1
|
Provost JJ, Parente AD, Slade KM, Wiese TJ. Exploring the uncharted territory of the potential protein-protein interactions of cytosolic malate dehydrogenase. Essays Biochem 2024; 68:83-97. [PMID: 38868916 DOI: 10.1042/ebc20230083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
In this review, we examine the protein-protein interactions of cytosolic malate dehydrogenase (MDH), an under-studied area in cellular metabolism. We provide a comprehensive overview of MDH involvement in metabolism, especially its interactions with metabolic partners and dynamics of changing metabolism. We present an analysis of the biophysical nature of these interactions and the current methods used to study them. Our review includes an assessment of computational docking studies, which offer initial hypotheses about potential MDH interaction partners. Furthermore, we provide a summary of the sparse yet insightful experimental evidence available, establishing a foundation for future research. By integrating biophysical analysis and methodological advancements, this paper aims to illuminate the intricate network of interactions involving cytosolic MDH and their metabolic implications. This work not only contributes to our understanding of MDH's role in metabolism but also highlights the potential impact of these interactions in metabolic disorders.
Collapse
Affiliation(s)
- Joseph J Provost
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, U.S.A
| | - Amy D Parente
- Department of Chemistry and Biochemistry, Mercyhurst University, Erie, PA, U.S.A
| | - Kristin M Slade
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, NY 14456, U.S.A
| | - Thomas J Wiese
- Department of Chemistry, Tabor College, 400 South Jefferson, Hillsboro, KS 67063, U.S.A
| |
Collapse
|
2
|
Hollmann F, Sanchis J, Reetz MT. Learning from Protein Engineering by Deconvolution of Multi-Mutational Variants. Angew Chem Int Ed Engl 2024; 63:e202404880. [PMID: 38884594 DOI: 10.1002/anie.202404880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
This review analyzes a development in biochemistry, enzymology and biotechnology that originally came as a surprise. Following the establishment of directed evolution of stereoselective enzymes in organic chemistry, the concept of partial or complete deconvolution of selective multi-mutational variants was introduced. Early deconvolution experiments of stereoselective variants led to the finding that mutations can interact cooperatively or antagonistically with one another, not just additively. During the past decade, this phenomenon was shown to be general. In some studies, molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) computations were performed in order to shed light on the origin of non-additivity at all stages of an evolutionary upward climb. Data of complete deconvolution can be used to construct unique multi-dimensional rugged fitness pathway landscapes, which provide mechanistic insights different from traditional fitness landscapes. Along a related line, biochemists have long tested the result of introducing two point mutations in an enzyme for mechanistic reasons, followed by a comparison of the respective double mutant in so-called double mutant cycles, which originally showed only additive effects, but more recently also uncovered cooperative and antagonistic non-additive effects. We conclude with suggestions for future work, and call for a unified overall picture of non-additivity and epistasis.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, Netherlands
| | - Joaquin Sanchis
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Manfred T Reetz
- Max-Plank-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45481, Mülheim, Germany
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
3
|
Cao Z, Hutchison JM, Sanders CR, Bowie JU. Backbone Hydrogen Bond Strengths Can Vary Widely in Transmembrane Helices. J Am Chem Soc 2017; 139:10742-10749. [PMID: 28692798 PMCID: PMC5560243 DOI: 10.1021/jacs.7b04819] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
![]()
Although
backbone hydrogen bonds in transmembrane (TM) helices
have the potential to be very strong due to the low dielectric and
low water environment of the membrane, their strength has never been
assessed experimentally. Moreover, variations in hydrogen bond strength
might be necessary to facilitate the TM helix breaking and bending
that is often needed to satisfy functional imperatives. Here we employed
equilibrium hydrogen/deuterium fractionation factors to measure backbone
hydrogen bond strengths in the TM helix of the amyloid precursor protein
(APP). We find an enormous range of hydrogen bond free energies, with
some weaker than water–water hydrogen bonds and some over 6
kcal/mol stronger than water–water hydrogen bonds. We find
that weak hydrogen bonds are at or near preferred γ-secretase
cleavage sites, suggesting that the sequence of APP and possibly other
cleaved TM helices may be designed, in part, to make their backbones
accessible for cleavage. The finding that hydrogen bond strengths
in a TM helix can vary widely has implications for membrane protein
function, dynamics, evolution, and design.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California , Los Angeles, California 90095, United States
| | - James M Hutchison
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240, United States
| | - Charles R Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240, United States
| | - James U Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Cha HJ, Jang DS, Jeong JH, Hong BH, Yun YS, Shin EJ, Choi KY. Role of conserved Met112 residue in the catalytic activity and stability of ketosteroid isomerase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1322-7. [PMID: 27375051 DOI: 10.1016/j.bbapap.2016.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/11/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
Ketosteroid isomerase (3-oxosteroid Δ(5)-Δ(4)-isomerase, KSI) from Pseudomonas putida catalyzes allylic rearrangement of the 5,6-double bond of Δ(5)-3-ketosteroid to 4,5-position by stereospecific intramolecular transfer of a proton. The active site of KSI is formed by several hydrophobic residues and three catalytic residues (Tyr14, Asp38, and Asp99). In this study, we investigated the role of a hydrophobic Met112 residue near the active site in the catalysis, steroid binding, and stability of KSI. Replacing Met112 with alanine (yields M112A) or leucine (M112L) decreased the kcat by 20- and 4-fold, respectively. Compared with the wild type (WT), M112A and M112L KSIs showed increased KD values for equilenin, an intermediate analogue; these changes suggest that loss of packing at position 112 might lead to unfavorable steroid binding, thereby resulting in decreased catalytic activity. Furthermore, M112A and M112L mutations reduced melting temperature (Tm) by 6.4°C and 2.5°C, respectively. These changes suggest that favorable packing in the core is important for the maintenance of stability in KSI. The M112K mutation decreased kcat by 2000-fold, compared with the WT. In M112K KSI structure, a new salt bridge was formed between Asp38 and Lys112. This bridge could change the electrostatic potential of Asp38, and thereby contribute to the decreased catalytic activity. The M112K mutation also decreased the stability by reducing Tm by 4.1°C. Our data suggest that the Met112 residue may contribute to the catalytic activity and stability of KSI by providing favorable hydrophobic environments and compact packing in the catalytic core.
Collapse
Affiliation(s)
- Hyung Jin Cha
- Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Do Soo Jang
- Department of Life Sciences, POSTECH, Pohang, Republic of Korea
| | - Jae-Hee Jeong
- Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Bee Hak Hong
- Department of Life Sciences, POSTECH, Pohang, Republic of Korea
| | - Young Sung Yun
- Department of Life Sciences, POSTECH, Pohang, Republic of Korea
| | - Eun Ju Shin
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Kwan Yong Choi
- Department of Life Sciences, POSTECH, Pohang, Republic of Korea.
| |
Collapse
|
5
|
Jang DS, Choi G, Cha HJ, Shin S, Hong BH, Lee HJ, Lee HC, Choi KY. Contribution of a low-barrier hydrogen bond to catalysis is not significant in ketosteroid isomerase. Mol Cells 2015; 38:409-15. [PMID: 25947291 PMCID: PMC4443282 DOI: 10.14348/molcells.2015.2266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 02/14/2015] [Accepted: 02/16/2015] [Indexed: 11/27/2022] Open
Abstract
Low-barrier hydrogen bonds (LBHBs) have been proposed to have important influences on the enormous reaction rate increases achieved by many enzymes. Δ(5)-3-ketosteroid isomerase (KSI) catalyzes the allylic isomerization of Δ(5)-3-ketosteroid to its conjugated Δ(4)-isomers at a rate that approaches the diffusion limit. Tyr14, a catalytic residue of KSI, has been hypothesized to form an LBHB with the oxyanion of a dienolate steroid intermediate generated during the catalysis. The unusual chemical shift of a proton at 16.8 ppm in the nuclear magnetic resonance spectrum has been attributed to an LBHB between Tyr14 Oη and C3-O of equilenin, an intermediate analogue, in the active site of D38N KSI. This shift in the spectrum was not observed in Y30F/Y55F/D38N and Y30F/Y55F/Y115F/D38N mutant KSIs when each mutant was complexed with equilenin, suggesting that Tyr14 could not form LBHB with the intermediate analogue in these mutant KSIs. The crystal structure of Y30F/Y55F/Y115F/D38N-equilenin complex revealed that the distance between Tyr14 Oη and C3-O of the bound steroid was within a direct hydrogen bond. The conversion of LBHB to an ordinary hydrogen bond in the mutant KSI reduced the binding affinity for the steroid inhibitors by a factor of 8.1-11. In addition, the absence of LBHB reduced the catalytic activity by only a factor of 1.7-2. These results suggest that the amount of stabilization energy of the reaction intermediate provided by LBHB is small compared with that provided by an ordinary hydrogen bond in KSI.
Collapse
Affiliation(s)
- Do Soo Jang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784,
Korea
- Research Institute, Genexine Co., Seongnam 463-400,
Korea
| | - Gildon Choi
- Korea Research Institute of Chemical Technology, Daejeon 305-343,
Korea
| | - Hyung Jin Cha
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784,
Korea
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Sejeong Shin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115,
USA
| | - Bee Hak Hong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784,
Korea
- Research Institute, Genexine Co., Seongnam 463-400,
Korea
| | - Hyeong Ju Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Hee Cheon Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Kwan Yong Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784,
Korea
| |
Collapse
|
6
|
Fried SD, Bagchi S, Boxer SG. Extreme electric fields power catalysis in the active site of ketosteroid isomerase. Science 2015; 346:1510-4. [PMID: 25525245 DOI: 10.1126/science.1259802] [Citation(s) in RCA: 333] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Enzymes use protein architecture to impose specific electrostatic fields onto their bound substrates, but the magnitude and catalytic effect of these electric fields have proven difficult to quantify with standard experimental approaches. Using vibrational Stark effect spectroscopy, we found that the active site of the enzyme ketosteroid isomerase (KSI) exerts an extremely large electric field onto the C=O chemical bond that undergoes a charge rearrangement in KSI's rate-determining step. Moreover, we found that the magnitude of the electric field exerted by the active site strongly correlates with the enzyme's catalytic rate enhancement, enabling us to quantify the fraction of the catalytic effect that is electrostatic in origin. The measurements described here may help explain the role of electrostatics in many other enzymes and biomolecular systems.
Collapse
Affiliation(s)
- Stephen D Fried
- Department of Chemistry, Stanford University, Stanford, CA 94305-1052, USA
| | - Sayan Bagchi
- Department of Chemistry, Stanford University, Stanford, CA 94305-1052, USA
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, CA 94305-1052, USA.
| |
Collapse
|
7
|
Toward understanding driving forces in membrane protein folding. Arch Biochem Biophys 2014; 564:297-313. [DOI: 10.1016/j.abb.2014.07.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/13/2022]
|
8
|
Bank C, Hietpas RT, Jensen JD, Bolon DNA. A systematic survey of an intragenic epistatic landscape. Mol Biol Evol 2014; 32:229-38. [PMID: 25371431 DOI: 10.1093/molbev/msu301] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mutations are the source of evolutionary variation. The interactions of multiple mutations can have important effects on fitness and evolutionary trajectories. We have recently described the distribution of fitness effects of all single mutations for a nine-amino-acid region of yeast Hsp90 (Hsp82) implicated in substrate binding. Here, we report and discuss the distribution of intragenic epistatic effects within this region in seven Hsp90 point mutant backgrounds of neutral to slightly deleterious effect, resulting in an analysis of more than 1,000 double mutants. We find negative epistasis between substitutions to be common, and positive epistasis to be rare--resulting in a pattern that indicates a drastic change in the distribution of fitness effects one step away from the wild type. This can be well explained by a concave relationship between phenotype and genotype (i.e., a concave shape of the local fitness landscape), suggesting mutational robustness intrinsic to the local sequence space. Structural analyses indicate that, in this region, epistatic effects are most pronounced when a solvent-inaccessible position is involved in the interaction. In contrast, all 18 observations of positive epistasis involved at least one mutation at a solvent-exposed position. By combining the analysis of evolutionary and biophysical properties of an epistatic landscape, these results contribute to a more detailed understanding of the complexity of protein evolution.
Collapse
Affiliation(s)
- Claudia Bank
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Ryan T Hietpas
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Jeffrey D Jensen
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Daniel N A Bolon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
9
|
Cao Z, Bowie JU. An energetic scale for equilibrium H/D fractionation factors illuminates hydrogen bond free energies in proteins. Protein Sci 2014; 23:566-75. [PMID: 24501090 DOI: 10.1002/pro.2435] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 11/09/2022]
Abstract
Equilibrium H/D fractionation factors have been extensively employed to qualitatively assess hydrogen bond strengths in protein structure, enzyme active sites, and DNA. It remains unclear how fractionation factors correlate with hydrogen bond free energies, however. Here we develop an empirical relationship between fractionation factors and free energy, allowing for the simple and quantitative measurement of hydrogen bond free energies. Applying our empirical relationship to prior fractionation factor studies in proteins, we find: [1] Within the folded state, backbone hydrogen bonds are only marginally stronger on average in α-helices compared to β-sheets by ∼0.2 kcal/mol. [2] Charge-stabilized hydrogen bonds are stronger than neutral hydrogen bonds by ∼2 kcal/mol on average, and can be as strong as -7 kcal/mol. [3] Changes in a few hydrogen bonds during an enzyme catalytic cycle can stabilize an intermediate state by -4.2 kcal/mol. [4] Backbone hydrogen bonds can make a large overall contribution to the energetics of conformational changes, possibly playing an important role in directing conformational changes. [5] Backbone hydrogen bonding becomes more uniform overall upon ligand binding, which may facilitate participation of the entire protein structure in events at the active site. Our energetic scale provides a simple method for further exploration of hydrogen bond free energies.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics and the Molecular Biology Institute, University of California, Los Angeles, California
| | | |
Collapse
|
10
|
Schwans JP, Sunden F, Gonzalez A, Tsai Y, Herschlag D. Uncovering the determinants of a highly perturbed tyrosine pKa in the active site of ketosteroid isomerase. Biochemistry 2013; 52:7840-55. [PMID: 24151972 PMCID: PMC3890242 DOI: 10.1021/bi401083b] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Within the idiosyncratic enzyme active-site environment, side chain and ligand pKa values can be profoundly perturbed relative to their values in aqueous solution. Whereas structural inspection of systems has often attributed perturbed pKa values to dominant contributions from placement near charged groups or within hydrophobic pockets, Tyr57 of a Pseudomonas putida ketosteroid isomerase (KSI) mutant, suggested to have a pKa perturbed by nearly 4 units to 6.3, is situated within a solvent-exposed active site devoid of cationic side chains, metal ions, or cofactors. Extensive comparisons among 45 variants with mutations in and around the KSI active site, along with protein semisynthesis, (13)C NMR spectroscopy, absorbance spectroscopy, and X-ray crystallography, was used to unravel the basis for this perturbed Tyr pKa. The results suggest that the origin of large energetic perturbations are more complex than suggested by visual inspection. For example, the introduction of positively charged residues near Tyr57 raises its pKa rather than lowers it; this effect, and part of the increase in the Tyr pKa from the introduction of nearby anionic groups, arises from accompanying active-site structural rearrangements. Other mutations with large effects also cause structural perturbations or appear to displace a structured water molecule that is part of a stabilizing hydrogen-bond network. Our results lead to a model in which three hydrogen bonds are donated to the stabilized ionized Tyr, with these hydrogen-bond donors, two Tyr side chains, and a water molecule positioned by other side chains and by a water-mediated hydrogen-bond network. These results support the notion that large energetic effects are often the consequence of multiple stabilizing interactions rather than a single dominant interaction. Most generally, this work provides a case study for how extensive and comprehensive comparisons via site-directed mutagenesis in a tight feedback loop with structural analysis can greatly facilitate our understanding of enzyme active-site energetics. The extensive data set provided may also be a valuable resource for those wishing to extensively test computational approaches for determining enzymatic pKa values and energetic effects.
Collapse
Affiliation(s)
- Jason P. Schwans
- Department of Biochemistry, Stanford University, Stanford, California 94305
| | - Fanny Sunden
- Department of Biochemistry, Stanford University, Stanford, California 94305
| | - Ana Gonzalez
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025
| | - Yingssu Tsai
- Department of Chemistry, Stanford University, Stanford, California 94305
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305
- Department of Chemistry, Stanford University, Stanford, California 94305
| |
Collapse
|
11
|
Cha HJ, Jang DS, Kim YG, Hong BH, Woo JS, Kim KT, Choi KY. Rescue of deleterious mutations by the compensatory Y30F mutation in ketosteroid isomerase. Mol Cells 2013; 36:39-46. [PMID: 23740430 PMCID: PMC3887930 DOI: 10.1007/s10059-013-0013-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 01/07/2023] Open
Abstract
Proteins have evolved to compensate for detrimental mutations. However, compensatory mechanisms for protein defects are not well understood. Using ketosteroid isomerase (KSI), we investigated how second-site mutations could recover defective mutant function and stability. Previous results revealed that the Y30F mutation rescued the Y14F, Y55F and Y14F/Y55F mutants by increasing the catalytic activity by 23-, 3- and 1.3-fold, respectively, and the Y55F mutant by increasing the stability by 3.3 kcal/mol. To better understand these observations, we systematically investigated detailed structural and thermodynamic effects of the Y30F mutation on these mutants. Crystal structures of the Y14F/Y30F and Y14F/Y55F mutants were solved at 2.0 and 1.8 previoulsy solved structures of wild-type and other mutant KSIs. Structural analyses revealed that the Y30F mutation partially restored the active-site cleft of these mutant KSIs. The Y30F mutation also increased Y14F and Y14F/Y55F mutant stability by 3.2 and 4.3 kcal/mol, respectively, and the melting temperatures of the Y14F, Y55F and Y14F/Y55F mutants by 6.4°C, 5.1°C and 10.0°C, respectively. Compensatory effects of the Y30F mutation on stability might be due to improved hydrophobic interactions because removal of a hydroxyl group from Tyr30 induced local compaction by neighboring residue movement and enhanced interactions with surrounding hydrophobic residues in the active site. Taken together, our results suggest that perturbed active-site geometry recovery and favorable hydrophobic interactions mediate the role of Y30F as a secondsite suppressor.
Collapse
Affiliation(s)
- Hyung Jin Cha
- Department of Life Science, Division of Molecular and Life Sciences, Division of Integrative Biosciences and Biotechnology, WCU Program, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Do Soo Jang
- Research Institute, Genexine Co., Seongnam 463-400,
Korea
| | - Yeon-Gil Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Bee Hak Hong
- Research Institute, Genexine Co., Seongnam 463-400,
Korea
| | - Jae-Sung Woo
- Institute for Basic Science, Seoul National University, Seoul 151-742,
Korea
| | - Kyong-Tai Kim
- Department of Life Science, Division of Molecular and Life Sciences, Division of Integrative Biosciences and Biotechnology, WCU Program, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Kwan Yong Choi
- Department of Life Science, Division of Molecular and Life Sciences, Division of Integrative Biosciences and Biotechnology, WCU Program, Pohang University of Science and Technology, Pohang 790-784,
Korea
| |
Collapse
|
12
|
Chadwick AC, Sahoo D. Functional characterization of newly-discovered mutations in human SR-BI. PLoS One 2012; 7:e45660. [PMID: 23029167 PMCID: PMC3448639 DOI: 10.1371/journal.pone.0045660] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/20/2012] [Indexed: 12/27/2022] Open
Abstract
In rodents, SR-BI has been firmly established as a physiologically relevant HDL receptor that mediates removal of HDL-cholesteryl esters (CE). However, its role in human lipoprotein metabolism is less defined. Recently, two unique point mutations in human SR-BI - S112F or T175A - were identified in subjects with high HDL-cholesterol (HDL-C) levels. We hypothesized that mutation of these conserved residues would compromise the cholesterol-transport functions of SR-BI. To test this hypothesis, S112F- and T175A-SR-BI were generated by site-directed mutagenesis. Cell surface expression was confirmed for both mutant receptors in COS-7 cells upon transient transfection, albeit at lower levels for T175A-SR-BI. Both mutant receptors displayed defective HDL binding, selective uptake of HDL-CE and release of free cholesterol (FC) from cells to HDL. Mutant receptors were also unable to re-organize plasma membrane pools of FC. While these impaired functions were independent of receptor oligomerization, inability of T175A-SR-BI to mediate cholesterol-transport functions could be related to altered N-linked glycosylation status. In conclusion, high HDL-C levels observed in carriers of S112F- or T175A-SR-BI mutant receptors are consistent with the inability of these SR-BI receptors to mediate efficient selective uptake of HDL-CE, and suggest that increased plasma HDL concentrations in these settings may not be associated with lower risk of cardiovascular disease.
Collapse
Affiliation(s)
- Alexandra C Chadwick
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
13
|
Bound water at protein-protein interfaces: partners, roles and hydrophobic bubbles as a conserved motif. PLoS One 2011; 6:e24712. [PMID: 21961043 PMCID: PMC3178540 DOI: 10.1371/journal.pone.0024712] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 08/17/2011] [Indexed: 12/18/2022] Open
Abstract
Background There is a great interest in understanding and exploiting protein-protein associations as new routes for treating human disease. However, these associations are difficult to structurally characterize or model although the number of X-ray structures for protein-protein complexes is expanding. One feature of these complexes that has received little attention is the role of water molecules in the interfacial region. Methodology A data set of 4741 water molecules abstracted from 179 high-resolution (≤ 2.30 Å) X-ray crystal structures of protein-protein complexes was analyzed with a suite of modeling tools based on the HINT forcefield and hydrogen-bonding geometry. A metric termed Relevance was used to classify the general roles of the water molecules. Results The water molecules were found to be involved in: a) (bridging) interactions with both proteins (21%), b) favorable interactions with only one protein (53%), and c) no interactions with either protein (26%). This trend is shown to be independent of the crystallographic resolution. Interactions with residue backbones are consistent for all classes and account for 21.5% of all interactions. Interactions with polar residues are significantly more common for the first group and interactions with non-polar residues dominate the last group. Waters interacting with both proteins stabilize on average the proteins' interaction (−0.46 kcal mol−1), but the overall average contribution of a single water to the protein-protein interaction energy is unfavorable (+0.03 kcal mol−1). Analysis of the waters without favorable interactions with either protein suggests that this is a conserved phenomenon: 42% of these waters have SASA ≤ 10 Å2 and are thus largely buried, and 69% of these are within predominantly hydrophobic environments or “hydrophobic bubbles”. Such water molecules may have an important biological purpose in mediating protein-protein interactions.
Collapse
|
14
|
Hanoian P, Hammes-Schiffer S. Water in the active site of ketosteroid isomerase. Biochemistry 2011; 50:6689-700. [PMID: 21710970 DOI: 10.1021/bi200703y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Classical molecular dynamics simulations were utilized to investigate the structural and dynamical properties of water in the active site of ketosteroid isomerase (KSI) to provide insight into the role of these water molecules in the enzyme-catalyzed reaction. This reaction is thought to proceed via a dienolate intermediate that is stabilized by hydrogen bonding with residues Tyr16 and Asp103. A comparative study was performed for the wild-type (WT) KSI and the Y16F, Y16S, and Y16F/Y32F/Y57F (FFF) mutants. These systems were studied with three different bound ligands: equilenin, which is an intermediate analog, and the intermediate states of two steroid substrates. Several distinct water occupation sites were identified in the active site of KSI for the WT and mutant systems. Three additional sites were identified in the Y16S mutant that were not occupied in WT KSI or the other mutants studied. The number of water molecules directly hydrogen bonded to the ligand oxygen was approximately two in the Y16S mutant and one in the Y16F and FFF mutants, with intermittent hydrogen bonding of one water molecule in WT KSI. The molecular dynamics trajectories of the Y16F and FFF mutants reproduced the small conformational changes of residue 16 observed in the crystal structures of these two mutants. Quantum mechanical/molecular mechanical calculations of (1)H NMR chemical shifts of the protons in the active site hydrogen-bonding network suggest that the presence of water in the active site does not prevent the formation of short hydrogen bonds with far-downfield chemical shifts. The molecular dynamics simulations indicate that the active site water molecules exchange much more frequently for WT KSI and the FFF mutant than for the Y16F and Y16S mutants. This difference is most likely due to the hydrogen-bonding interaction between Tyr57 and an active site water molecule that is persistent in the Y16F and Y16S mutants but absent in the FFF mutant and significantly less probable in WT KSI.
Collapse
Affiliation(s)
- Philip Hanoian
- Department of Chemistry, 104 Chemistry Building, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
15
|
Hanoian P, Sigala PA, Herschlag D, Hammes-Schiffer S. Hydrogen bonding in the active site of ketosteroid isomerase: electronic inductive effects and hydrogen bond coupling. Biochemistry 2010; 49:10339-48. [PMID: 21049962 DOI: 10.1021/bi101428e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Computational studies are performed to analyze the physical properties of hydrogen bonds donated by Tyr16 and Asp103 to a series of substituted phenolate inhibitors bound in the active site of ketosteroid isomerase (KSI). As the solution pK(a) of the phenolate increases, these hydrogen bond distances decrease, the associated nuclear magnetic resonance (NMR) chemical shifts increase, and the fraction of protonated inhibitor increases, in agreement with prior experiments. The quantum mechanical/molecular mechanical calculations provide insight into the electronic inductive effects along the hydrogen bonding network that includes Tyr16, Tyr57, and Tyr32, as well as insight into hydrogen bond coupling in the active site. The calculations predict that the most-downfield NMR chemical shift observed experimentally corresponds to the Tyr16-phenolate hydrogen bond and that Tyr16 is the proton donor when a bound naphtholate inhibitor is observed to be protonated in electronic absorption experiments. According to these calculations, the electronic inductive effects along the hydrogen bonding network of tyrosines cause the Tyr16 hydroxyl to be more acidic than the Asp103 carboxylic acid moiety, which is immersed in a relatively nonpolar environment. When one of the distal tyrosine residues in the network is mutated to phenylalanine, thereby diminishing this inductive effect, the Tyr16-phenolate hydrogen bond becomes longer and the Asp103-phenolate hydrogen bond shorter, as observed in NMR experiments. Furthermore, the calculations suggest that the differences in the experimental NMR data and electronic absorption spectra for pKSI and tKSI, two homologous bacterial forms of the enzyme, are due predominantly to the third tyrosine that is present in the hydrogen bonding network of pKSI but not tKSI. These studies also provide experimentally testable predictions about the impact of mutating the distal tyrosine residues in this hydrogen bonding network on the NMR chemical shifts and electronic absorption spectra.
Collapse
Affiliation(s)
- Philip Hanoian
- Department of Chemistry,Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
16
|
Bowie JU. Membrane protein folding: how important are hydrogen bonds? Curr Opin Struct Biol 2010; 21:42-9. [PMID: 21075614 DOI: 10.1016/j.sbi.2010.10.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 10/19/2010] [Indexed: 11/28/2022]
Abstract
Water is an inhospitable environment for protein hydrogen bonds because it is polarizable and capable of forming competitive hydrogen bonds. In contrast, the apolar core of a biological membrane seems like an ideal environment for hydrogen bonds, and it has long been assumed that hydrogen bonding should be a powerful force driving membrane protein folding. Nevertheless, while backbone hydrogen bonds may be much stronger in membrane proteins, experimental measurements indicate that side chain hydrogen bond strengths are not strikingly different in membrane and water soluble proteins. How is this possible? I argue that model compounds in apolar solvents do not adequately describe the system because the protein itself is ignored. The protein chain provides a rich source of competitive hydrogen bonds and a polarizable environment that can weaken hydrogen bonds. Thus, just like water soluble proteins, evolution can drive the creation of potent hydrogen bonds in membrane proteins where necessary, but mitigating forces in their environment must still be overcome.
Collapse
Affiliation(s)
- James U Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute of Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, USA.
| |
Collapse
|
17
|
Chakravorty DK, Hammes-Schiffer S. Impact of mutation on proton transfer reactions in ketosteroid isomerase: insights from molecular dynamics simulations. J Am Chem Soc 2010; 132:7549-55. [PMID: 20450180 PMCID: PMC2896286 DOI: 10.1021/ja102714u] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The two proton transfer reactions catalyzed by ketosteroid isomerase (KSI) involve a dienolate intermediate stabilized by hydrogen bonds with Tyr14 and Asp99. Molecular dynamics simulations based on an empirical valence bond model are used to examine the impact of mutating these residues on the hydrogen-bonding patterns, conformational changes, and van der Waals and electrostatic interactions during the proton transfer reactions. While the rate constants for the two proton transfer steps are similar for wild-type (WT) KSI, the simulations suggest that the rate constant for the first proton transfer step is smaller in the mutants due to the significantly higher free energy of the dienolate intermediate relative to the reactant. The calculated rate constants for the mutants D99L, Y14F, and Y14F/D99L relative to WT KSI are qualitatively consistent with the kinetic experiments indicating a significant reduction in the catalytic rates along the series of mutants. In the simulations, WT KSI retained two hydrogen-bonding interactions between the substrate and the active site, while the mutants typically retained only one hydrogen-bonding interaction. A new hydrogen-bonding interaction between the substrate and Tyr55 was observed in the double mutant, leading to the prediction that mutation of Tyr55 will have a greater impact on the proton transfer rate constants for the double mutant than for WT KSI. The electrostatic stabilization of the dienolate intermediate relative to the reactant was greater for WT KSI than for the mutants, providing a qualitative explanation for the significantly reduced rates of the mutants. The active site exhibited restricted motion during the proton transfer reactions, but small conformational changes occurred to facilitate the proton transfer reactions by strengthening the hydrogen-bonding interactions and by bringing the proton donor and acceptor closer to each other with the proper orientation for proton transfer. Thus, these calculations suggest that KSI forms a preorganized active site but that the structure of this preorganized active site is altered upon mutation. Moreover, small conformational changes due to stochastic thermal motions are required within this preorganized active site to facilitate the proton transfer reactions.
Collapse
Affiliation(s)
- Dhruva K. Chakravorty
- Department of Chemistry, 104 Chemistry Building, Pennsylvania State University, University Park, PA 16802
| | - Sharon Hammes-Schiffer
- Department of Chemistry, 104 Chemistry Building, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
18
|
In silico saturation mutagenesis and docking screening for the analysis of protein-ligand interaction: the Endothelial Protein C Receptor case study. BMC Bioinformatics 2009; 10 Suppl 12:S3. [PMID: 19828079 PMCID: PMC2762068 DOI: 10.1186/1471-2105-10-s12-s3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background The design of mutants in protein functional regions, such as the ligand binding sites, is a powerful approach to recognize the determinants of specific protein activities in cellular pathways. For an exhaustive analysis of selected positions of protein structure large scale mutagenesis techniques are often employed, with laborious and time consuming experimental set-up. 'In silico' mutagenesis and screening simulation represents a valid alternative to laboratory methods to drive the 'in vivo' testing toward more focused objectives. Results We present here a high performance computational procedure for large-scale mutant modelling and subsequent evaluation of the effect on ligand binding affinity. The mutagenesis was performed with a 'saturation' approach, where all 20 natural amino acids were tested in positions involved in ligand binding sites. Each modelled mutant was subjected to molecular docking simulation and stability evaluation. The simulated protein-ligand complexes were screened for their impairment of binding ability based on change of calculated Ki compared to the wild-type. An example of application to the Endothelial Protein C Receptor residues involved in lipid binding is reported. Conclusion The computational pipeline presented in this work is a useful tool for the design of structurally stable mutants with altered affinity for ligand binding, considerably reducing the number of mutants to be experimentally tested. The saturation mutagenesis procedure does not require previous knowledge of functional role of the residues involved and allows extensive exploration of all possible substitutions and their pairwise combinations. Mutants are screened by docking simulation and stability evaluation followed by a rationally driven selection of those presenting the required characteristics. The method can be employed in molecular recognition studies and as a preliminary approach to select models for experimental testing.
Collapse
|
19
|
Sigala PA, Caaveiro JMM, Ringe D, Petsko GA, Herschlag D. Hydrogen bond coupling in the ketosteroid isomerase active site. Biochemistry 2009; 48:6932-9. [PMID: 19469568 DOI: 10.1021/bi900713j] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrogen bond networks are key elements of biological structure and function. Nevertheless, their structural properties are challenging to assess within complex macromolecules. Hydrogen-bonded protons are not observed in the vast majority of protein X-ray structures, and static crystallographic models provide limited information regarding the dynamical coupling within hydrogen bond networks. We have brought together 1.1-1.3 A resolution X-ray crystallography, (1)H NMR, site-directed mutagenesis, and deuterium isotope effects on the geometry and chemical shifts of hydrogen-bonded protons to probe the conformational coupling of hydrogen bonds donated by Y16 and D103 in the oxyanion hole of bacterial ketosteroid isomerase. Our results suggest a robust physical coupling of the equilibrium structures of these two hydrogen bonds such that a lengthening of one hydrogen bond by as little as 0.01 A results in a shortening of the neighbor by a similar magnitude. Furthermore, the structural rearrangements detected by NMR in response to mutations within the active site hydrogen bond network can be explained on the basis of the observed coupling. The results herein elucidate fundamental structural properties of hydrogen bonds within the idiosyncratic environment of an enzyme active site and provide a foundation for future experimental and computational explorations of the role of coupled motions within hydrogen bond networks.
Collapse
Affiliation(s)
- Paul A Sigala
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
20
|
Lee HJ, Yoon YJ, Jang DS, Kim C, Cha HJ, Hong BH, Choi KY, Lee HC. 15N NMR Relaxation Studies of Y14F Mutant of Ketosteroid Isomerase: The Influence of Mutation on Backbone Mobility. ACTA ACUST UNITED AC 2008; 144:159-66. [DOI: 10.1093/jb/mvn053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|