cytosol, whereas no apparent change was seen in cell-surface oligosaccharides. Calystegine B(3) could thus serve as a potent tool for the development of a highly specific in vivo inhibitor for Man2C1.
Collapse
Affiliation(s)
- Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Chantret I, Fasseu M, Zaoui K, Le Bizec C, Sadou Yayé H, Dupré T, Moore SEH. Identification of roles for peptide: N-glycanase and endo-beta-N-acetylglucosaminidase (Engase1p) during protein N-glycosylation in human HepG2 cells. PLoS One 2010; 5:e11734. [PMID: 20668520 PMCID: PMC2909182 DOI: 10.1371/journal.pone.0011734] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 06/04/2010] [Indexed: 11/29/2022] Open
Abstract
Background During mammalian protein N-glycosylation, 20% of all dolichol-linked oligosaccharides (LLO) appear as free oligosaccharides (fOS) bearing the di-N-acetylchitobiose (fOSGN2), or a single N-acetylglucosamine (fOSGN), moiety at their reducing termini. After sequential trimming by cytosolic endo β-N-acetylglucosaminidase (ENGase) and Man2c1 mannosidase, cytosolic fOS are transported into lysosomes. Why mammalian cells generate such large quantities of fOS remains unexplored, but fOSGN2 could be liberated from LLO by oligosaccharyltransferase, or from glycoproteins by NGLY1-encoded Peptide-N-Glycanase (PNGase). Also, in addition to converting fOSGN2 to fOSGN, the ENGASE-encoded cytosolic ENGase of poorly defined function could potentially deglycosylate glycoproteins. Here, the roles of Ngly1p and Engase1p during fOS metabolism were investigated in HepG2 cells. Methods/Principal Findings During metabolic radiolabeling and chase incubations, RNAi-mediated Engase1p down regulation delays fOSGN2-to-fOSGN conversion, and it is shown that Engase1p and Man2c1p are necessary for efficient clearance of cytosolic fOS into lysosomes. Saccharomyces cerevisiae does not possess ENGase activity and expression of human Engase1p in the png1Δ deletion mutant, in which fOS are reduced by over 98%, partially restored fOS generation. In metabolically radiolabeled HepG2 cells evidence was obtained for a small but significant Engase1p-mediated generation of fOS in 1 h chase but not 30 min pulse incubations. Ngly1p down regulation revealed an Ngly1p-independent fOSGN2 pool comprising mainly Man8GlcNAc2, corresponding to ∼70% of total fOS, and an Ngly1p-dependent fOSGN2 pool enriched in Glc1Man9GlcNAc2 and Man9GlcNAc2 that corresponds to ∼30% of total fOS. Conclusions/Significance As the generation of the bulk of fOS is unaffected by co-down regulation of Ngly1p and Engase1p, alternative quantitatively important mechanisms must underlie the liberation of these fOS from either LLO or glycoproteins during protein N-glycosylation. The fully mannosylated structures that occur in the Ngly1p-dependent fOSGN2 pool indicate an ERAD process that does not require N-glycan trimming.
Collapse
Affiliation(s)
- Isabelle Chantret
- INSERM, U773, Centre de Recherche Bichat Beaujon, Paris, France; Université Paris 7 Denis Diderot, site Bichat, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
27
|
Funakoshi Y, Negishi Y, Gergen JP, Seino J, Ishii K, Lennarz WJ, Matsuo I, Ito Y, Taniguchi N, Suzuki T. Evidence for an essential deglycosylation-independent activity of PNGase in Drosophila melanogaster. PLoS One 2010; 5:e10545. [PMID: 20479940 PMCID: PMC2866665 DOI: 10.1371/journal.pone.0010545] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Accepted: 04/12/2010] [Indexed: 12/03/2022] Open
Abstract
Background Peptide:N-glycanase (PNGase) is an enzyme which releases N-linked glycans from glycopeptides/glycoproteins. This enzyme plays a role in the ER-associated degradation (ERAD) pathway in yeast and mice, but the biological importance of this activity remains unknown. Principal Findings In this study, we characterized the ortholog of cytoplasmic PNGases, PNGase-like (Pngl), in Drosophila melanogaster. Pngl was found to have a molecular weight of ∼74K and was mainly localized in the cytosol. Pngl lacks a CXXC motif that is critical for enzymatic activity in other species and accordingly did not appear to possess PNGase activity, though it still retains carbohydrate-binding activity. We generated microdeletions in the Pngl locus in order to investigate the functional importance of this protein in vivo. Elimination of Pngl led to a serious developmental delay or arrest during the larval and pupal stages, and surviving mutant adult males and females were frequently sterile. Most importantly, these phenotypes were rescued by ubiquitous expression of Pngl, clearly indicating that those phenotypic consequences were indeed due to the lack of functional Pngl. Interestingly, a putative “catalytic-inactive” mutant could not rescue the growth-delay phenotype, indicating that a biochemical activity of this protein is important for its biological function. Conclusion Pngl was shown to be inevitable for the proper developmental transition and the biochemical properties other than deglycosylation activity is important for its biological function.
Collapse
Affiliation(s)
- Yoko Funakoshi
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, Wako, Saitama, Japan
- * E-mail: (YF); (TS)
| | - Yuki Negishi
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, Wako, Saitama, Japan
| | - J. Peter Gergen
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, New York, United States of America
| | - Junichi Seino
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, Wako, Saitama, Japan
| | - Kumiko Ishii
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, Wako, Saitama, Japan
| | - William J. Lennarz
- Department of Biochemistry and Cell Biology and Institute for Cell and Developmental Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Ichiro Matsuo
- Department of Chemistry and Chemical Biology, Gunma University, Kiryu, Gunma, Japan
| | - Yukishige Ito
- Synthetic Cellular Chemistry Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, Japan
- Glycotrilogy Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Naoyuki Taniguchi
- Department of Disease Glycomics, The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, Japan
- Disease Glycomics Team, RIKEN Advanced Science Institute, Wako, Saitama, Japan
| | - Tadashi Suzuki
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, Wako, Saitama, Japan
- Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
- * E-mail: (YF); (TS)
| |
Collapse
|
28
|
Hirayama H, Seino J, Kitajima T, Jigami Y, Suzuki T. Free oligosaccharides to monitor glycoprotein endoplasmic reticulum-associated degradation in Saccharomyces cerevisiae. J Biol Chem 2010; 285:12390-404. [PMID: 20150426 DOI: 10.1074/jbc.m109.082081] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In eukaryotic cells, N-glycosylation has been recognized as one of the most common and functionally important co- or post-translational modifications of proteins. "Free" forms of N-glycans accumulate in the cytosol of mammalian cells, but the precise mechanism for their formation and degradation remains unknown. Here, we report a method for the isolation of yeast free oligosaccharides (fOSs) using endo-beta-1,6-glucanase digestion. fOSs were undetectable in cells lacking PNG1, coding the cytoplasmic peptide:N-glycanase gene, suggesting that almost all fOSs were formed from misfolded glycoproteins by Png1p. Structural studies revealed that the most abundant fOS was M8B, which is not recognized well by the endoplasmic reticulum-associated degradation (ERAD)-related lectin, Yos9p. In addition, we provide evidence that some of the ERAD substrates reached the Golgi apparatus prior to retrotranslocation to the cytosol. N-Glycan structures on misfolded glycoproteins in cells lacking the cytosol/vacuole alpha-mannosidase, Ams1p, was still quite diverse, indicating that processing of N-glycans on misfolded glycoproteins was more complex than currently envisaged. Under ER stress, an increase in fOSs was observed, whereas levels of M7C, a key glycan structure recognized by Yos9p, were unchanged. Our method can thus provide valuable information on the molecular mechanism of glycoprotein ERAD in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
29
|
Hosokawa N, Kamiya Y, Kato K. The role of MRH domain-containing lectins in ERAD. Glycobiology 2010; 20:651-60. [PMID: 20118070 DOI: 10.1093/glycob/cwq013] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The endoplasmic reticulum (ER) quality control system ensures that newly synthesized proteins in the early secretory pathway are in the correct conformation. Polypeptides that have failed to fold into native conformers are subsequently retrotranslocated and degraded by the cytosolic ubiquitin-proteasome system, a process known as endoplasmic reticulum-associated degradation (ERAD). Most of the polypeptides that enter the ER are modified by the addition of N-linked oligosaccharides, and quality control of these glycoproteins is assisted by lectins that recognize specific sugar moieties and molecular chaperones that recognize unfolded proteins, resulting in proper protein folding and ERAD substrate selection. In Saccharomyces cerevisiae, Yos9p, a lectin that contains a mannose 6-phosphate receptor homology (MRH) domain, was identified as an important component of ERAD. Yos9p was shown to associate with the membrane-embedded ubiquitin ligase complex, Hrd1p-Hrd3p, and provide a proofreading mechanism for ERAD. Meanwhile, the function of the mammalian homologues of Yos9p, OS-9 and XTP3-B remained elusive until recently. Recent studies have determined that both OS-9 and XTP3-B are ER resident proteins that associate with the HRD1-SEL1L ubiquitin ligase complex and are important for the regulation of ERAD. Moreover, recent studies have identified the N-glycan species with which both yeast Yos9p and mammalian OS-9 associate as M7A, a Man(7)GlcNAc(2) isomer that lacks the alpha1,2-linked terminal mannose from both the B and C branches. M7A has since been demonstrated to be a degradation signal in both yeast and mammals.
Collapse
Affiliation(s)
- Nobuko Hosokawa
- Department of Molecular and Cellular Biology Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8397, Japan.
| | | | | |
Collapse
|
30
|
Haga Y, Totani K, Ito Y, Suzuki T. Establishment of a real-time analytical method for free oligosaccharide transport from the ER to the cytosol. Glycobiology 2009; 19:987-94. [PMID: 19494346 DOI: 10.1093/glycob/cwp075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
During N-glycosylation of proteins, significant amounts of free unconjugated glycans are also generated in the lumen of the endoplasmic reticulum (ER). These ER-derived free glycans are translocated into the cytosol by a putative transporter on the ER membrane for further processing. However, the molecular nature of the transporter remains to be determined. Here, we report the establishment of a novel assay method for free oligosaccharide transport from the ER lumen using chemically synthesized fluorescence-labeled N-glycan derivatives. In this method, fluorescence-labeled glycan substrates were encapsulated inside mouse liver microsomes, followed by incubation with the cytosol and a fluorescence-quenching agent (anti-fluorophore antibody). The rate of substrate efflux was then monitored in real time by the decrease in the fluorescence intensity. The present data clearly demonstrated that the oligosaccharide transport activity under the current assay conditions was both ATP and cytosol dependent. The transporter activity was also found to be glycan structure specific because free glucosylated glycans were unable to be transported out of the microsomes. This new assay method will be a useful tool for identifying the transporter protein on the ER membrane.
Collapse
Affiliation(s)
- Yoshimi Haga
- Glycometabolome Team, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
31
|
Watanabe Y, Noda NN, Honbou K, Suzuki K, Sakai Y, Ohsumi Y, Inagaki F. Crystallization of Saccharomyces cerevisiae alpha-mannosidase, a cargo protein of the Cvt pathway. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:571-3. [PMID: 19478433 PMCID: PMC2688412 DOI: 10.1107/s1744309109015826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 04/28/2009] [Indexed: 11/10/2022]
Abstract
Saccharomyces cerevisiae alpha-mannosidase (Ams1) is a cargo protein that is transported to the vacuole by the cytoplasm-to-vacuole targeting (Cvt) pathway during conditions of growth and by autophagy during conditions of starvation. After transport to the vacuole, Ams1 functions as a resident hydrolase. Ams1 has been overexpressed in the methylotrophic yeast Pichia pastoris, purified and crystallized in two crystal forms. Form I belongs to space group P2(1), with unit-cell parameters a = 145.7, b = 127.7, c = 164.0 A, beta = 101.5 degrees . Form II belongs to space group I222 or I2(1)2(1)2(1), with unit-cell parameters a = 127.9, b = 163.7, c = 291.5 A. Diffraction data were collected from these crystals to a resolution of 3.3 A for form I and of 2.6 A for form II using synchrotron radiation.
Collapse
Affiliation(s)
- Yasunori Watanabe
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, N-12, W-6, Kita-ku, Sapporo 060-0812, Japan
| | - Nobuo N. Noda
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, N-12, W-6, Kita-ku, Sapporo 060-0812, Japan
| | - Kazuya Honbou
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, N-12, W-6, Kita-ku, Sapporo 060-0812, Japan
| | - Kuninori Suzuki
- Division of Molecular Cell Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
- CREST, Japan Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yoshinori Ohsumi
- Division of Molecular Cell Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
| | - Fuyuhiko Inagaki
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, N-12, W-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
32
|
Li Y, Fang W, Zhang L, Ouyang H, Zhou H, Luo Y, Jin C. Class IIC alpha-mannosidase AfAms1 is required for morphogenesis and cellular function in Aspergillus fumigatus. Glycobiology 2009; 19:624-32. [PMID: 19240271 DOI: 10.1093/glycob/cwp029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mammalian ER/cytosolic alpha-mannosidase (Man2C1p), yeast vacuolar alpha-mannosidase (Ams1p) and the Aspergillus nidulans alpha-mannosidase are members of Class IIC subgroup, which is involved in oligosaccharide catabolism and N-glycan processing. Unlike their mammalian counterparts, the yeast Ams1p and A. nidulans Class IIC alpha-mannosidase are not essential for morphogenesis and cellular function. In this study, the Afams1, a gene encoding a member of Class IIC alpha-mannosidases, was identified in the opportunistic pathogen Aspergillus fumigatus. Deletion of the Afams1 led to a severe defect in conidial formation, especially at a higher temperature. In addition, abnormalities of polarity and septation were associated with the DeltaAfams1 mutant. Our results showed that the Afams1 gene, in contrast to its homolog in yeast or A. nidulans, was required for morphogenesis and cellular function in A. fumigatus.
Collapse
Affiliation(s)
- Yanjie Li
- Key Laboratory of Systematic Mycology and Lichenology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Mora-Montes HM, Bader O, López-Romero E, Zinker S, Ponce-Noyola P, Hube B, Gow NAR, Flores-Carreón A. Kex2 protease converts the endoplasmic reticulum alpha1,2-mannosidase of Candida albicans into a soluble cytosolic form. MICROBIOLOGY-SGM 2009; 154:3782-3794. [PMID: 19047746 PMCID: PMC2885623 DOI: 10.1099/mic.0.2008/019315-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cytosolic α-mannosidases are glycosyl hydrolases that participate in the catabolism of cytosolic free N-oligosaccharides. Two soluble α-mannosidases (E-I and E-II) belonging to glycosyl hydrolases family 47 have been described in Candida albicans. We demonstrate that addition of pepstatin A during the preparation of cell homogenates enriched α-mannosidase E-I at the expense of E-II, indicating that the latter is generated by proteolysis during cell disruption. E-I corresponded to a polypeptide of 52 kDa that was associated with mannosidase activity and was recognized by an anti-α1,2-mannosidase antibody. The N-mannan core trimming properties of the purified enzyme E-I were consistent with its classification as a family 47 α1,2-mannosidase. Differential density-gradient centrifugation of homogenates revealed that α1,2-mannosidase E-I was localized to the cytosolic fraction and Golgi-derived vesicles, and that a 65 kDa membrane-bound α1,2-mannosidase was present in endoplasmic reticulum and Golgi-derived vesicles. Distribution of α-mannosidase activity in a kex2Δ null mutant or in wild-type protoplasts treated with monensin demonstrated that the membrane-bound α1,2-mannosidase is processed by Kex2 protease into E-I, recognizing an atypical cleavage site of the precursor. Analysis of cytosolic free N-oligosaccharides revealed that cytosolic α1,2-mannosidase E-I trims free Man8GlcNAc2 isomer B into Man7GlcNAc2 isomer B. This is believed to be the first report demonstrating the presence of soluble α1,2-mannosidase from the glycosyl hydrolases family 47 in a cytosolic compartment of the cell.
Collapse
Affiliation(s)
- Héctor M Mora-Montes
- Instituto de Investigación en Biología Experimental, Facultad de Química, Universidad de Guanajuato, Apartado Postal 187, Guanajuato Gto. CP 36000, Mexico
| | - Oliver Bader
- Robert Koch-Institut, FG16, Nordufer 20, D-13353 Berlin, Germany
| | - Everardo López-Romero
- Instituto de Investigación en Biología Experimental, Facultad de Química, Universidad de Guanajuato, Apartado Postal 187, Guanajuato Gto. CP 36000, Mexico
| | - Samuel Zinker
- Departamento de Genética y Biología Molecular, CINVESTAV del IPN, Apartado Postal 14-740, México DF 07000, Mexico
| | - Patricia Ponce-Noyola
- Instituto de Investigación en Biología Experimental, Facultad de Química, Universidad de Guanajuato, Apartado Postal 187, Guanajuato Gto. CP 36000, Mexico
| | - Bernhard Hube
- Robert Koch-Institut, FG16, Nordufer 20, D-13353 Berlin, Germany
| | - Neil A R Gow
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Arturo Flores-Carreón
- Instituto de Investigación en Biología Experimental, Facultad de Química, Universidad de Guanajuato, Apartado Postal 187, Guanajuato Gto. CP 36000, Mexico
| |
Collapse
|
34
|
Clerc S, Hirsch C, Oggier DM, Deprez P, Jakob C, Sommer T, Aebi M. Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum. ACTA ACUST UNITED AC 2009; 184:159-72. [PMID: 19124653 PMCID: PMC2615083 DOI: 10.1083/jcb.200809198] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To maintain protein homeostasis in secretory compartments, eukaryotic cells harbor a quality control system that monitors protein folding and protein complex assembly in the endoplasmic reticulum (ER). Proteins that do not fold properly or integrate into cognate complexes are degraded by ER-associated degradation (ERAD) involving retrotranslocation to the cytoplasm and proteasomal peptide hydrolysis. N-linked glycans are essential in glycoprotein ERAD; the covalent oligosaccharide structure is used as a signal to display the folding status of the host protein. In this study, we define the function of the Htm1 protein as an alpha1,2-specific exomannosidase that generates the Man(7)GlcNAc(2) oligosaccharide with a terminal alpha1,6-linked mannosyl residue on degradation substrates. This oligosaccharide signal is decoded by the ER-localized lectin Yos9p that in conjunction with Hrd3p triggers the ubiquitin-proteasome-dependent hydrolysis of these glycoproteins. The Htm1p exomannosidase activity requires processing of the N-glycan by glucosidase I, glucosidase II, and mannosidase I, resulting in a sequential order of specific N-glycan structures that reflect the folding status of the glycoprotein.
Collapse
Affiliation(s)
- Simone Clerc
- Department of Biology, Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
35
|
Katoh T, Ashida H, Yamamoto K. Generation and Metabolism of Cytosolic Free Oligosaccharides in Caenorhabditis elegans. TRENDS GLYCOSCI GLYC 2009. [DOI: 10.4052/tigg.21.163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Funakoshi Y, Suzuki T. Glycobiology in the cytosol: the bitter side of a sweet world. Biochim Biophys Acta Gen Subj 2008; 1790:81-94. [PMID: 18952151 DOI: 10.1016/j.bbagen.2008.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 08/03/2008] [Accepted: 09/11/2008] [Indexed: 01/11/2023]
Abstract
Progress in glycobiology has undergone explosive growth over the past decade with more of the researchers now realizing the importance of glycan chains in various inter- and intracellular processes. However, there is still an area of glycobiology awaiting exploration. This is especially the case for the field of "glycobiology in the cytosol" which remains rather poorly understood. Yet evidence is accumulating to demonstrate that the glycoconjugates and their recognition molecules (i.e. lectins) are often present in this subcellular compartment.
Collapse
Affiliation(s)
- Yoko Funakoshi
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako Saitama, 351-0198, Japan
| | | |
Collapse
|
37
|
Abstract
Autophagy is a bulk degradative process responsible for the turnover of membranes, organelles, and proteins in eukaryotic cells. Genetic and molecular regulation of autophagy has been independently elucidated in budding yeast and mammalian cells. In filamentous fungi, autophagy is required for several important physiological functions, such as asexual and sexual differentiation, pathogenic development, starvation stress and programmed cell death during heteroincompatibility. Here, we detail biochemical and microscopy methods useful for measuring the rate of induction of autophagy in filamentous fungi, and we summarize the methods that have been routinely used for monitoring macroautophagy in both yeast and filamentous fungi. The role of autophagy in carbohydrate catabolism and cell survival is discussed along with the specific functions of macroautophagy in fungal development and pathogenesis.
Collapse
|
38
|
Chantret I, Moore SEH. Free oligosaccharide regulation during mammalian protein N-glycosylation. Glycobiology 2007; 18:210-24. [DOI: 10.1093/glycob/cwn003] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
39
|
Suzuki T. Cytoplasmic peptide:N-glycanase and catabolic pathway for free N-glycans in the cytosol. Semin Cell Dev Biol 2007; 18:762-9. [DOI: 10.1016/j.semcdb.2007.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 08/07/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
|
40
|
Suzuki T, Funakoshi Y. Free N-linked oligosaccharide chains: formation and degradation. Glycoconj J 2007; 23:291-302. [PMID: 16897173 DOI: 10.1007/s10719-006-6975-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 12/21/2005] [Accepted: 12/27/2005] [Indexed: 01/09/2023]
Abstract
There is growing evidence that N-linked glycans play pivotal roles in protein folding and intra- and/or intercellular trafficking of N-glycosylated proteins. It has been shown that during the N-glycosylation of proteins, significant amounts of free oligosaccharides (free OSs) are generated in the lumen of the endoplasmic reticulum (ER) by a mechanism which remains to be clarified. Free OSs are also formed in the cytosol by enzymatic deglycosylation of misfolded glycoproteins, which are subjected to destruction by a cellular system called "ER-associated degradation (ERAD)." While the precise functions of free OSs remain obscure, biochemical studies have revealed that a novel cellular process enables them to be catabolized in a specialized manner, that involves pumping free OSs in the lumen of the ER into the cytosol where further processing occurs. This process is followed by entry into the lysosomes. In this review we summarize current knowledge about the formation, processing and degradation of free OSs in eukaryotes and also discuss the potential biological significance of this pathway. Other evidence for the occurrence of free OSs in various cellular processes is also presented.
Collapse
Affiliation(s)
- Tadashi Suzuki
- 21st COE (Center of Excellence) Program and Department of Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
41
|
Suzuki T, Hara I, Nakano M, Shigeta M, Nakagawa T, Kondo A, Funakoshi Y, Taniguchi N. Man2C1, an alpha-mannosidase, is involved in the trimming of free oligosaccharides in the cytosol. Biochem J 2006; 400:33-41. [PMID: 16848760 PMCID: PMC1635433 DOI: 10.1042/bj20060945] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The endoplasmic-reticulum-associated degradation of misfolded (glyco)proteins ensures that only functional, correctly folded proteins exit from the endoplasmic reticulum and that misfolded ones are degraded by the ubiquitin-proteasome system. During the degradation of misfolded glycoproteins, they are deglycosylated by the PNGase (peptide:N-glycanase). The free oligosaccharides released by PNGase are known to be further catabolized by a cytosolic alpha-mannosidase, although the gene encoding this enzyme has not been identified unequivocally. The findings in the present study demonstrate that an alpha-mannosidase, Man2C1, is involved in the processing of free oligosaccharides that are formed in the cytosol. When the human Man2C1 orthologue was expressed in HEK-293 cells, most of the enzyme was localized in the cytosol. Its activity was enhanced by Co2+, typical of other known cytosolic alpha-mannosidases so far characterized from animal cells. The down-regulation of Man2C1 activity by a small interfering RNA drastically changed the amount and structure of oligosaccharides accumulating in the cytosol, demonstrating that Man2C1 indeed is involved in free oligosaccharide processing in the cytosol. The oligosaccharide processing in the cytosol by PNGase, endo-beta-N-acetylglucosaminidase and alpha-mannosidase may represent the common 'non-lysosomal' catabolic pathway for N-glycans in animal cells, although the molecular mechanism as well as the functional importance of such processes remains to be determined.
Collapse
Affiliation(s)
- Tadashi Suzuki
- Department of Biochemistry, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Yanagida K, Natsuka S, Hase S. Structural diversity of cytosolic free oligosaccharides in the human hepatoma cell line, HepG2. Glycobiology 2005; 16:294-304. [PMID: 16381657 DOI: 10.1093/glycob/cwj074] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is thought that free oligosaccharides in the cytosol are an outcome of quality control of glycoproteins by endoplasmic reticulum-associated degradation (ERAD). Although considerable amounts of free oligosaccharides accumulate in the cytosol, where they presumably have some function, detailed analyses of their structures have not yet been carried out. We isolated 21 oligosaccharides from the cytosolic fraction of HepG2 cells and analyzed their structures by the two-dimensional high-performance liquid chromatography (HPLC) sugar-mapping method. Sixteen novel oligosaccharides were identified in the cytosol in this study. All had a single N-acetylglucosamine at their reducing-end cores and could be expressed as (Man)n (GlcNAc)1. No free oligosaccharide with N,N'-diacetylchitobiose was detected in the cytosolic fraction of HepG2 cells. This suggested that endo-beta-N-acetylglucosaminidase was a key enzyme in the production of cytosolic free oligosaccharides. The 21 oligosaccharides were classified into three series--series 1: oligosaccharides processed from Manalpha1-2Manalpha1-6 (Manalpha1-2Manalpha1-3)Manalpha1-6(Manalpha1-2Manalpha1-2Manalpha1-3) Manbeta1-4GlcNAc (M9A') and Manalpha1-2Manalpha1-6(Manalpha1-3) Manalpha1-6(Manalpha1-2Manalpha1-2Manalpha1-3)Manbeta1-4GlcNAc (M8A') by digestion with cytosolic alpha-mannosidase; series 2: oligosaccharides processed with Golgi alpha-mannosidases in addition to endoplasmic reticulum (ER) and cytosolic alpha-mannosidases; and series 3: glucosylated oligosaccharides produced from Glc1Man9GlcNAc1 by hydrolysis with cytosolic alpha-mannosidase. The presence of the series "2" oligosaccharides suggests that some of the misfolded glycoproteins had been processed in pre-cis-Golgi vesicles and/or the Golgi apparatus. When the cells were treated with swainsonine to inhibit cytosolic alpha-mannosidase, the amounts of M9A' and M8A' increased remarkably, suggesting that these oligosaccharides were translocated into the cytosol. Four oligosaccharides of series "2" also increased. In contrast, there were obvious reductions in Manalpha1-6(Manalpha1-2Manalpha1-2Manalpha1-3)Manbeta1-4GlcNAc (M5B'), the end product from M9A' by digestion with cytosolic alpha-mannosidase, and Manalpha1-6(Manalpha1- 2Manalpha1-3)Manbeta1-4GlcNAc, derived from series "2" oligosaccharides by digestion with cytosolic alpha-mannosidase. Our data suggest that (1) some of the cytosolic oligosaccharides had been processed with Golgi alpha-mannosidases, (2) the major oligosaccharides translocated from the ER were M9A' and M8A', and (3) M5B' and Glc1M5B' were maintained at relatively high concentrations in the cytosol.
Collapse
Affiliation(s)
- Kanta Yanagida
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | |
Collapse
|
43
|
Kitzmüller C, Caprini A, Moore SEH, Frénoy JP, Schwaiger E, Kellermann O, Ivessa NE, Ermonval M. Processing of N-linked glycans during endoplasmic-reticulum-associated degradation of a short-lived variant of ribophorin I. Biochem J 2003; 376:687-96. [PMID: 12952521 PMCID: PMC1223801 DOI: 10.1042/bj20030887] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Revised: 08/01/2003] [Accepted: 09/03/2003] [Indexed: 11/17/2022]
Abstract
Recently, the role of N-linked glycans in the process of ERAD (endoplasmic reticulum-associated degradation) of proteins has been widely recognized. In the present study, we attempted to delineate further the sequence of events leading from a fully glycosylated soluble protein to its deglycosylated form. Degradation intermediates of a truncated form of ribophorin I, namely RI(332), which contains a single N-linked oligosaccharide and is a substrate for the ERAD/ubiquitin-proteasome pathway, were characterized in HeLa cells under conditions blocking proteasomal degradation. The action of a deoxymannojirimycin- and kifunensine-sensitive alpha1,2-mannosidase was shown here to be required for both further glycan processing and progression of RI(332) in the ERAD pathway. In a first step, the Man(8) isomer B, generated by ER mannosidase I, appears to be the major oligomannoside structure associated with RI(332) intermediates. Some other trimmed N-glycan species, in particular Glc(1)Man(7)GlcNAc(2), were also found on the protein, indicating that several mannosidases might be implicated in the initial trimming of the oligomannoside. Secondly, another intermediate of degradation of RI(332) accumulated after proteasome inhibition. We demonstrated that this completely deglycosylated form arose from the action of an N-glycanase closely linked to the ER membrane. Indeed, the deglycosylated form of the protein remained membrane-associated, while being accessible from the cytoplasm to ubiquitinating enzymes and to added protease. Our results indicate that deglycosylation of a soluble ERAD substrate glycoprotein occurs in at least two distinct steps and is coupled with the retro-translocation of the protein preceding its proteasomal degradation.
Collapse
Affiliation(s)
- Claudia Kitzmüller
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter and Institute of Medical Biochemistry, Department of Molecular Genetics, University of Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|