1
|
Mesas Vaz C, Guembe Mülberger A, Torrent Burgas M. The battle within: how Pseudomonas aeruginosa uses host-pathogen interactions to infect the human lung. Crit Rev Microbiol 2024:1-36. [PMID: 39381985 DOI: 10.1080/1040841x.2024.2407378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Pseudomonas aeruginosa is a versatile Gram-negative pathogen known for its ability to invade the respiratory tract, particularly in cystic fibrosis patients. This review provides a comprehensive analysis of the multifaceted strategies for colonization, virulence, and immune evasion used by P. aeruginosa to infect the host. We explore the extensive protein arsenal of P. aeruginosa, including adhesins, exotoxins, secreted proteases, and type III and VI secretion effectors, detailing their roles in the infective process. We also address the unique challenge of treating diverse lung conditions that provide a natural niche for P. aeruginosa on the airway surface, with a particular focus in cystic fibrosis. The review also discusses the current limitations in treatment options due to antibiotic resistance and highlights promising future approaches that target host-pathogen protein-protein interactions. These approaches include the development of new antimicrobials, anti-attachment therapies, and quorum-sensing inhibition molecules. In summary, this review aims to provide a holistic understanding of the pathogenesis of P. aeruginosa in the respiratory system, offering insights into the underlying molecular mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Mesas Vaz
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alba Guembe Mülberger
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marc Torrent Burgas
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
2
|
Ramesh P, Bajire SK, Kanichery A, Najar MA, Shastry RP, Prasad TSK. 6-Methylcoumarin rescues bacterial quorum sensing induced ribosome-inactivating stress in Caenorhabditis elegans. Microb Pathog 2022; 173:105833. [PMID: 36265737 DOI: 10.1016/j.micpath.2022.105833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Bacterial pathogenicity has for long posed severe effects on patient care. Pseudomonas aeruginosa is a common cause of hospital-acquired infections and nosocomial illnesses. It is known to infect the host by colonizing through quorum sensing and the production of exotoxins. METHODS The current effort is an analysis of proteomic alterations caused by P. aeruginosa PAO1 to study the effects of quorum sensing inhibitor 6-Methylcoumarin on PAO1 infectivity in the Caenorhabditis elegans model. RESULTS Through tandem mass tag-based quantitative proteomics approaches, 229 proteins were found to be differentially regulated in infection and upon inhibition. Among these, 34 proteins were found to be dysregulated in both infection and quorum-sensing inhibition conditions. Along with the dysregulation of proteins involved in host-pathogen interaction, PAO1 was found to induce ribosome-inactivating stress accompanied by the downregulating mitochondrial proteins. This in turn caused dysregulation of apoptosis. The expression of multiple proteins involved in ribosome biogenesis and structure, oxidative phosphorylation, and mitochondrial enzymes were altered due to infection. This mechanism, adapted by PAO1 to survive in the host, was inhibited by 6-Methylcoumarin by rescuing the downregulation of ribosomal and mitochondrial proteins. CONCLUSIONS Taken together, the data reflect the molecular alterations due to quorum sensing and the usefulness of inhibitors in controlling pathogenesis.
Collapse
Affiliation(s)
- Poornima Ramesh
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| | - Sukesh Kumar Bajire
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| | - Anagha Kanichery
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| | - Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| | - Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
3
|
ADP-ribosyl transferase activity and gamma radiation cytotoxicity of Pseudomonas aeruginosa exotoxin A. AMB Express 2021; 11:173. [PMID: 34936047 PMCID: PMC8695647 DOI: 10.1186/s13568-021-01332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022] Open
Abstract
This work explores the ADP-ribosyltransferase activity of Pseudomonas (P.) aeruginosa exotoxin A using the guanyl hydrazone derivative, nitrobenzylidine aminoguanidine (NBAG) and the impact of gamma radiation on its efficacy. Unlike the conventional detection methods, NBAG was used as the acceptor of ADP ribose moiety instead of wheat germ extract elongation factor 2. Exotoxin A was extracted from P. aeruginosa clinical isolates and screened for toxA gene using standard PCR. NBAG was synthesized using aminoguanidine bicarbonate and 4-nitrobenzaldehyde and its identity has been confirmed by UV, FTIR, Mass and 13C-NMR spectroscopy. The ADP-ribosyl transferase activity of exotoxin A on NBAG in the presence of Nicotinamide adenine dinucleotide (NAD+) was recorded using UV spectroscopy and HPLC. In vitro ADP-ribosyl transferase activity of exotoxin A protein extract was also explored by monitoring its cytotoxicity on Hep-2 cells using sulforhodamine B cytotoxicity assay. Bacterial broths were irradiated at 5, 10, 15, 24 Gy and exotoxin A protein extract activity were assessed post exposure. Exotoxin A extract exerted an ADP-ribosyltransferase ability which was depicted by the appearance of a new ʎmax after the addition of exotoxin A to NBAG/NAD+ mixture, fragmentation of NAD+ and development of new peaks in HPLC chromatograms. Intracellular enzyme activity was confirmed by the prominent cytotoxic effects of exotoxin A extract on cultured cells. In conclusion, the activity of Exotoxin A can be monitored via its ADP-ribosyltransferase activity and low doses of gamma radiation reduced its activity. Therefore, coupling radiotherapy with exotoxin A in cancer therapy should be carefully monitored.
Collapse
|
4
|
McCarthy M, Goncalves M, Powell H, Morey B, Turner M, Merrill AR. A Structural Approach to Anti-Virulence: A Discovery Pipeline. Microorganisms 2021; 9:microorganisms9122514. [PMID: 34946116 PMCID: PMC8704661 DOI: 10.3390/microorganisms9122514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
The anti-virulence strategy is designed to prevent bacterial virulence factors produced by pathogenic bacteria from initiating and sustaining an infection. One family of bacterial virulence factors is the mono-ADP-ribosyltransferase toxins, which are produced by pathogens as tools to compromise the target host cell. These toxins are bacterial enzymes that exploit host cellular NAD+ as the donor substrate to modify an essential macromolecule acceptor target in the host cell. This biochemical reaction modifies the target macromolecule (often protein or DNA) and functions in a binary fashion to turn the target activity on or off by blocking or impairing a critical process or pathway in the host. A structural biology approach to the anti-virulence method to neutralize the cytotoxic effect of these factors requires the search and design of small molecules that bind tightly to the enzyme active site and prevent catalytic function essentially disarming the pathogen. This method requires a high-resolution structure to serve as the model for small molecule inhibitor development, which illuminates the path to drug development. This alternative strategy to antibiotic therapy represents a paradigm shift that may circumvent multi-drug resistance in the offending microbe through anti-virulence therapy. In this report, the rationale for the anti-virulence structural approach will be discussed along with recent efforts to apply this method to treat honey bee diseases using natural products.
Collapse
|
5
|
Baindara P, Mandal SM. Bacteria and bacterial anticancer agents as a promising alternative for cancer therapeutics. Biochimie 2020; 177:164-189. [PMID: 32827604 DOI: 10.1016/j.biochi.2020.07.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/04/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
Cancer is the leading cause of deaths worldwide, though significant advances have occurred in its diagnosis and treatment. The development of resistance against chemotherapeutic agents, their side effects, and non-specific toxicity urge to screen for the novel anticancer agent. Hence, the development of novel anticancer agents with a new mechanism of action has become a major scientific challenge. Bacteria and bacterially produced bioactive compounds have recently emerged as a promising alternative for cancer therapeutics. Bacterial anticancer agents such as antibiotics, bacteriocins, non-ribosomal peptides, polyketides, toxins, etc. These are adopted different mechanisms of actions such as apoptosis, necrosis, reduced angiogenesis, inhibition of translation and splicing, and obstructing essential signaling pathways to kill cancer cells. Also, live tumor-targeting bacteria provided a unique therapeutic alternative for cancer treatment. This review summarizes the anticancer properties and mechanism of actions of the anticancer agents of bacterial origin and antitumor bacteria along with their possible future applications in cancer therapeutics.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, 65212, USA.
| | - Santi M Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India.
| |
Collapse
|
6
|
Deyev S, Proshkina G, Baryshnikova O, Ryabova A, Avishai G, Katrivas L, Giannini C, Levi-Kalisman Y, Kotlyar A. Selective staining and eradication of cancer cells by protein-carrying DARPin-functionalized liposomes. Eur J Pharm Biopharm 2018; 130:296-305. [PMID: 29959035 DOI: 10.1016/j.ejpb.2018.06.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/22/2018] [Accepted: 06/25/2018] [Indexed: 12/30/2022]
Abstract
Since their discovery, liposomes have been widely employed in biomedical research. These nano-size spherical vesicles consisting one or few phospholipid bilayers surrounding an aqueous core are capable of carrying a wide variety of bioactive compounds, including drugs, peptides, nucleic acids, proteins and others. Despite considerable success achieved in synthesis of liposome constructs containing bioactive compounds, preparation of ligand-targeted liposomes comprising large quantities of encapsulated proteins that are capable of affecting pathological cells still remains a big challenge. Here we described a novel method for preparation of small (80-90 nm in diameter) unilamellar liposomes containing very large quantities (thousands of protein molecules per liposome) of heme-containing cytochrome c, highly fluorescent mCherry and highly toxic PE40 (Pseudomonas aeruginosa Exotoxin A domain). Efficient encapsulation of the proteins was achieved through electrostatic interaction between positively charged proteins (at pH lower than pI) and negatively charged liposome membrane. The proteoliposomes containing large quantities of mCherry or PE40 and functionalized with designed ankyrin repeat protein (DARPin)_9-29, which targets human epidermal growth factor receptor 2 (HER2) were shown to specifically stain and kill in sub-nanomolar concentrations HER2-positive cells, overexpressing HER2, respectively. Specific staining and eradication of the receptor-positive cells demonstrated here makes the DARPin-functionalized liposomes carrying large quantities of fluorescent and/or toxic proteins a promising candidate for tumor detection and therapy.
Collapse
Affiliation(s)
- Sergey Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St, 16/10, Moscow 117997, Russia
| | - Galina Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St, 16/10, Moscow 117997, Russia
| | - Olga Baryshnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St, 16/10, Moscow 117997, Russia
| | - Anastasiya Ryabova
- Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilova St, Moscow 119991, Russia
| | - Gavriel Avishai
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Liat Katrivas
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Clelia Giannini
- Department of Chemistry, University of Milan, via Golgi 19, 20133 Milan, Italy
| | - Yael Levi-Kalisman
- Institute for Life Sciences, The Hebrew University of Jerusalem, and The Center for Nanoscience and Nanotechnology of the Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Alexander Kotlyar
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| |
Collapse
|
7
|
Abstract
Despite the rising incidence of autoimmunity, therapeutic options for patients with autoimmune disease still rely on decades-old immunosuppressive strategies that risk severe and potentially fatal complications. Thus, novel therapeutic approaches for autoimmune diseases are greatly needed in order to minimize treatment-related toxicity. Such strategies would ideally target only the autoreactive immune components to preserve beneficial immunity. Here, we review how several decades of basic, translational, and clinical research on the immunology of pemphigus vulgaris (PV), an autoantibody-mediated skin disease, have enabled the development of targeted immunotherapeutic strategies. We discuss research to elucidate the pathophysiology of PV and how the knowledge afforded by these studies has led to the preclinical and clinical testing of targeted approaches to neutralize autoantibodies, to induce antigen-specific tolerance, and to specifically eliminate autoreactive B cells in PV.
Collapse
|
8
|
Davis SC, Harding A, Gil J, Parajon F, Valdes J, Solis M, Higa A. Effectiveness of a polyhexanide irrigation solution on methicillin-resistant Staphylococcus aureus biofilms in a porcine wound model. Int Wound J 2017; 14:937-944. [PMID: 28266133 DOI: 10.1111/iwj.12734] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/01/2017] [Accepted: 02/10/2017] [Indexed: 01/22/2023] Open
Abstract
Irrigation and removal of necrotic debris can be beneficial for proper healing. It is becoming increasingly evident that wounds colonized with biofilm forming bacteria, such as Staphylococcus aureus (SA), can be more difficult to eradicate. Here we report our findings of the effects of an irrigation solution containing propyl-betaine and polyhexanide (PHMB) on methicillin-resistant Staphylococcus aureus (MRSA) biofilms in a porcine wound model. Thirty-nine deep partial thickness wounds were created with six wounds assigned to one of six treatment groups: (i) PHMB, (ii) Ringer's solution, (iii) hypochlorous acid/sodium hypochlorite, (iv) sterile water, (v) octenidine dihydrochloride, and (vi) octenilin. Wounds were inoculated with MRSA and covered with a polyurethane dressing for 24 hours to allow biofilm formation. The dressings were then removed and the wounds were irrigated twice daily for 3 days with the appropriate solution. MRSA from four wounds were recovered from each treatment group at 3 days and 6 days hours after initial treatment. Irrigation of wounds with the PHMB solution resulted in 97·85% and 99·64% reductions of MRSA at the respective 3 days and 6 days assessment times when compared to the untreated group. Both of these reductions were statistically significant compared to all other treatment groups (P values <0·05).
Collapse
Affiliation(s)
- Stephen C Davis
- Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Andrew Harding
- Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Joel Gil
- Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Fernando Parajon
- Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jose Valdes
- Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Michael Solis
- Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Alex Higa
- Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
9
|
Michalska M, Wolf P. Pseudomonas Exotoxin A: optimized by evolution for effective killing. Front Microbiol 2015; 6:963. [PMID: 26441897 PMCID: PMC4584936 DOI: 10.3389/fmicb.2015.00963] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas Exotoxin A (PE) is the most toxic virulence factor of the pathogenic bacterium Pseudomonas aeruginosa. This review describes current knowledge about the intoxication pathways of PE. Moreover, PE represents a remarkable example for pathoadaptive evolution, how bacterial molecules have been structurally and functionally optimized under evolutionary pressure to effectively impair and kill their host cells.
Collapse
Affiliation(s)
- Marta Michalska
- Department of Urology, Medical Center, University of Freiburg Freiburg, Germany
| | - Philipp Wolf
- Department of Urology, Medical Center, University of Freiburg Freiburg, Germany
| |
Collapse
|
10
|
Homogentisate 1-2-Dioxygenase Downregulation in the Chronic Persistence of Pseudomonas aeruginosa Australian Epidemic Strain-1 in the CF Lung. PLoS One 2015; 10:e0134229. [PMID: 26252386 PMCID: PMC4529145 DOI: 10.1371/journal.pone.0134229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 07/07/2015] [Indexed: 11/30/2022] Open
Abstract
Some Pseudomonas aeruginosa strains including Australian Epidemic Strain-1 (AES-1 or AUS-01) cause persistent chronic infection in cystic fibrosis (CF) patients, with greater morbidity and mortality. Factors conferring persistence are largely unknown. Previously we analysed the transcriptomes of AES-1 grown in Luria broth, nematode growth medium for Caenorhabditis elegans assay (both aerobic) and artificial sputum medium (mainly hypoxic). Transcriptional comparisons included chronic AES-1 strains against PAO1 and acute AES-1 (AES-1R) against its chronic isogen (AES-1M), isolated 10.5 years apart from a CF patient and not eradicated in the meantime. Prominent amongst genes downregulated in AES-1M in all comparisons was homogentisate-1-2-dioxygenase (hmgA); an oxygen-dependent gene known to be mutationally deactivated in many chronic infection strains of P. aeruginosa. To investigate if hmgA downregulation and deactivation gave similar virulence persistence profiles, a hmgA mutant made in UCBPP-PA14 utilising RedS-recombinase and AES-1M were assessed in the C. elegans virulence assay, and the C57BL/6 mouse for pulmonary colonisation and TNF-α response. In C. elegans, hmgA deactivation resulted in significantly increased PA14 virulence while hmgA downregulation reduced AES-1M virulence. AES-1M was significantly more persistent in mouse lung and showed a significant increase in TNF-α (p<0.0001), sustained even with no detectable bacteria. PA14ΔhmgA did not show increased TNF-α. This study suggests that hmgA may have a role in P. aeruginosa persistence in chronic infection and the results provide a starting point for clarifying the role of hmgA in chronic AES-1.
Collapse
|
11
|
Dunlap WC, Starcevic A, Baranasic D, Diminic J, Zucko J, Gacesa R, van Oppen MJH, Hranueli D, Cullum J, Long PF. KEGG orthology-based annotation of the predicted proteome of Acropora digitifera: ZoophyteBase - an open access and searchable database of a coral genome. BMC Genomics 2013; 14:509. [PMID: 23889801 PMCID: PMC3750612 DOI: 10.1186/1471-2164-14-509] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/15/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Contemporary coral reef research has firmly established that a genomic approach is urgently needed to better understand the effects of anthropogenic environmental stress and global climate change on coral holobiont interactions. Here we present KEGG orthology-based annotation of the complete genome sequence of the scleractinian coral Acropora digitifera and provide the first comprehensive view of the genome of a reef-building coral by applying advanced bioinformatics. DESCRIPTION Sequences from the KEGG database of protein function were used to construct hidden Markov models. These models were used to search the predicted proteome of A. digitifera to establish complete genomic annotation. The annotated dataset is published in ZoophyteBase, an open access format with different options for searching the data. A particularly useful feature is the ability to use a Google-like search engine that links query words to protein attributes. We present features of the annotation that underpin the molecular structure of key processes of coral physiology that include (1) regulatory proteins of symbiosis, (2) planula and early developmental proteins, (3) neural messengers, receptors and sensory proteins, (4) calcification and Ca2+-signalling proteins, (5) plant-derived proteins, (6) proteins of nitrogen metabolism, (7) DNA repair proteins, (8) stress response proteins, (9) antioxidant and redox-protective proteins, (10) proteins of cellular apoptosis, (11) microbial symbioses and pathogenicity proteins, (12) proteins of viral pathogenicity, (13) toxins and venom, (14) proteins of the chemical defensome and (15) coral epigenetics. CONCLUSIONS We advocate that providing annotation in an open-access searchable database available to the public domain will give an unprecedented foundation to interrogate the fundamental molecular structure and interactions of coral symbiosis and allow critical questions to be addressed at the genomic level based on combined aspects of evolutionary, developmental, metabolic, and environmental perspectives.
Collapse
Affiliation(s)
- Walter C Dunlap
- Centre for Marine Microbiology and Genetics, Australian Institute of Marine Science, PMB No. 3 Townsville MC, Townsville 4810, Queensland, Australia
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Antonio Starcevic
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Damir Baranasic
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Janko Diminic
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Jurica Zucko
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Ranko Gacesa
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Madeleine JH van Oppen
- Centre for Marine Microbiology and Genetics, Australian Institute of Marine Science, PMB No. 3 Townsville MC, Townsville 4810, Queensland, Australia
| | - Daslav Hranueli
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - John Cullum
- Department of Genetics, University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
| | - Paul F Long
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
- Department of Chemistry King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
12
|
Kaloshin AA, Isakov MA, Mikhailova NA, Vertiev JV. Preparation of recombinant atoxic form of exotoxin A from Pseudomonas aeruginosa. Bull Exp Biol Med 2013; 154:346-50. [PMID: 23484197 DOI: 10.1007/s10517-013-1947-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleotide sequences encoding full-length protein of Pseudomonas aeruginosa exotoxin A and its atoxic form were cloned and expressed in Escherichia coli cells. Purified recombinant exotoxin and immune rabbit sera protected mice from exotoxin A.
Collapse
Affiliation(s)
- A A Kaloshin
- I. I. Mechnikov Institute of Vaccines and Sera, Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | | | |
Collapse
|
13
|
Barnea I, Ben-Yosef R, Karaush V, Benhar I, Vexler A. Targeting EGFR-positive cancer cells with cetuximab-ZZ-PE38: Results of in vitro and in vivo studies. Head Neck 2012; 35:1171-7. [DOI: 10.1002/hed.23093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2012] [Indexed: 11/09/2022] Open
|
14
|
Wang X, Li X, Zhang Z, Shen X, Zhong F. Codon optimization enhances secretory expression of Pseudomonas aeruginosa exotoxin A in E. coli. Protein Expr Purif 2010; 72:101-6. [PMID: 20172029 DOI: 10.1016/j.pep.2010.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 02/13/2010] [Accepted: 02/16/2010] [Indexed: 11/28/2022]
Abstract
Pseudomonas aeruginosa exotoxin A (PEA) is a number of family of bacterial ADP-ribosylating toxins and possesses strong immunogenicity. The detoxified exotoxin A, as a potent vaccine adjuvant and vaccine carrier protein, has been extensively used in human and animal vaccinations. However, the expression level of PEA gene in Escherichia coli is relative low which is likely due to the presence of rare codon and high levels of GC content. In order to enhance PEA gene expression, we optimized PEA gene using E. coli preferred codons and expressed it in E. coli BL21 (DE3) by using pET-20b(+) secretory expression vector. Our results showed that codon optimization significantly reduced GC content and enhanced PEA gene expression (70% increase compared with that of the wild-type). Moreover, the codon-optimized PEA possessed biological activity and had the similar toxic effects on mouse L292 cells compared with the wild-type PEA gene. Codon optimization will not only improve PEA gene expression but also benefit further modification of PEA gene using nucleotide-mediated site-directed mutagenesis. A large number of purified PEA proteins will provide the necessary conditions for further PEA functional research and application.
Collapse
Affiliation(s)
- Xingxing Wang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | | | | | | | | |
Collapse
|
15
|
Saenz JB, Li J, Haslam DB. The MAP kinase-activated protein kinase 2 (MK2) contributes to the Shiga toxin-induced inflammatory response. Cell Microbiol 2009; 12:516-29. [PMID: 19951368 DOI: 10.1111/j.1462-5822.2009.01414.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infection with Shiga toxin (STx)-producing bacteria can progress to a toxemic, extraintestinal injury cascade known as haemolytic uremic syndrome (HUS), the leading cause of acute renal failure in children. Mounting evidence suggests that STx activates stress response pathways in susceptible cells and has implicated the p38 mitogen-activated protein kinase (MAPK) pathway. More importantly, some of the pathology associated with HUS is believed to be a result of a STx-induced inflammatory response. From a siRNA screen of the human kinome adapted to a high-throughput format, we found that knock-down of the MAPK-activated protein kinase 2 (MK2), a downstream target of the p38 MAPK, protected against Shiga toxicity. Further characterization of the in vitro role of MK2 revealed that STx activates the p38-MK2 stress response pathway in both p38- and MK2-dependent manners in two distinct cell lines. MK2 activation was specific to damage to the ribosome by an enzymatically active toxin and did not result from translational inhibition per se. Genetic and chemical inhibition of MK2 significantly decreased the inflammatory response to STx. These findings suggest that MK2 inhibition might play a valuable role in decreasing the immuopathological component of STx-mediated disease.
Collapse
Affiliation(s)
- Jose B Saenz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
16
|
Wolf P, Elsässer-Beile U. Pseudomonas exotoxin A: from virulence factor to anti-cancer agent. Int J Med Microbiol 2009; 299:161-76. [PMID: 18948059 DOI: 10.1016/j.ijmm.2008.08.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 07/07/2008] [Accepted: 08/13/2008] [Indexed: 11/24/2022] Open
Abstract
The pathogenic bacterium Pseudomonas aeruginosa has the ability to cause severe acute and chronic infections in humans. Pseudomonas exotoxin A (PE) is the most toxic virulence factor of this bacterium. It has ADP-ribosylation activity and decisively affects the protein synthesis of the host cells. The cytotoxic pathways of PE have been elucidated, and it could be shown that PE uses several molecular strategies developed under evolutionary pressure for effective killing. Interestingly, a medical benefit from this molecule has also been ascertained in recent years and several PE-based immunotoxins have been constructed and tested in preclinical and clinical trials against different cancers. In these molecules, the enzymatic active domain of PE is specifically targeted to tumor-related antigens. This review describes the current knowledge about the cytotoxic pathways of PE. Additionally, it summarizes preclinical and clinical trials of PE-based immunotoxins and furthermore discusses current problems and answers with these agents.
Collapse
Affiliation(s)
- Philipp Wolf
- Department of Urology, University of Freiburg, Germany.
| | | |
Collapse
|
17
|
Jørgensen R, Wang Y, Visschedyk D, Merrill AR. The nature and character of the transition state for the ADP-ribosyltransferase reaction. EMBO Rep 2008; 9:802-9. [PMID: 18583986 PMCID: PMC2515215 DOI: 10.1038/embor.2008.90] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 04/21/2008] [Accepted: 04/21/2008] [Indexed: 11/08/2022] Open
Abstract
Exotoxin A (ExoA) from Pseudomonas aeruginosa is an important virulence factor that belongs to a class of exotoxins that are secreted by pathogenic bacteria which cause human diseases such as cholera, diphtheria, pneumonia and whooping cough. We present the first crystal structures, to our knowledge, of ExoA in complex with elongation factor 2 (eEF2) and intact NAD(+), which indicate a direct role of two active-site loops in ExoA during the catalytic cycle. One loop moves to form a solvent cover for the active site of the enzyme and reaches towards the target residue (diphthamide) in eEF2 forming an important hydrogen bond. The NAD(+) substrate adopts a conformation remarkably different from that of the NAD(+) analogue, betaTAD, observed in previous structures, and fails to trigger any loop movements. Mutational studies of the two loops in the toxin identify several residues important for catalytic activity, in particular Glu 546 and Arg 551, clearly supporting the new complex structures. On the basis of these data, we propose a transition-state model for the toxin-catalysed reaction.
Collapse
Affiliation(s)
- René Jørgensen
- Department of Molecular and Cellular Biology, University of Guelph, Building No. 140, 50 Gordon Street, Guelph, Ontario N1G 2W1, Canada
| | - Yolanda Wang
- Department of Molecular and Cellular Biology, University of Guelph, Building No. 140, 50 Gordon Street, Guelph, Ontario N1G 2W1, Canada
| | - Danielle Visschedyk
- Department of Molecular and Cellular Biology, University of Guelph, Building No. 140, 50 Gordon Street, Guelph, Ontario N1G 2W1, Canada
| | - A Rod Merrill
- Department of Molecular and Cellular Biology, University of Guelph, Building No. 140, 50 Gordon Street, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
18
|
Onda M, Nagata S, FitzGerald DJ, Beers R, Fisher RJ, Vincent JJ, Lee B, Nakamura M, Hwang J, Kreitman RJ, Hassan R, Pastan I. Characterization of the B cell epitopes associated with a truncated form of Pseudomonas exotoxin (PE38) used to make immunotoxins for the treatment of cancer patients. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:8822-34. [PMID: 17142785 DOI: 10.4049/jimmunol.177.12.8822] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recombinant immunotoxins composed of an Ab Fv fragment joined to a truncated portion of Pseudomonas exotoxin A (termed PE38) have been evaluated in clinical trials for the treatment of various human cancers. Immunotoxin therapy is very effective in hairy cell leukemia and also has activity in other hemological malignancies; however, a neutralizing Ab response to PE38 in patients with solid tumors prevents repeated treatments to maximize the benefit. In this study, we analyze the murine Ab response as a model to study the B cell epitopes associated with PE38. Sixty distinct mAbs to PE38 were characterized. Mutual competitive binding of the mAbs indicated the presence of 7 major epitope groups and 13 subgroups. The competition pattern indicated that the epitopes are discrete and could not be reproduced using a computer simulation program that created epitopes out of random surface residues on PE38. Using sera from immunotoxin-treated patients, the formation of human Abs to each of the topographical epitopes was demonstrated. One epitope subgroup, E1a, was identified as the principal neutralizing epitope. The location of each epitope on PE38 was determined by preparing 41 mutants of PE38 in which bulky surface residues were mutated to either alanine or glycine. All 7 major epitope groups and 9 of 13 epitope subgroups were identified by 14 different mutants and these retained high cytotoxic activity. Our results indicate that a relatively small number of discrete immunogenic sites are associated with PE38, most of which can be eliminated by point mutations.
Collapse
Affiliation(s)
- Masanori Onda
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kim C, Slavinskaya Z, Merrill A, Kaufmann S. Human alpha-defensins neutralize toxins of the mono-ADP-ribosyltransferase family. Biochem J 2006; 399:225-9. [PMID: 16817779 PMCID: PMC1609915 DOI: 10.1042/bj20060425] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Various bacterial pathogens secrete toxins, which are not only responsible for fatal pathogenesis of disease, but also facilitate evasion of host defences. One of the best-known bacterial toxin groups is the mono-ADP-ribosyltransferase family. In the present study, we demonstrate that human neutrophil alpha-defensins are potent inhibitors of the bacterial enzymes, particularly against DT (diphtheria toxin) and ETA (Pseudomonas exotoxin A). HNP1 (human neutrophil protein 1) inhibited DT- or ETA-mediated ADP-ribosylation of eEF2 (eukaryotic elongation factor 2) and protected HeLa cells against DT- or ETA-induced cell death. Kinetic analysis revealed that inhibition of DT and ETA by HNP1 was competitive with respect to eEF2 and uncompetitive against NAD+ substrates. Our results reveal that toxin neutralization represents a novel biological function of HNPs in host defence.
Collapse
Affiliation(s)
- Chun Kim
- *Department of Immunology, Max Planck Institute for Infection Biology, Schumannstrasse 21-22, D-10117 Berlin, Germany
| | - Zoya Slavinskaya
- †Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - A. Rod Merrill
- †Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Stefan H. E. Kaufmann
- *Department of Immunology, Max Planck Institute for Infection Biology, Schumannstrasse 21-22, D-10117 Berlin, Germany
- To whom correspondence should be addressed (email )
| |
Collapse
|