1
|
Fulton RL, Downs DM. Modulators of a robust and efficient metabolism: Perspective and insights from the Rid superfamily of proteins. Adv Microb Physiol 2023; 83:117-179. [PMID: 37507158 PMCID: PMC10642521 DOI: 10.1016/bs.ampbs.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Metabolism is an integrated network of biochemical pathways that assemble to generate the robust, responsive physiologies of microorganisms. Despite decades of fundamental studies on metabolic processes and pathways, our understanding of the nuance and complexity of metabolism remains incomplete. The ability to predict and model metabolic network structure, and its influence on cellular fitness, is complicated by the persistence of genes of unknown function, even in the best-studied model organisms. This review describes the definition and continuing study of the Rid superfamily of proteins. These studies are presented with a perspective that illustrates how metabolic complexity can complicate the assignment of function to uncharacterized genes. The Rid superfamily of proteins has been divided into eight subfamilies, including the well-studied RidA subfamily. Aside from the RidA proteins, which are present in all domains of life and prevent metabolic stress, most members of the Rid superfamily have no demonstrated physiological role. Recent progress on functional assignment supports the hypothesis that, overall, proteins in the Rid superfamily modulate metabolic processes to ensure optimal organismal fitness.
Collapse
Affiliation(s)
- Ronnie L Fulton
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA, United States.
| |
Collapse
|
2
|
Joseph TP, Zhao Q, Chanda W, Kanwal S, Fang Y, Zhong M, Huang M. Expression and in vitro anticancer activity of Lp16-PSP, a member of the YjgF/YER057c/UK114 protein family from the mushroom Lentinula edodes C 91-3. Arch Microbiol 2021; 203:1047-1060. [PMID: 33136174 DOI: 10.1007/s00203-020-02099-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 02/05/2023]
Abstract
Latcripin-16 (Lp16-PSP) is a gene that was extracted as a result of de novo characterization of the Lentinula edodes strain C91-3 transcriptome. The aim of the present study was to clone, express, and investigate the selective in vitro anticancer potential of Lp16-PSP in human cell lines. Lp16-PSP was analyzed using bioinformatics tools, cloned in a prokaryotic expression vector pET32a (+) and transformed into E. coli Rosetta gami. It was expressed and solubilized under optimized conditions. The differential scanning fluorometry (DSF)-guided refolding method was used with modifications to identify the proper refolding conditions for the Lp16-PSP protein. To determine the selective anticancer potential of Lp16-PSP, a panel of human cancerous and non-cancerous cell lines was used. Lp16-PSP protein was identified as endoribonuclease L-PSP protein and a member of the highly conserved YjgF/YER057c/UK114 protein superfamily. Lp16-PSP was expressed under optimized conditions (37 °C for 4 h following induction with 0.5 mM isopropyl β-D-1-thiogalactopyranoside). Solubilization was achieved with mild solubilization buffer containing 2 M urea using the freeze-thaw method. The DSF guided refolding method identified the proper refolding conditions (50 mM Tris-HCl, 100 mM NaCl, 1 mM EDTA, 400 mM Arginine, 0.2 mM GSH and 2 mM GSSG; pH 8.0) for Lp16-PSP, with a melting transition of ~ 58 °C. A final yield of ~ 16 mg of purified Lp16-PSP from 1 L of culture was obtained following dialysis and concentration by PEG 20,000. A Cell Counting Kit-8 assay revealed the selective cytotoxic effect of Lp16-PSP. The HL-60 cell line was demonstrated to be most sensitive to Lp16-PSP, with an IC50 value of 74.4 ± 1.07 µg/ml. The results of the present study suggest that Lp16-PSP may serve as a potential anticancer agent; however, further investigation is required to characterize this anticancer effect and to elucidate the molecular mechanism underlying the action of Lp16-PSP.
Collapse
Affiliation(s)
- Thomson Patrick Joseph
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Luvshoukon District, Dalian, 116044, Liaoning, People's Republic of China
- Center for Neuroscience, Shantou University Medical College, Shantou, People's Republic of China
| | - Qianqian Zhao
- Computational System Biology Laboratory, Department of Bioinformatics, Shantou University Medical College, Shantou, People's Republic of China
| | - Warren Chanda
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Luvshoukon District, Dalian, 116044, Liaoning, People's Republic of China
| | - Sadia Kanwal
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Yukun Fang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Luvshoukon District, Dalian, 116044, Liaoning, People's Republic of China
| | - MinTao Zhong
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Luvshoukon District, Dalian, 116044, Liaoning, People's Republic of China
| | - Min Huang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Luvshoukon District, Dalian, 116044, Liaoning, People's Republic of China.
| |
Collapse
|
3
|
Fujimoto Z, Hong LTT, Kishine N, Suzuki N, Kimura K. Tetramer formation of Bacillus subtilis YabJ protein that belongs to YjgF/YER057c/UK114 family. Biosci Biotechnol Biochem 2021; 85:297-306. [PMID: 33590041 DOI: 10.1093/bbb/zbaa037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/23/2020] [Indexed: 11/12/2022]
Abstract
Bacillus subtilis YabJ protein belongs to the highly conserved YjgF/YER057c/UK114 family, which has a homotrimeric quaternary structure. The dominant allele of yabJ gene that is caused by a single amino acid mutation of Ser103Phe enables poly-γ-glutamic acid (γPGA) production of B. subtilis under conditions where the cell-density signal transduction was disturbed by the loss of DegQ function. X-ray crystallography of recombinant proteins revealed that unlike the homotrimeric wild-type YabJ, the mutant YabJ(Ser103Phe) had a homotetrameric quaternary structure, and the structural change appeared to be triggered by an inversion of the fifth β-strand. The YabJ homotetramer has a hole that is highly accessible, penetrating through the tetramer, and 2 surface concaves as potential ligand-binding sites. Western blot analyses revealed that the conformational change was also induced in vivo by the Ser103Phe mutation.
Collapse
Affiliation(s)
- Zui Fujimoto
- Advanced Analysis Center, National Agriculture and Food Research Organization (NAAC/NARO), Tsukuba, Ibaraki, Japan
| | - Le Thi Thu Hong
- Food Research Institute, National Agriculture and Food Research Organization (NFRI/NARO), Tsukuba, Ibaraki, Japan
| | - Naomi Kishine
- Advanced Analysis Center, National Agriculture and Food Research Organization (NAAC/NARO), Tsukuba, Ibaraki, Japan
| | - Nobuhiro Suzuki
- Advanced Analysis Center, National Agriculture and Food Research Organization (NAAC/NARO), Tsukuba, Ibaraki, Japan.,Institute of Material Structure Science, High Energy Accelerator Research Organization, KEK, Tsukuba, Ibaraki, Japan
| | - Keitarou Kimura
- Food Research Institute, National Agriculture and Food Research Organization (NFRI/NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Irons JL, Hodge-Hanson K, Downs DM. RidA Proteins Protect against Metabolic Damage by Reactive Intermediates. Microbiol Mol Biol Rev 2020; 84:e00024-20. [PMID: 32669283 PMCID: PMC7373157 DOI: 10.1128/mmbr.00024-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Rid (YjgF/YER057c/UK114) protein superfamily was first defined by sequence homology with available protein sequences from bacteria, archaea, and eukaryotes (L. Parsons, N. Bonander, E. Eisenstein, M. Gilson, et al., Biochemistry 42:80-89, 2003, https://doi.org/10.1021/bi020541w). The archetypal subfamily, RidA (reactive intermediate deaminase A), is found in all domains of life, with the vast majority of free-living organisms carrying at least one RidA homolog. In over 2 decades, close to 100 reports have implicated Rid family members in cellular processes in prokaryotes, yeast, plants, and mammals. Functional roles have been proposed for Rid enzymes in amino acid biosynthesis, plant root development and nutrient acquisition, cellular respiration, and carcinogenesis. Despite the wealth of literature and over a dozen high-resolution structures of different RidA enzymes, their biochemical function remained elusive for decades. The function of the RidA protein was elucidated in a bacterial model system despite (i) a minimal phenotype of ridA mutants, (ii) the enzyme catalyzing a reaction believed to occur spontaneously, and (iii) confusing literature on the pleiotropic effects of RidA homologs in prokaryotes and eukaryotes. Subsequent work provided the physiological framework to support the RidA paradigm in Salmonella enterica by linking the phenotypes of mutants lacking ridA to the accumulation of the reactive metabolite 2-aminoacrylate (2AA), which damaged metabolic enzymes. Conservation of enamine/imine deaminase activity of RidA enzymes from all domains raises the likelihood that, despite the diverse phenotypes, the consequences when RidA is absent are due to accumulated 2AA (or a similar reactive enamine) and the diversity of metabolic phenotypes can be attributed to differences in metabolic network architecture. The discovery of the RidA paradigm in S. enterica laid a foundation for assessing the role of Rid enzymes in diverse organisms and contributed fundamental lessons on metabolic network evolution and diversity in microbes. This review describes the studies that defined the conserved function of RidA, the paradigm of enamine stress in S. enterica, and emerging studies that explore how this paradigm differs in other organisms. We focus primarily on the RidA subfamily, while remarking on our current understanding of the other Rid subfamilies. Finally, we describe the current status of the field and pose questions that will drive future studies on this widely conserved protein family to provide fundamental new metabolic information.
Collapse
Affiliation(s)
- Jessica L Irons
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Proton Nuclear Magnetic Resonance Metabolomics Corroborates Serine Hydroxymethyltransferase as the Primary Target of 2-Aminoacrylate in a ridA Mutant of Salmonella enterica. mSystems 2020; 5:5/2/e00843-19. [PMID: 32156800 PMCID: PMC7065518 DOI: 10.1128/msystems.00843-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The accumulation of the reactive enamine intermediate 2-aminoacrylate (2AA) elicits global metabolic stress in many prokaryotes and eukaryotes by simultaneously damaging multiple pyridoxal 5′-phosphate (PLP)-dependent enzymes. This work employed 1H NMR to expand our understanding of the consequence(s) of 2AA stress on metabolite pools and effectively identify the metabolic changes stemming from one damaged target: GlyA. This study shows that nutrient supplementation during 1H NMR metabolomics experiments can disentangle complex metabolic outcomes stemming from a general metabolic stress. Metabolomics shows great potential to complement classical reductionist approaches to cost-effectively accelerate the rate of progress in expanding our global understanding of metabolic network structure and physiology. To that end, this work demonstrates the utility in implementing nutrient supplementation and genetic perturbation into metabolomics workflows as a means to connect metabolic outputs to physiological phenomena and establish causal relationships. The reactive intermediate deaminase RidA (EC 3.5.99.10) is conserved across all domains of life and deaminates reactive enamine species. When Salmonella entericaridA mutants are grown in minimal medium, 2-aminoacrylate (2AA) accumulates, damages several pyridoxal 5′-phosphate (PLP)-dependent enzymes, and elicits an observable growth defect. Genetic studies suggested that damage to serine hydroxymethyltransferase (GlyA), and the resultant depletion of 5,10-methelenetetrahydrofolate (5,10-mTHF), was responsible for the observed growth defect. However, the downstream metabolic consequence from GlyA damage by 2AA remains relatively unexplored. This study sought to use untargeted proton nuclear magnetic resonance (1H NMR) metabolomics to determine whether the metabolic state of an S. entericaridA mutant was accurately reflected by characterizing growth phenotypes. The data supported the conclusion that metabolic changes in a ridA mutant were due to the IlvA-dependent generation of 2AA, and that the majority of these changes were a consequence of damage to GlyA. While many of the metabolic differences for a ridA mutant could be explained, changes in some metabolites were not easily modeled, suggesting that additional levels of metabolic complexity remain to be unraveled. IMPORTANCE The accumulation of the reactive enamine intermediate 2-aminoacrylate (2AA) elicits global metabolic stress in many prokaryotes and eukaryotes by simultaneously damaging multiple pyridoxal 5′-phosphate (PLP)-dependent enzymes. This work employed 1H NMR to expand our understanding of the consequence(s) of 2AA stress on metabolite pools and effectively identify the metabolic changes stemming from one damaged target: GlyA. This study shows that nutrient supplementation during 1H NMR metabolomics experiments can disentangle complex metabolic outcomes stemming from a general metabolic stress. Metabolomics shows great potential to complement classical reductionist approaches to cost-effectively accelerate the rate of progress in expanding our global understanding of metabolic network structure and physiology. To that end, this work demonstrates the utility in implementing nutrient supplementation and genetic perturbation into metabolomics workflows as a means to connect metabolic outputs to physiological phenomena and establish causal relationships.
Collapse
|
6
|
Hong LTT, Hachiya T, Hase S, Shiwa Y, Yoshikawa H, Sakakibara Y, Nguyen SLT, Kimura K. Poly-γ-glutamic acid production of Bacillus subtilis (natto) in the absence of DegQ: A gain-of-function mutation in yabJ gene. J Biosci Bioeng 2019; 128:690-696. [PMID: 31272833 DOI: 10.1016/j.jbiosc.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023]
Abstract
Poly-γ-glutamic acid (γPGA) production by Bacillus subtilis is regulated by the quorum sensing system where DegQ transmits the cell density signal to a DNA-binding protein DegU. A mutation suppressing the γPGA-negative phenotype of degQ gene knock-out mutant (ΔdegQ) was identified through whole genome sequencing. The mutation conferred an amino acid substitution of Ser103 to phenylalanine (S103F) in yabJ that belongs to the highly conserved YjgF/YER057c/UK114 family. Genetic experiments including LacZ-fusion assay of γPGA synthetic operon confirmed that the suppressor mutation (yabJS103F) was responsible for the recovery of γPGA production. The yabJ itself was not essential for the γPGA production and the mutant allele enabled γPGA production of the ΔdegQ strain even in the presence of wild type yabJ. Thus, yabJS103F was a dominant positive allele. degU-lacZ fusion gene was hyper-expressed in cells carrying the yabJS103F, but disruption of yabJ did not affect the transcription level of the degU-lacZ. These observations suggested that YabJ acquired a function to stimulate expression of degU by the S103F mutation which is involved in the regulation of γPGA synthesis.
Collapse
Affiliation(s)
- Le Thi Thu Hong
- Food Research Institute, National Agriculture and Food Research Organization (NFRI/NARO), Tsukuba, Ibaraki 305-8642, Japan
| | - Tsuyoshi Hachiya
- Department of Bioscience and Informatics, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Sumitaka Hase
- Department of Bioscience and Informatics, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Yuh Shiwa
- Department of Molecular Microbiology, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Hirofumi Yoshikawa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan; Department of Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Yasubumi Sakakibara
- Department of Bioscience and Informatics, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Sy Le Thanh Nguyen
- Food Research Institute, National Agriculture and Food Research Organization (NFRI/NARO), Tsukuba, Ibaraki 305-8642, Japan
| | - Keitarou Kimura
- Food Research Institute, National Agriculture and Food Research Organization (NFRI/NARO), Tsukuba, Ibaraki 305-8642, Japan.
| |
Collapse
|
7
|
A novel chlorination-induced ribonuclease YabJ from Staphylococcus aureus. Biosci Rep 2018; 38:BSR20180768. [PMID: 30201692 PMCID: PMC6435465 DOI: 10.1042/bsr20180768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/15/2018] [Accepted: 08/23/2018] [Indexed: 01/09/2023] Open
Abstract
The characteristic fold of a protein is the decisive factor for its biological function. However, small structural changes to amino acids can also affect their function, for example in the case of post-translational modification (PTM). Many different types of PTMs are known, but for some, including chlorination, studies elucidating their importance are limited. A recent study revealed that the YjgF/YER057c/UK114 family (YjgF family) member RidA from Escherichia coli shows chaperone activity after chlorination. Thus, to identify the functional and structural differences of RidA upon chlorination, we studied an RidA homolog from Staphylococcus aureus: YabJ. The overall structure of S. aureus YabJ was similar to other members of the YjgF family, showing deep pockets on its surface, and the residues composing the pockets were well conserved. S. aureus YabJ was highly stable after chlorination, and the chlorinated state is reversible by treatment with DTT. However, it shows no chaperone activity after chlorination. Instead, YabJ from S. aureus shows chlorination-induced ribonuclease activity, and the activity is diminished after subsequent reduction. Even though the yabJ genes from Staphylococcus and Bacillus are clustered with regulators that are expected to code nucleic acid-interacting proteins, the nucleic acid-related activity of bacterial RidA has not been identified before. From our study, we revealed the structure and function of S. aureus YabJ as a novel chlorination-activated ribonuclease. The present study will contribute to an in-depth understanding of chlorination as a PTM.
Collapse
|
8
|
Identification of a perchloric acid-soluble protein (PSP)-like ribonuclease from Trichomonas vaginalis. Parasitol Res 2018; 117:3639-3652. [PMID: 30191309 DOI: 10.1007/s00436-018-6065-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/23/2018] [Indexed: 01/08/2023]
Abstract
A perchloric acid-soluble protein (PSP), named here tv-psp1, was identified in Trichomonas vaginalis. It is expressed under normal culture conditions according to expressed sequence tag (EST) analysis. On the other hand, Tv-PSP1 protein was identified by mass spectrometry with a 40% of identity to human PSP (p14.1). Polyclonal antibodies against recombinant Tv-PSP1 (rTv-PSP1) recognized a single band at 13.5 kDa in total protein parasite extract by SDS-PAGE and a high molecular weight band analyzed by native PAGE. Structural analysis of Tv-PSP1, using dynamic light scattering, size exclusion chromatography, and circular dichroism spectroscopy, showed a trimeric structure stable at 7 M urea with 38% α-helix and 14% β-sheet in solution and a molecular weight of 40.5 kD. Tv-PSP1 models were used to perform dynamic simulations over 100 ns suggesting a stable homotrimeric structure. Tv-PSP1 was located in the nucleus, cytoplasm, and hydrogenosomes of T. vaginalis, and the in silico analysis by Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) showed interactions with RNA binding proteins. The preliminary results of RNA degradation analysis with the recombinant Tv-PSP1 showed RNA partial deterioration suggesting a possible putative ribonuclease function.
Collapse
|
9
|
Ernst DC, Downs DM. Mmf1p Couples Amino Acid Metabolism to Mitochondrial DNA Maintenance in Saccharomyces cerevisiae. mBio 2018; 9:e00084-18. [PMID: 29487232 PMCID: PMC5829821 DOI: 10.1128/mbio.00084-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 12/11/2022] Open
Abstract
A variety of metabolic deficiencies and human diseases arise from the disruption of mitochondrial enzymes and/or loss of mitochondrial DNA. Mounting evidence shows that eukaryotes have conserved enzymes that prevent the accumulation of reactive metabolites that cause stress inside the mitochondrion. 2-Aminoacrylate is a reactive enamine generated by pyridoxal 5'-phosphate-dependent α,β-eliminases as an obligatory intermediate in the breakdown of serine. In prokaryotes, members of the broadly conserved RidA family (PF14588) prevent metabolic stress by deaminating 2-aminoacrylate to pyruvate. Here, we demonstrate that unmanaged 2-aminoacrylate accumulation in Saccharomyces cerevisiae mitochondria causes transient metabolic stress and the irreversible loss of mitochondrial DNA. The RidA family protein Mmf1p deaminates 2-aminoacrylate, preempting metabolic stress and loss of the mitochondrial genome. Disruption of the mitochondrial pyridoxal 5'-phosphate-dependent serine dehydratases (Ilv1p and Cha1p) prevents 2-aminoacrylate formation, avoiding stress in the absence of Mmf1p. Furthermore, chelation of iron in the growth medium improves maintenance of the mitochondrial genome in yeast challenged with 2-aminoacrylate, suggesting that 2-aminoacrylate-dependent loss of mitochondrial DNA is influenced by disruption of iron homeostasis. Taken together, the data indicate that Mmf1p indirectly contributes to mitochondrial DNA maintenance by preventing 2-aminoacrylate stress derived from mitochondrial amino acid metabolism.IMPORTANCE Deleterious reactive metabolites are produced as a consequence of many intracellular biochemical transformations. Importantly, reactive metabolites that appear short-lived in vitro have the potential to persist within intracellular environments, leading to pervasive cell damage and diminished fitness. To overcome metabolite damage, organisms utilize enzymatic reactive-metabolite defense systems to rid the cell of deleterious metabolites. In this report, we describe the importance of the RidA/YER057c/UK114 enamine/imine deaminase family in preventing 2-aminoacrylate stress in yeast. Saccharomyces cerevisiae lacking the enamine/imine deaminase Mmf1p was shown to experience pleiotropic growth defects and fails to maintain its mitochondrial genome. Our results provide the first line of evidence that uncontrolled 2-aminoacrylate stress derived from mitochondrial serine metabolism can negatively impact mitochondrial DNA maintenance in eukaryotes.
Collapse
Affiliation(s)
- Dustin C Ernst
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
10
|
Lp16-PSP, a Member of YjgF/YER057c/UK114 Protein Family Induces Apoptosis and p21WAF1/CIP1 Mediated G1 Cell Cycle Arrest in Human Acute Promyelocytic Leukemia (APL) HL-60 Cells. Int J Mol Sci 2017. [PMCID: PMC5713375 DOI: 10.3390/ijms18112407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lp16-PSP (Latcripin 16-Perchloric acid Soluble Protein) from Lentinula edodes strain C91-3 has been reported previously in our laboratory to have selective cytotoxic activity against a panel of human cell lines. Herein, we have used several parameters in order to characterize the Lp16-PSP-induced cell death using human acute promyeloid leukemia (HL-60) as a model cancer. The results of phase contrast microscopy, nuclear examination, DNA fragmentation detection and flow cytometry revealed that high doses of Lp16-PSP resulted in the induction of apoptosis in HL-60 cells. The colorimetric assay showed the activation of caspase-8, -9, and -3 cascade highlighting the involvement of Fas/FasL-related pathway. Whereas, Western blot revealed the cleavage of caspase-3, increased expression of Bax, the release of cytochrome c and decreased expression of Bcl-2 in a dose-dependent manner, suggesting the intrinsic pathway might be involved in Lp16-PSP-induced apoptosis as well. Low doses of Lp16-PSP resulted in the anchorage-independent growth inhibition, induction of G1 phase arrest, accompanied by the increased expression of p21WAF1/CIP1, along with the decreased expression of cyclin D, E, and cdk6. In addition, Lp16-PSP resulted in constitutive translocation inhibition of transcription factor nuclear factor kappa B (NF-κB) into the nucleus by decreasing the phosphorylation of IκBα. All these findings suggested Lp16-PSP as a potential agent against acute promyeloid leukemia; however, further investigations are ultimately needed.
Collapse
|
11
|
Novel calpain families and novel mechanisms for calpain regulation in Aplysia. PLoS One 2017; 12:e0186646. [PMID: 29053733 PMCID: PMC5650170 DOI: 10.1371/journal.pone.0186646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/04/2017] [Indexed: 11/19/2022] Open
Abstract
Calpains are a family of intracellular proteases defined by a conserved protease domain. In the marine mollusk Aplysia californica, calpains are important for the induction of long-term synaptic plasticity and memory, at least in part by cleaving protein kinase Cs (PKCs) into constitutively active kinases, termed protein kinase Ms (PKMs). We identify 14 genes encoding calpains in Aplysia using bioinformatics, including at least one member of each of the four major calpain families into which metazoan calpains are generally classified, as well as additional truncated and atypical calpains. Six classical calpains containing a penta-EF-hand (PEF) domain are present in Aplysia. Phylogenetic analysis determined that these six calpains come from three separate classical calpain families. One of the classical calpains in Aplysia, AplCCal1, has been implicated in plasticity. We identify three splice cassettes and an alternative transcriptional start site in AplCCal1. We characterize several of the possible isoforms of AplCCal1 in vitro, and demonstrate that AplCCal1 can cleave PKCs into PKMs in a calcium-dependent manner in vitro. We also find that AplCCal1 has a novel mechanism of auto-inactivation through N-terminal cleavage that is modulated through its alternative transcriptional start site.
Collapse
|
12
|
ElRamlawy KG, Fujimura T, Baba K, Kim JW, Kawamoto C, Isobe T, Abe T, Hodge-Hanson K, Downs DM, Refaat IH, Beshr Al-Azhary D, Aki T, Asaoku Y, Hayashi T, Katsutani T, Tsuboi S, Ono K, Kawamoto S. Der f 34, a Novel Major House Dust Mite Allergen Belonging to a Highly Conserved Rid/YjgF/YER057c/UK114 Family of Imine Deaminases. J Biol Chem 2016; 291:21607-21615. [PMID: 27539850 DOI: 10.1074/jbc.m116.728006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/18/2016] [Indexed: 12/17/2022] Open
Abstract
The high prevalence of house dust mite (HDM) allergy is a growing health problem worldwide, and the characterization of clinically important HDM allergens is a prerequisite for the development of diagnostic and therapeutic strategies. Here, we report a novel HDM allergen that belongs structurally to the highly conserved Rid/YjgF/YER057c/UK114 family (Rid family) with imine deaminase activity. Isolated HDM cDNA, named der f 34, encodes 128 amino acids homologous to Rid-like proteins. This new protein belongs to the Rid family and has seven conserved residues involved in enamine/imine deaminase activity. Indeed, we demonstrated that purified Der f 34 had imine deaminase activity that preferentially acted on leucine and methionine. Native Der f 34 showed a high IgE binding frequency as revealed by two-dimensional immunoblotting (62.5%) or ELISA (68%), which was comparable with those of a major HDM allergen Der f 2 (77.5 and 79%, respectively). We also found that Der f 34 showed cross-reactivity with another prominent indoor allergen source, Aspergillus fumigatus This is the first report showing that the Rid family imine deaminase represents an additional important pan-allergen that is conserved across organisms.
Collapse
Affiliation(s)
- Kareem Gamal ElRamlawy
- From the Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan.,the Department of Zoology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Takashi Fujimura
- From the Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan,
| | - Koji Baba
- From the Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Ji Won Kim
- From the Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Chika Kawamoto
- From the Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Toshihide Isobe
- From the Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Takuya Abe
- From the Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Kelsey Hodge-Hanson
- the Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Diana M Downs
- the Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Inas Hussein Refaat
- the Department of Zoology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Diaa Beshr Al-Azhary
- the Department of Zoology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Tsunehiro Aki
- From the Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Yoshiko Asaoku
- the Takanobashi Central Hospital, Hiroshima, Hiroshima 730-0042
| | | | | | | | - Kazuhisa Ono
- From the Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan.,the Department of Food Sciences and Biotechnology, Faculty of Life Sciences, Hiroshima Institute of Technology, Hiroshima, Hiroshima 731-5193, Japan
| | - Seiji Kawamoto
- From the Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan,
| |
Collapse
|
13
|
Su P, Feng T, Zhou X, Zhang S, Zhang Y, Cheng J, Luo Y, Peng J, Zhang Z, Lu X, Zhang D, Liu Y. Isolation of Rhp-PSP, a member of YER057c/YjgF/UK114 protein family with antiviral properties, from the photosynthetic bacterium Rhodopseudomonas palustris strain JSC-3b. Sci Rep 2015; 5:16121. [PMID: 26530252 PMCID: PMC4632080 DOI: 10.1038/srep16121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/09/2015] [Indexed: 01/16/2023] Open
Abstract
Rhodopseudomonas palustris strain JSC-3b isolated from a water canal adjacent to a vegetable field produces a protein that was purified by bioactivity-guided fractionation based on ammonium sulfate precipitation, ion-exchange absorption and size exclusion. The protein was further identified as an endoribonuclease L-PSP (Liver-Perchloric acid-soluble protein) by shotgun mass spectrometry analysis and gene identification, and it is member of YER057c/YjgF/UK114 protein family. Herein, this protein is designated Rhp-PSP. Rhp-PSP exhibited significant inhibitory activities against tobacco mosaic virus (TMV) in vivo and in vitro. To our knowledge, this represents the first report on the antiviral activity of a protein of the YER057c/YjgF/UK114 family and also the first antiviral protein isolated from R. palustris. Our research provides insight into the potential of photosynthetic bacterial resources in biological control of plant virus diseases and sustainable agriculture.
Collapse
Affiliation(s)
- Pin Su
- Key Laboratory for the Integrated Management of Pest and Disease on Horticultural Crops in Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Tuizi Feng
- Key Laboratory for the Integrated Management of Pest and Disease on Horticultural Crops in Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, 40546, USA
| | - Songbai Zhang
- Key Laboratory for the Integrated Management of Pest and Disease on Horticultural Crops in Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yu Zhang
- Key Laboratory for the Integrated Management of Pest and Disease on Horticultural Crops in Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ju’e Cheng
- Key Laboratory for the Integrated Management of Pest and Disease on Horticultural Crops in Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yuanhua Luo
- Key Laboratory for the Integrated Management of Pest and Disease on Horticultural Crops in Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jing Peng
- Key Laboratory for the Integrated Management of Pest and Disease on Horticultural Crops in Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhuo Zhang
- Key Laboratory for the Integrated Management of Pest and Disease on Horticultural Crops in Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Deyong Zhang
- Key Laboratory for the Integrated Management of Pest and Disease on Horticultural Crops in Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yong Liu
- Key Laboratory for the Integrated Management of Pest and Disease on Horticultural Crops in Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| |
Collapse
|
14
|
Niehaus TD, Gerdes S, Hodge-Hanson K, Zhukov A, Cooper AJL, ElBadawi-Sidhu M, Fiehn O, Downs DM, Hanson AD. Genomic and experimental evidence for multiple metabolic functions in the RidA/YjgF/YER057c/UK114 (Rid) protein family. BMC Genomics 2015; 16:382. [PMID: 25975565 PMCID: PMC4433059 DOI: 10.1186/s12864-015-1584-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/27/2015] [Indexed: 12/03/2022] Open
Abstract
Background It is now recognized that enzymatic or chemical side-reactions can convert normal metabolites to useless or toxic ones and that a suite of enzymes exists to mitigate such metabolite damage. Examples are the reactive imine/enamine intermediates produced by threonine dehydratase, which damage the pyridoxal 5'-phosphate cofactor of various enzymes causing inactivation. This damage is pre-empted by RidA proteins, which hydrolyze the imines before they do harm. RidA proteins belong to the YjgF/YER057c/UK114 family (here renamed the Rid family). Most other members of this diverse and ubiquitous family lack defined functions. Results Phylogenetic analysis divided the Rid family into a widely distributed, apparently archetypal RidA subfamily and seven other subfamilies (Rid1 to Rid7) that are largely confined to bacteria and often co-occur in the same organism with RidA and each other. The Rid1 to Rid3 subfamilies, but not the Rid4 to Rid7 subfamilies, have a conserved arginine residue that, in RidA proteins, is essential for imine-hydrolyzing activity. Analysis of the chromosomal context of bacterial RidA genes revealed clustering with genes for threonine dehydratase and other pyridoxal 5'-phosphate-dependent enzymes, which fits with the known RidA imine hydrolase activity. Clustering was also evident between Rid family genes and genes specifying FAD-dependent amine oxidases or enzymes of carbamoyl phosphate metabolism. Biochemical assays showed that Salmonella enterica RidA and Rid2, but not Rid7, can hydrolyze imines generated by amino acid oxidase. Genetic tests indicated that carbamoyl phosphate overproduction is toxic to S. enterica cells lacking RidA, and metabolomic profiling of Rid knockout strains showed ten-fold accumulation of the carbamoyl phosphate-related metabolite dihydroorotate. Conclusions Like the archetypal RidA subfamily, the Rid2, and probably the Rid1 and Rid3 subfamilies, have imine-hydrolyzing activity and can pre-empt damage from imines formed by amine oxidases as well as by pyridoxal 5'-phosphate enzymes. The RidA subfamily has an additional damage pre-emption role in carbamoyl phosphate metabolism that has yet to be biochemically defined. Finally, the Rid4 to Rid7 subfamilies appear not to hydrolyze imines and thus remain mysterious. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1584-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas D Niehaus
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA.
| | - Svetlana Gerdes
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA.
| | | | - Aleksey Zhukov
- Microbiology and Cell Science Department, University of Florida, Gainesville, FL, 32611, USA.
| | - Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA.
| | - Mona ElBadawi-Sidhu
- Metabolomics Core, UC Davis Genome Center, University of California Davis, Davis, CA, 95616, USA.
| | - Oliver Fiehn
- Metabolomics Core, UC Davis Genome Center, University of California Davis, Davis, CA, 95616, USA.
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA.
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
15
|
Müller A, Langklotz S, Lupilova N, Kuhlmann K, Bandow JE, Leichert LIO. Activation of RidA chaperone function by N-chlorination. Nat Commun 2014; 5:5804. [PMID: 25517874 PMCID: PMC4284807 DOI: 10.1038/ncomms6804] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 11/07/2014] [Indexed: 12/25/2022] Open
Abstract
Escherichia coli RidA is a member of a structurally conserved, yet functionally highly diverse protein family involved in translation inhibition (human), Hsp90-like chaperone activity (fruit fly) and enamine/imine deamination (Salmonella enterica). Here, we show that E. coli RidA modified with HOCl acts as a highly effective chaperone. Although activation of RidA is reversed by treatment with DTT, ascorbic acid, the thioredoxin system and glutathione, it is independent of cysteine modification. Instead, treatment with HOCl or chloramines decreases the amino group content of RidA by reversibly N-chlorinating positively charged residues. N-chlorination increases hydrophobicity of RidA and promotes binding to a wide spectrum of unfolded cytosolic proteins. Deletion of ridA results in an HOCl-sensitive phenotype. HOCl-mediated N-chlorination thus is a cysteine-independent post-translational modification that reversibly turns RidA into an effective chaperone holdase, which plays a crucial role in the protection of cytosolic proteins during oxidative stress. Hypochlorous acid generated by neutrophils acts as a potent antibacterial agent. Müller et al. now show that this oxidant directly activates a protective counter-response in E. coli by N-chlorinating the protein RidA and converting it into an effective protein chaperone.
Collapse
Affiliation(s)
- Alexandra Müller
- Institute of Biochemistry and Pathobiochemistry-Microbial Biochemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Sina Langklotz
- Biology of Microorganisms, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Nataliya Lupilova
- Institute of Biochemistry and Pathobiochemistry-Microbial Biochemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Katja Kuhlmann
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Julia Elisabeth Bandow
- Biology of Microorganisms, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Lars Ingo Ole Leichert
- Institute of Biochemistry and Pathobiochemistry-Microbial Biochemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| |
Collapse
|
16
|
Lindemann C, Lupilova N, Müller A, Warscheid B, Meyer HE, Kuhlmann K, Eisenacher M, Leichert LI. Redox proteomics uncovers peroxynitrite-sensitive proteins that help Escherichia coli to overcome nitrosative stress. J Biol Chem 2013; 288:19698-714. [PMID: 23696645 DOI: 10.1074/jbc.m113.457556] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Peroxynitrite is a highly reactive chemical species with antibacterial properties that are synthesized in immune cells. In a proteomic approach, we identified specific target proteins of peroxynitrite-induced modifications in Escherichia coli. Although peroxynitrite caused a fairly indiscriminate nitration of tyrosine residues, reversible modifications of protein thiols were highly specific. We used a quantitative redox proteomic method based on isotope-coded affinity tag chemistry and identified four proteins consistently thiol-modified in cells treated with peroxynitrite as follows: AsnB, FrmA, MaeB, and RidA. All four were required for peroxynitrite stress tolerance in vivo. Three of the identified proteins were modified at highly conserved cysteines, and MaeB and FrmA are known to be directly involved in the oxidative and nitrosative stress response in E. coli. In in vitro studies, we could show that the activity of RidA, a recently discovered enamine/imine deaminase, is regulated in a specific manner by the modification of its single conserved cysteine. Mutation of this cysteine 107 to serine generated a constitutively active protein that was not susceptible to peroxynitrite.
Collapse
Affiliation(s)
- Claudia Lindemann
- Medical Proteome Center, Ruhr University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Calpains are a family of complex multi-domain intracellular enzymes that share a calcium-dependent cysteine protease core. These are not degradative enzymes, but instead carry out limited cleavage of target proteins in response to calcium signalling. Selective cutting of cytoskeletal proteins to facilitate cell migration is one such function. The two most abundant and extensively studied members of this family in mammals, calpains 1 and 2, are heterodimers of an isoform-specific 80 kDa large subunit and a common 28 kDa small subunit. Structures of calpain-2, both Ca2+-free and bound to calpastatin in the activated Ca2+-bound state, have provided a wealth of information about the enzyme's structure-function relationships and activation. The main association between the subunits is the pairing of their C-terminal penta-EF-hand domains through extensive intimate hydrophobic contacts. A lesser contact is made between the N-terminal anchor helix of the large subunit and the penta-EF-hand domain of the small subunit. Up to ten Ca2+ ions are co-operatively bound during activation. The anchor helix is released and individual domains change their positions relative to each other to properly align the active site. Because calpains 1 and 2 require ~30 and ~350 μM Ca2+ ions for half-maximal activation respectively, it has long been argued that autoproteolysis, subunit dissociation, post-translational modifications or auxiliary proteins are needed to activate the enzymes in the cell, where Ca2+ levels are in the nanomolar range. In the absence of robust support for these mechanisms, it is possible that under normal conditions calpains are transiently activated by high Ca2+ concentrations in the microenvironment of a Ca2+ influx, and then return to an inactive state ready for reactivation.
Collapse
|
18
|
Suppressor analyses identify threonine as a modulator of ridA mutant phenotypes in Salmonella enterica. PLoS One 2012; 7:e43082. [PMID: 22900093 PMCID: PMC3416771 DOI: 10.1371/journal.pone.0043082] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/16/2012] [Indexed: 11/24/2022] Open
Abstract
The RidA (YjgF/YER057c/UK114) family of proteins is broadly conserved in the three domains of life yet the functional understanding of these proteins is at an early stage. Physiological studies of ridA mutant strains of Salmonella enterica provided a framework to inform in vitro studies and led to the description of a conserved biochemical activity for this family. ridA mutant strains of S. enterica have characteristic phenotypes including new synthesis of thiamine biosynthetic intermediate phosphoribosylamine (PRA), inability to grow on pyruvate as a sole carbon and energy source or when serine is present in the minimal growth medium, and a decreased specific activity of transaminase B (IlvE). Secondary mutations restoring growth to a ridA mutant in the presence of serine were in dapA (encoding dihydrodipicolinate synthase) and thrA (encoding homoserine dehydrogenase). These mutations suppressed multiple ridA mutant phenotypes by increasing the synthesis of threonine. The ability of threonine to suppress the metabolic defects of a ridA mutant is discussed in the context of recent biochemical data and in vivo results presented here.
Collapse
|
19
|
Reinecke JB, DeVos SL, McGrath JP, Shepard AM, Goncharoff DK, Tait DN, Fleming SR, Vincent MP, Steinhilb ML. Implicating calpain in tau-mediated toxicity in vivo. PLoS One 2011; 6:e23865. [PMID: 21858230 PMCID: PMC3157467 DOI: 10.1371/journal.pone.0023865] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/26/2011] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease and other related neurodegenerative disorders known as tauopathies are characterized by the accumulation of abnormally phosphorylated and aggregated forms of the microtubule-associated protein tau. Several laboratories have identified a 17 kD proteolytic fragment of tau in degenerating neurons and in numerous cell culture models that is generated by calpain cleavage and speculated to contribute to tau toxicity. In the current study, we employed a Drosophila tauopathy model to investigate the importance of calpain-mediated tau proteolysis in contributing to tau neurotoxicity in an animal model of human neurodegenerative disease. We found that mutations that disrupted endogenous calpainA or calpainB activity in transgenic flies suppressed tau toxicity. Expression of a calpain-resistant form of tau in Drosophila revealed that mutating the putative calpain cleavage sites that produce the 17 kD fragment was sufficient to abrogate tau toxicity in vivo. Furthermore, we found significant toxicity in the fly retina associated with expression of only the 17 kD tau fragment. Collectively, our data implicate calpain-mediated proteolysis of tau as an important pathway mediating tau neurotoxicity in vivo.
Collapse
Affiliation(s)
- James B. Reinecke
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Sarah L. DeVos
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - James P. McGrath
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Amanda M. Shepard
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Dustin K. Goncharoff
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Don N. Tait
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Samantha R. Fleming
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Michael P. Vincent
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Michelle L. Steinhilb
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
- * E-mail:
| |
Collapse
|
20
|
Thakur KG, Praveena T, Gopal B. Mycobacterium tuberculosis Rv2704 is a member of the YjgF/YER057c/UK114 family. Proteins 2010; 78:773-8. [PMID: 19899170 PMCID: PMC3068300 DOI: 10.1002/prot.22623] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Krishan Gopal Thakur
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India.
| | | | | |
Collapse
|
21
|
Alemán A, Fernández-Piñar P, Pérez-Núñez D, Rotger R, MartÃn H, Molina M. A yeast-based genetic screen for identification of pathogenicSalmonellaâproteins. FEMS Microbiol Lett 2009; 296:167-77. [DOI: 10.1111/j.1574-6968.2009.01630.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
22
|
YjgF is required for isoleucine biosynthesis when Salmonella enterica is grown on pyruvate medium. J Bacteriol 2008; 190:3057-62. [PMID: 18296521 DOI: 10.1128/jb.01700-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The YjgF/YER057c/UK114 family of proteins is conserved across the three domains of life, yet no biochemical function has been clearly defined for any member of this family. In Salmonella enterica, a deletion of yjgF results in a requirement for isoleucine when the mutant strain is grown in glucose-serine or pyruvate medium. Feedback inhibition of IlvA is required for the curative effect of isoleucine on glucose-serine medium. On pyruvate medium, yjgF mutants are unable to synthesize enough isoleucine for growth. From this study, we conclude that the isoleucine requirement of a yjgF mutant on pyruvate is a consequence of the decreased transaminase B (IlvE) activity that has previously been characterized in these mutants.
Collapse
|
23
|
Antonenkov VD, Ohlmeier S, Sormunen RT, Hiltunen JK. UK114, a YjgF/Yer057p/UK114 family protein highly conserved from bacteria to mammals, is localized in rat liver peroxisomes. Biochem Biophys Res Commun 2007; 357:252-7. [PMID: 17416349 DOI: 10.1016/j.bbrc.2007.03.136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 03/22/2007] [Indexed: 11/25/2022]
Abstract
Mammalian UK114 belongs to a highly conserved family of proteins with unknown functions. Although it is believed that UK114 is a cytosolic or mitochondrial protein there is no detailed study of its intracellular localization. Using analytical subcellular fractionation, electron microscopic colloidal gold technique, and two-dimensional gel electrophoresis of peroxisomal matrix proteins combined with mass spectrometric analysis we show here that a large portion of UK114 is present in rat liver peroxisomes. The peroxisomal UK114 is a soluble matrix protein and it is not inducible by the peroxisomal proliferator clofibrate. The data predict involvement of UK114 in peroxisomal metabolism.
Collapse
Affiliation(s)
- Vasily D Antonenkov
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Linnanmaa, P.O. Box 3000, FIN-90014 Oulu, Finland.
| | | | | | | |
Collapse
|
24
|
Leitner-Dagan Y, Ovadis M, Zuker A, Shklarman E, Ohad I, Tzfira T, Vainstein A. CHRD, a plant member of the evolutionarily conserved YjgF family, influences photosynthesis and chromoplastogenesis. PLANTA 2006; 225:89-102. [PMID: 16845531 DOI: 10.1007/s00425-006-0332-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2006] [Accepted: 05/08/2006] [Indexed: 05/10/2023]
Abstract
Studies on the carotenoid-overaccumulating structures in chromoplasts have led to the characterization of proteins termed plastid lipid-associated proteins (PAPs), involved in the sequestration of hydrophobic compounds. Here we characterize the PAP CHRD, which, based on sequence homology, belongs to a highly conserved group of proteins, YER057c/YjgF/UK114, involved in the regulation of basic and vital cellular processes in bacteria, yeast and animals. Two nuclear genes were characterized in tomato plants: one (LeChrDc) is constitutively expressed in various tissues and the other (LeChrDi) is induced by stress in leaves and is upregulated by developmental cues in floral tissues. Using RNAi and antisense approaches, we show their involvement in biologically significant processes such as photosynthesis. The quantum yield of photosynthetic electron flow in transgenic tomato leaves with suppressed LeChrDi/c expression was 30-50% of their control, non-transgenic counterparts and was ascribed to lower PSI activity. Transgenic flowers with suppressed LeChrDi/c also accumulated up to 30% less carotenoids per unit protein as compared to control plants, indicating an interrelationship between PAPs and floral-specific carotenoid accumulation in chromoplasts. We suggest that CHRD's role in the angiosperm reproductive unit may be a rather recent evolutionary development; its original function may have been to protect the plant under stress conditions by preserving plastid functionality.
Collapse
Affiliation(s)
- Yael Leitner-Dagan
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
25
|
Kanouchi H, Matsumoto M, Taga M, Yamada K, Oka T, Toné S, Minatogawa Y. Nuclear transfer of perchloric acid-soluble protein by endoplasmic reticulum stressors. Protein Sci 2005; 14:2344-9. [PMID: 16081652 PMCID: PMC2253487 DOI: 10.1110/ps.051481105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Perchloric acid-soluble protein (PSP) is highly conserved during evolution from bacteria to mammals. Although PSP has been recognized as an inhibitor of translation and proliferation in vitro, its precise biological role has not yet been elucidated. Since we previously found similar distributions for PSP and the endoplasmic reticulum (ER) and Golgi complex, the intracellular distribution of PSP was analyzed in more detail. Immunofluorescence studies indicated that PSP co-localized with the ER and Golgi complex, since the distribution pattern of PSP was well matched to both of these organelles. An immunoelectron microscopic study revealed PSP was located not only in the cytosol but also on the surface of the outer ER membrane. Since PSP was present on the ER, we speculated that it may be associated with ER function. Therefore, we analyzed whether or not the ER stress response, which is one of the ER functions, affected PSP expression. The results showed that various ER stressors (thapsigargin, A23187, tunicamycin, brefeldin A, and cisplatin) provoked a dramatic change in the localization of PSP from outside of the nucleus to inside the nucleus within 3 h. Moreover, the ER stressors induced PSP expression. These results suggest that PSP is involved in the cellular response to ER stressors, and that the change in localization of PSP from the ER to the nucleus may be associated with ER stress responses.
Collapse
Affiliation(s)
- Hiroaki Kanouchi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima, Kurashiki-city, Okayama, 701-0192, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Gregory MA, Petkovic H, Lill RE, Moss SJ, Wilkinson B, Gaisser S, Leadlay PF, Sheridan RM. Mutasynthesis of Rapamycin Analogues through the Manipulation of a Gene Governing Starter Unit Biosynthesis. Angew Chem Int Ed Engl 2005; 44:4757-60. [PMID: 15977283 DOI: 10.1002/anie.200462784] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Matthew A Gregory
- Biotica Technology Ltd, Chesterford Research Park, Little Chesterford, Near Saffron Walden, UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Gregory MA, Petkovic H, Lill RE, Moss SJ, Wilkinson B, Gaisser S, Leadlay PF, Sheridan RM. Mutasynthesis of Rapamycin Analogues through the Manipulation of a Gene Governing Starter Unit Biosynthesis. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200462784] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Friedrich P. The intriguing Ca2+ requirement of calpain activation. Biochem Biophys Res Commun 2004; 323:1131-3. [PMID: 15451413 DOI: 10.1016/j.bbrc.2004.08.194] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Indexed: 10/26/2022]
Abstract
Mammalian ubiquitous micro- and m-calpains, as well as their Drosophila homologs, Calpain A and Calpain B, are Ca(2+)-activated cytoplasmic proteases that act by limited proteolysis of target proteins. Calpains are thought to be part of many cellular signaling pathways. These enzymes, however, require such high Ca(2+) concentration for half-maximal activation in vitro, [Ca(2+)](0.5), that hardly ever occurs in intact cells. This major dilemma has pervaded the literature on calpains for decades. In this paper several considerations are put forward that challenge the orthodox view and envisage mechanisms that may govern calpain action in vivo. The "unphysiologically" high Ca(2+) demand for activation may turn out to be an evolutionarily adjusted safety device.
Collapse
Affiliation(s)
- Peter Friedrich
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 7, H-1518 Budapest, Hungary.
| |
Collapse
|