1
|
Romero AA, Cobb SA, Collins JNR, Kliewer SA, Mangelsdorf DJ, Collins JJ. The Schistosoma mansoni nuclear receptor FTZ-F1 maintains esophageal gland function via transcriptional regulation of meg-8.3. PLoS Pathog 2021; 17:e1010140. [PMID: 34910770 PMCID: PMC8673669 DOI: 10.1371/journal.ppat.1010140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
Schistosomes infect over 200 million of the world's poorest people, but unfortunately treatment relies on a single drug. Nuclear hormone receptors are ligand-activated transcription factors that regulate diverse processes in metazoans, yet few have been functionally characterized in schistosomes. During a systematic analysis of nuclear receptor function, we found that an FTZ-F1-like receptor was essential for parasite survival. Using a combination of transcriptional profiling and chromatin immunoprecipitation (ChIP), we discovered that the micro-exon gene meg-8.3 is a transcriptional target of SmFTZ-F1. We found that both Smftz-f1 and meg-8.3 are required for esophageal gland maintenance as well as integrity of the worm's head. Together, these studies define a new role for micro-exon gene function in the parasite and suggest that factors associated with the esophageal gland could represent viable therapeutic targets.
Collapse
Affiliation(s)
- Aracely A. Romero
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Sarah A. Cobb
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Julie N. R. Collins
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Steven A. Kliewer
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - David J. Mangelsdorf
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, Dallas, Texas, United States of America
| | - James J. Collins
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
2
|
Bitar M, Drummond MG, Costa MGS, Lobo FP, Calzavara-Silva CE, Bisch PM, Machado CR, Macedo AM, Pierce RJ, Franco GR. Modeling the zing finger protein SmZF1 from Schistosoma mansoni: Insights into DNA binding and gene regulation. J Mol Graph Model 2012; 39:29-38. [PMID: 23220279 DOI: 10.1016/j.jmgm.2012.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/09/2012] [Accepted: 10/13/2012] [Indexed: 10/27/2022]
Abstract
Zinc finger proteins are widely found in eukaryotes, representing an important class of DNA-binding proteins frequently involved in transcriptional regulation. Zinc finger motifs are composed by two antiparallel β-strands and one α-helix, stabilized by a zinc ion coordinated by conserved histidine and cysteine residues. In Schistosoma mansoni, these regulatory proteins are known to modulate morphological and physiological changes, having crucial roles in parasite development. A previously described C(2)H(2) zinc finger protein, SmZF1, was shown to be present in cell nuclei of different life stages of S. mansoni and to activate gene transcription in a heterologous system. A high-quality SmZF1 tridimensional structure was generated using comparative modeling. Molecular dynamics simulations of the obtained structure revealed stability of the zinc fingers motifs and high flexibility on the terminals, comparable to the profile observed on the template X-ray structure based on thermal b-factors. Based on the protein tridimensional features and amino acid composition, we were able to characterize four C(2)H(2) zinc finger motifs, the first involved in protein-protein interactions while the three others involved in DNA binding. We defined a consensus DNA binding sequence using three distinct algorithms and further carried out docking calculations, which revealed the interaction of fingers 2-4 with the predicted DNA. A search for S. mansoni genes presenting putative SmZF1 binding sites revealed 415 genes hypothetically under SmZF1 control. Using an automatic annotation and GO assignment approach, we found that the majority of those genes code for proteins involved in developmental processes. Taken together, these results present a consistent base to the structural and functional characterization of SmZF1.
Collapse
Affiliation(s)
- Mainá Bitar
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
The class I histone deacetylases of the platyhelminth parasite Schistosoma mansoni. Biochem Biophys Res Commun 2008; 377:1079-84. [PMID: 18977200 DOI: 10.1016/j.bbrc.2008.10.090] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 10/17/2008] [Indexed: 11/22/2022]
Abstract
Histone deacetylases (HDAC) form a conserved enzyme family that control gene expression via the removal of acetyl residues from histones and other proteins and are under increasing investigation as therapeutic targets, notably in cancer and parasitic diseases. To investigate the conservation of these enzymes in the platyhelminth parasite Schistosoma mansoni, we cloned and characterized three class I HDACs, orthologues of mammalian HDAC1, 3 and 8, and confirmed their identities by phylogenetic analysis. The identification of an HDAC8 orthologue showed that it is not vertebrate-specific as previously thought and insertions in its catalytic domain suggest specific enzymatic properties. SmHDAC1, 3, and 8 mRNAs are expressed at all schistosome life-cycle stages. SmHDAC1 repressed transcriptional activity in a mammalian cell line and this activity was dependent on its catalytic activity since transcription was partially restored by treatment with trichostatin A and a catalytic site mutant failed to repress transcription.
Collapse
|
4
|
Lu C, Wu W, Niles EG, LoVerde PT. Identification and characterization of a novel fushi tarazu factor 1 (FTZ-F1) nuclear receptor in Schistosoma mansoni. Mol Biochem Parasitol 2006; 150:25-36. [PMID: 16870276 DOI: 10.1016/j.molbiopara.2006.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 06/05/2006] [Accepted: 06/08/2006] [Indexed: 11/15/2022]
Abstract
Fushi-tarazu factor-1 (FTZ-F1) is an orphan nuclear receptor involved in gene regulation of various developmental processes and physiological activities. We identified a new member of ftz-f1 gene in Schistosoma mansoni, termed Smftz-f1alpha. The Smftz-f1alpha gene has a complex structure with 15 exons interrupted by 14 introns. It encodes an unusually long SmFTZ-F1alpha protein of 1892 amino acids containing all the modular domains found in nuclear receptors. The DNA-binding domain (DBD) of SmFTZ-F1alpha is conserved and most similar to those of human and mouse FTZ-F1 orthologues, exhibiting a 76% identity. The ligand-binding domain (LBD) is less conserved than the DBD; it shares more diverse identity scores in different regions ranging from 23% to 42% in region II and 28% to 72% in region III. A conserved activation function-2 (AF-2) sequence is present in the SmFTZ-F1alpha LBD. This protein also contains a long hinge region (1027 aa) and an F region (220 aa) at the carboxyl end. Phylogenetic analysis suggests that SmFTZ-F1alpha is the orthologue of Drosophila FTZ-F1alpha and vertebrate NR5 members. Western blot analysis of a schistosome extract identified two proteins, one with a size (206 kDa) predicted by the SmFTZ-F1alpha cDNA sequence and a smaller component of 120 kDa. Smftz-f1alpha is expressed throughout the schistosome life cycle with the highest expression in the egg stage. SmFTZ-F1alpha mRNA is widely distributed in adult worms but does not appear in vitelline cells of female worms. SmFTZ-F1alpha localizes to a variety of tissues but is most abundant in the testis of the male and the ovary of female worms. Our results suggest that SmFTZ-F1alpha plays a role in regulating schistosome development and sexual differentiation similar to other FTZ-F1 family members.
Collapse
Affiliation(s)
- Changxue Lu
- Department of Microbiology and Immunology, School of Medicine and Biomedical Research, State University of New York, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
5
|
Hu R, Wu W, Niles EG, LoVerde PT. SmTR2/4, a Schistosoma mansoni homologue of TR2/TR4 orphan nuclear receptor. Int J Parasitol 2006; 36:1113-22. [PMID: 16839558 DOI: 10.1016/j.ijpara.2006.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 05/24/2006] [Accepted: 06/01/2006] [Indexed: 11/18/2022]
Abstract
cDNA clones encoding a Schistosoma mansoni homologue of the TR2/TR4 group of nuclear receptors, SmTR2/4, were identified by screening an adult female worm cDNA library. SmTR2/4 is a 1,943 amino acid protein, the largest member of the TR2/TR4 group of nuclear receptors and also the largest nuclear receptor reported to date. SmTR2/4 retains a typical domain organisation of nuclear receptors exhibiting 69-77% sequence identity in the DNA binding domain and 16-22% sequence identity in the ligand binding domain compared with its orthologues. SmTR2/4 contains a large A/B domain and hinge region. SmTR2/4 also contains a 100 amino acid F domain, which is absent from its orthologues. SmTR2/4 mRNA is expressed in every stage of the S. mansoni life cycle, exhibiting an elevated expression level in cercariae. Western blot analysis identified two forms of SmTR2/4 protein in adult worms. Our in vitro DNA binding assay showed that SmTR2/4 binds to the DR-3 consensus hormone response element, suggesting a functional conservation among the TR2/TR4 group members in terms of DNA binding specificity. A yeast-based transactivation assay demonstrated that the A/B domain, F domain and N-terminal part of the hinge region in SmTR2/4, when tethered to a GAL4 DNA binding domain, exhibited an autonomous transcription activation function.
Collapse
Affiliation(s)
- Rong Hu
- Department of Microbiology and Immunology, School of Medicine, State University of New York, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
6
|
Lu C, Niles EG, LoVerde PT. Characterization of the DNA-binding properties and the transactivation activity of Schistosoma mansoni nuclear receptor fushi tarazu-factor 1alpha (SmFTZ-F1alpha). Mol Biochem Parasitol 2006; 150:72-82. [PMID: 16890303 DOI: 10.1016/j.molbiopara.2006.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Revised: 06/23/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
A FTZ-F1-related orphan nuclear receptor SmFTZ-F1alpha was previously identified from Schistosoma mansoni. The deduced SmFTZ-F1alpha protein contains a highly conserved DNA binding domain (DBD, C domain), a less conserved ligand binding domain (LBD, E domain) and three highly variable regions, the N-terminal A/B domain (108 aa), a large hinge region (D domain, 1027 aa) and an F domain (220 aa). Herein, we characterize the DNA binding properties and the transactivation activity of SmFTZ-F1alpha. In in vitro assays, SmFTZ-F1alpha bound as a monomer to a response element (FF1RE: TCAAGGTCA) recognized by mammalian steroidogenic factor 1 (SF-1), and to related sequences (p14: TTAAGGTCA and SmFF1a-2: CGAAGGTCA) derived from known schistosome gene promoters. Competition assays with p14 oligonucleotides containing a single mutation at each nucleotide position defined the optimum DNA sequence required for SmFTZ-F1alpha binding. The optimal consensus sequence for SmFTZ-F1alpha binding is TN(A/G)AGGTC(A/G) (N: any base). This sequence is similar but not identical to the SF-1 response element (SFRE) consensus sequence [(T/C)CAAGG(T/C)C(A/G)]. By performing yeast one-hybrid assays, the ability of SmFTZ-F1alpha to bind productively to a p14-derived 9-base pair sequence was demonstrated in vivo. The ability of the full-length SmFTZ-F1alpha to transactivate reporter gene expression was shown to be A/B domain-dependent in a yeast system. In addition, the hinge region contained an unexpected activation function (AF) domain, termed AF-3, while no transactivation activity was detected within the E/F domain. This AF-3 region (from aa 982 to aa 1110) revealed a strong autonomous transactivation activity, which was masked when it was present in the full-length SmFTZ-F1alpha. Taken together, our results suggest that SmFTZ-F1alpha possesses the characteristic DNA binding specificity of FTZ-F1 subfamily members and the capacity to transactivate a reporter gene.
Collapse
Affiliation(s)
- Changxue Lu
- Department of Microbiology and Immunology, School of Medicine and Biomedical Research, State University of New York, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
7
|
Bertin B, Oger F, Cornette J, Caby S, Noël C, Capron M, Fantappie MR, Rumjanek FD, Pierce RJ. Schistosoma mansoni CBP/p300 has a conserved domain structure and interacts functionally with the nuclear receptor SmFtz-F1. Mol Biochem Parasitol 2006; 146:180-91. [PMID: 16427147 DOI: 10.1016/j.molbiopara.2005.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 12/15/2005] [Accepted: 12/15/2005] [Indexed: 11/21/2022]
Abstract
Metazoan species diversification in general and the adaptation of parasites to their life-style in particular are due, not only to the evolution of different structural or metabolic proteins, but also to changes in the expression patterns of the corresponding genes. In order to explore the conservation/divergence of transcriptional regulation in the platyhelminth parasite Schistosoma mansoni, we are studying the structures and functions of transcriptional mediators. CREB-binding protein (CBP) and p300 are closely related transcriptional coactivators that possess histone acetyltransferase (HAT) activity that can modify chromatin to an active relaxed state. They are also thought to link transcription factors to the basic transcriptional machinery and to act as integrators for different regulatory pathways. Here we describe the cloning and functional characterization of S. mansoni CBP. SmCBP1 comprises 2093 amino acids and displays a conserved modular domain structure. The HAT domain was shown to acetylate histones with a marked activity toward H4. Functional studies showed that SmCBP1 could interact physically with the nuclear receptor SmFtz-F1 and also potentiated its transcriptional activity in the CV-1 cell line. Screening of the EST and genomic sequence databases with the SmCBP1 sequence allowed us to characterize a second CBP gene in S. mansoni. SmCBP2 shows a high degree of sequence identity to SmCBP1, particularly in the HAT domain. Phylogenetic studies show that these peptides are more closely related to each other than to either mammalian CBP or p300, suggesting that they derive from a platyhelminth-specific duplication event. Both genes are expressed at all life-cycle stages, but differences in their relative expression and structural variations suggest that they play distinct roles in schistosome gene regulation.
Collapse
|
8
|
Pick L, Anderson WR, Shultz J, Woodard CT. The Ftz‐F1 family: Orphan nuclear receptors regulated by novel protein–protein interactions. NUCLEAR RECEPTORS IN DEVELOPMENT 2006. [DOI: 10.1016/s1574-3349(06)16008-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Mansure JJ, Furtado DR, de Oliveira FMB, Rumjanek FD, Franco GR, Fantappié MR. Cloning of a protein arginine methyltransferase PRMT1 homologue from Schistosoma mansoni: Evidence for roles in nuclear receptor signaling and RNA metabolism. Biochem Biophys Res Commun 2005; 335:1163-72. [PMID: 16129092 DOI: 10.1016/j.bbrc.2005.07.192] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 07/29/2005] [Indexed: 11/30/2022]
Abstract
The most studied arginine methyltransferase is the type I enzyme, which catalyzes the transfer of an S-adenosyl-L-methionine to a broad spectrum of substrates, including histones, RNA-transporting proteins, and nuclear hormone receptor coactivators. We cloned a cDNA encoding a protein arginine methyltransferase in Schistosoma mansoni (SmPRMT1). SmPRMT1 is highly homologous to the vertebrate PRMT1 enzyme. In vitro methylation assays showed that SmPRMT1 recombinant protein was able to specifically methylate histone H4. Two schistosome proteins likely to be involved in RNA metabolism, SMYB1 and SmSmD3, that display a number of RGG motifs, were strongly methylated by SmPRMT1. In vitro GST pull-down assays showed that SMYB1 and SmSmD3 physically interacted with SmPRMT1. Additional GST pull-down assay suggested the occurrence of a ternary complex including SmPRMT1, SmRXR1 nuclear receptor, and the p160 (SRC-1) nuclear receptor coactivator. Together, these data suggest a mechanism by which SmPRMT1 plays a role in nuclear receptor-mediated chromatin remodeling and RNA transactions.
Collapse
Affiliation(s)
- José João Mansure
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-590, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Pierce RJ, Wu W, Hirai H, Ivens A, Murphy LD, Noël C, Johnston DA, Artiguenave F, Adams M, Cornette J, Viscogliosi E, Capron M, Balavoine G. Evidence for a Dispersed Hox Gene Cluster in the Platyhelminth Parasite Schistosoma mansoni. Mol Biol Evol 2005; 22:2491-503. [PMID: 16120809 DOI: 10.1093/molbev/msi239] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In most bilaterian organisms so far studied, Hox genes are organized in genomic clusters and determine development along the anteroposterior axis. It has been suggested that this clustering, together with spatial and temporal colinearity of gene expression, represents the ancestral condition. However, in organisms with derived modes of embryogenesis and lineage-dependent mechanisms for the determination of cell fate, temporal colinearity of expression can be lost and Hox cluster organization disrupted, as is the case for the ecdysozoans Drosophila melanogaster and Caenorhabditis elegans and the urochordates Ciona intestinalis and Oikopleura dioica. We sought to determine whether a lophotrochozoan, the platyhelminth parasite Schistosoma mansoni, possesses a conserved or disrupted Hox cluster. Using a polymerase chain reaction (PCR)-based strategy, we have cloned and characterized three novel S. mansoni genes encoding orthologues of Drosophila labial (SmHox1), deformed (SmHox4), and abdominal A (SmHox8), as well as the full-length coding sequence of the previously described Smox1, which we identify as an orthologue of fushi tarazu. Quantitative reverse transcriptase-PCR showed that the four genes were expressed at all life-cycle stages but that levels of expression were differentially regulated. Phylogenetic analysis and the conservation of "parapeptide" sequences C-terminal to the homeodomains of SmHox8 and Smox1 support the grouping of platyhelminths within the lophotrochozoan clade. However, Bacterial Artificial Chromosome (BAC) library screening followed by genome walking failed to reconstitute a cluster. The BAC clones containing Hox genes were sequenced, and in no case were other Hox genes found on the same clone. Moreover, the SmHox4 and SmHox8 genes contained single very large introns (>40 kbp) further indicating that the schistosome Hox cluster is highly extended. Localization of the Hox genes to chromosomes using fluorescence in situ hybridization showed that SmHox4 and SmHox8 are on the long arm of chromosome 4, whereas SmHox1 and Smox1 are on chromosome 3. In silico screening of the available genome sequences corroborated results of Southern blotting and BAC library screening that indicate that there are no paralogues of SmHox1, SmHox4, or SmHox8. The schistosome Hox cluster is therefore not duplicated, but is both dispersed and disintegrated in the genome.
Collapse
|
11
|
Bertin B, Caby S, Oger F, Sasorith S, Wurtz JM, Pierce RJ. The monomeric orphan nuclear receptor Schistosoma mansoni Ftz-F1 dimerizes specifically and functionally with the schistosome RXR homologue, SmRXR1. Biochem Biophys Res Commun 2005; 327:1072-82. [PMID: 15652506 DOI: 10.1016/j.bbrc.2004.12.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Indexed: 12/14/2022]
Abstract
In an attempt to understand development and differentiation processes of the parasitic blood fluke Schistosoma mansoni, several members of the nuclear receptor superfamily were cloned, including SmFtz-F1 (S. mansoni Fushi Tarazu-factor 1). The Ftz-F1 nuclear receptor subfamily only contains orphan receptors that bind to their response element as monomers. Whereas SmFtz-F1 displays these basic functional properties, we have identified an original and specific interaction between SmFtz-F1 and the schistosome RXR homologue, SmRXR1. The mammalian two-hybrid assay showed that the D, E, and F domains of SmFtz-F1 were capable of interacting specifically with the E domain of SmRXR1 but not with that of mouse RXRalpha. Using three-dimensional LBD homology modelling and structure-guided mutagenesis, we were able to demonstrate the essential role of exposed residues located in the dimerization interfaces of both receptors in the maintenance of the interaction. Cotransfection experiments with constructions encoding full-length nuclear receptors show that SmRXR1 potentiates the transcriptional activity of SmFtz-F1 from various promoters. Nevertheless, the lack of identification of a dimeric response element for this SmFtz-F1/SmRXR1 heterodimer seems to indicate a "tethering" mechanism. Thus, our results suggest for the first time that a member of the Ftz-F1 family could heterodimerize functionally with a homologue of the universal heterodimerization partner of nuclear receptors. This unique property confirms that SmFtz-F1 may be involved in the development and differentiation of schistosome-specific structures.
Collapse
Affiliation(s)
- Benjamin Bertin
- INSERM U547, Institut Pasteur de Lille, 1 rue du Professeur Calmette, 59019 Lille, France
| | | | | | | | | | | |
Collapse
|