1
|
Deng Y, Huang S, Jiang G, Zhou L, Nezamzadeh-Ejhieh A, Liu J, Zhou Z. Current status and prospects of MOFs loaded with H 2O 2-related substances for ferroptosis therapy. RSC Med Chem 2024; 15:2996-3016. [PMID: 39309362 PMCID: PMC11411616 DOI: 10.1039/d4md00261j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 09/25/2024] Open
Abstract
Ferroptosis is a programmed cell death mechanism characterized by the accumulation of iron (Fe)-dependent lipid peroxides within cells. Ferroptosis holds excellent promise in tumor therapy. Metal-organic frameworks (MOFs) offer unique advantages in tumor ferroptosis treatment due to their high porosity, excellent stability, high biocompatibility, and targeting capabilities. Inducing ferroptosis in tumor cells primarily involves the production of reactive oxygen species (ROS), like hydroxyl radicals (˙OH), through iron-mediated Fenton reactions. However, the intrinsic H2O2 levels in tumor cells are often insufficient to sustain prolonged consumption, limiting therapeutic efficacy if ˙OH production is inadequate. Therefore, catalyzing or supplementing the intracellular H2O2 levels in tumor cells is essential for inducing ferroptosis by nanoscale metal-organic frameworks. This article reviews the biological characteristics and molecular mechanisms of ferroptosis, introduces H2O2-related substances, and reviews MOF-based nanoscale strategies for enhancing intracellular H2O2 levels in tumor cells. Finally, the challenges and prospects of this approach are discussed, aiming to provide insights into improving the effectiveness of ferroptosis induced by MOFs.
Collapse
Affiliation(s)
- Yu Deng
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Sida Huang
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Guanming Jiang
- Department of Oncology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital) 78 Wandao Road South Dongguan 523059 Guangdong China
| | - Luyi Zhou
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | | | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Zhikun Zhou
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| |
Collapse
|
2
|
Na X, Li L, Liu D, He J, Zhang L, Zhou Y. Natural products targeting ferroptosis pathways in cancer therapy (Review). Oncol Rep 2024; 52:123. [PMID: 39054952 PMCID: PMC11292301 DOI: 10.3892/or.2024.8782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Ferroptosis inducers (FIN) have a key role in cancer therapy and provide novel and innovative treatment strategies. Although many researchers have performed FIN screening of synthetic compounds, studies on the identification of FIN from natural products are limited, particularly in the field of drug development and combination therapy. In this review, this gap was addressed by comprehensively summarizing recent studies on ferroptosis. The causes of ferroptosis were categorized into driving and defensive factors, elucidating key pathways and targets. Next, through summarizing research on natural products that induce ferroptosis, the study elaborated in detail on the natural products that have FIN functions. Their discovery and development were also described and insight for clinical drug development was provided. In addition, the mechanisms of action were analyzed and potential combination therapies, resistance reversal and structural enhancements were presented. By highlighting the potential of natural products in inducing ferroptosis for cancer treatment, this review may serve as a reference for utilizing these compounds against cancer. It not only showed the significance of natural products but may also promote further investigation into their therapeutic effects, thus encouraging research in this field.
Collapse
Affiliation(s)
- Xin Na
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Lin Li
- Yunnan Cancer Hospital (Third Affiliated Hospital of Kunming Medical University), Kunming, Yunnan 650118, P.R. China
| | - Dongmei Liu
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiaqi He
- The First Clinical Medical College of Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Ling Zhang
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yiping Zhou
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
3
|
Rahimipour Anaraki S, Farzami P, Hosseini Nasab SS, Kousari A, Fazlollahpour Naghibi A, Shariat Zadeh M, Barati R, Taha SR, Karimian A, Nabi-Afjadi M, Yousefi B. Natural products and the balancing act of autophagy-dependent/independent ferroptosis in cancer therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2531-2549. [PMID: 37878043 DOI: 10.1007/s00210-023-02782-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023]
Abstract
The control of biological cell death is essential for the body's appropriate growth. The resistance of cells to the apoptotic process presents a new difficulty in the treatment of cancer. To combat cancer cells, researchers are working to find new apoptotic pathways and components to activate. One of the processes of regulated cell death (RCD) is referred to as ferroptosis marked by a decline in the activity of lipid glutathione peroxidase 4 (GPX4) after the buildup of reactive oxygen species (ROS). Since lipid peroxidation is a crucial component of ferroptosis and is required for its start, numerous medicines have been studied, particularly for the treatment of cancer. In this context, autophagy is an additional form of RCD that can govern ferroptosis through shared signaling pathways/factors involved in both mechanisms. In this review, we will explore the molecular mechanisms underlying ferroptosis and its association with autophagy, to gain fresh insights into their interplay in cancer advancement, and the potential of natural products for its treatment.
Collapse
Affiliation(s)
| | - Payam Farzami
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Kousari
- Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Andarz Fazlollahpour Naghibi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Reza Barati
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Taha
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ansar Karimian
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Bahman Yousefi
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Domes R, Frosch T. Molecular Interactions Identified by Two-Dimensional Analysis-Detailed Insight into the Molecular Interactions of the Antimalarial Artesunate with the Target Structure β-Hematin by Means of 2D Raman Correlation Spectroscopy. Anal Chem 2023; 95:12719-12731. [PMID: 37586701 PMCID: PMC10469332 DOI: 10.1021/acs.analchem.3c01415] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/11/2023] [Indexed: 08/18/2023]
Abstract
A thorough understanding of the interaction of endoperoxide antimalarial agents with their biological target structures is of utmost importance for the tailored design of future efficient antimalarials. Detailed insights into molecular interactions between artesunate and β-hematin were derived with a combination of resonance Raman spectroscopy, two-dimensional correlation analysis, and density functional theory calculations. Resonance Raman spectroscopy with three distinct laser wavelengths enabled the specific excitation of different chromophore parts of β-hematin. The resonance Raman spectra of the artesunate-β-hematin complexes were thoroughly analyzed with the help of high-resolution and highly sensitive two-dimensional correlation spectroscopy. Spectral changes in the peak properties were found with increasing artesunate concentration. Changes in the low-frequency, morphology-sensitive Raman bands indicated a loss in crystallinity of the drug-target complexes. Differences in the high-wavenumber region were assigned to increased distortions of the planarity of the structure of the target molecule due to the appearance of various coexisting alkylation species. Evidence for the appearance of high-valent ferryl-oxo species could be observed with the help of differences in the peak properties of oxidation-state sensitive Raman modes. To support those findings, the relaxed ground-state structures of ten possible covalent mono- and di-meso(Cm)-alkylated hematin-dihydroartemisinyl complexes were calculated using density functional theory. A very good agreement with the experimental peak properties was achieved, and the out-of-plane displacements along the lowest-frequency normal coordinates were investigated by normal coordinate structural decomposition analysis. The strongest changes in all data were observed in vibrations with a high participation of Cm-parts of β-hematin.
Collapse
Affiliation(s)
- Robert Domes
- Leibniz
Institute of Photonic Technology, Albert Einstein Strasse 9, D-07745 Jena, Germany
| | - Torsten Frosch
- Biophotonics and
Biomedical Engineering Group, Technical
University Darmstadt, Merckstraße 25, 64283 Darmstadt, Germany
- Leibniz
Institute of Photonic Technology, Albert Einstein Strasse 9, D-07745 Jena, Germany
| |
Collapse
|
5
|
Zhang X, Ai Z, Zhang Z, Dong R, Wang L, Jin S, Wei H. Dihydroartemisinin Triggers Ferroptosis in Multidrug-Resistant Leukemia Cells. DNA Cell Biol 2022; 41:705-715. [PMID: 35687364 DOI: 10.1089/dna.2021.1145] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The molecular mechanisms and role of ferroptosis in tumor drug resistance remain unclear. In this study, we found that multidrug-resistant (MDR) K562/adriamycin (ADM) leukemia cells possessed higher glutathione (GSH) levels and iron-regulatory protein 2 (IRP2), transferrin receptor, ferritin heavy chain 1 (FTH1), and peroxidase-4 (GPX4) expression than parental drug-sensitive K562 leukemia cells. These elevations might have increased the antioxidant ability of K562/ADM cells and granted them increased buffering capacity against iron disorder, protecting them from ferroptosis and favoring drug resistance. However, dihydroartemisinin (DHA) restrained MDR K562/ADM cell viability and enhanced the sensitivity to ADM by strengthening ferroptosis induced by downregulation of GSH levels and GPX4, IRP2, and FTH expression, upregulation of reactive oxygen species (ROS) levels, and the consequent suppression of total serine/threonine kinase (AKT), total mammalian target of rapamycin (t-mTOR), phosphorylated mTOR (p-mTOR), and p-mTOR/t-mTOR levels. Moreover, compared with K562 cells, MDR K562/ADM cells exhibited greater ROS increases, GSH decreases, and viability rescue after ferroptosis inhibitor treatment owing to further suppression of FTH1, GPX4, p-mTOR, and p-mTOR/t-mTOR. Collectively, the increase in oxidative damage and the blockade of antioxidant defence shaped DHA-induced ferroptosis, which was responsible for the sensitivity of MDR leukemia cells to DHA. Regulating iron homeostasis/ROS/AKT/mTOR might be a potential chemotherapeutic strategy for sensitizing drug-resistant leukemia.
Collapse
Affiliation(s)
- Xueyan Zhang
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Ziying Ai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Zhewen Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Rui Dong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Lina Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Suya Jin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Hulai Wei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Gomes ARQ, Cunha N, Varela ELP, Brígido HPC, Vale VV, Dolabela MF, de Carvalho EP, Percário S. Oxidative Stress in Malaria: Potential Benefits of Antioxidant Therapy. Int J Mol Sci 2022; 23:ijms23115949. [PMID: 35682626 PMCID: PMC9180384 DOI: 10.3390/ijms23115949] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/07/2023] Open
Abstract
Malaria is an infectious disease and a serious public health problem in the world, with 3.3 billion people in endemic areas in 100 countries and about 200 million new cases each year, resulting in almost 1 million deaths in 2018. Although studies look for strategies to eradicate malaria, it is necessary to know more about its pathophysiology to understand the underlying mechanisms involved, particularly the redox balance, to guarantee success in combating this disease. In this review, we addressed the involvement of oxidative stress in malaria and the potential benefits of antioxidant supplementation as an adjuvant antimalarial therapy.
Collapse
Affiliation(s)
- Antonio Rafael Quadros Gomes
- Post-Graduate Program in Pharmaceutica Innovation, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.Q.G.); (H.P.C.B.); (V.V.V.); (M.F.D.)
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (N.C.); (E.L.P.V.); (E.P.d.C.)
| | - Natasha Cunha
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (N.C.); (E.L.P.V.); (E.P.d.C.)
| | - Everton Luiz Pompeu Varela
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (N.C.); (E.L.P.V.); (E.P.d.C.)
- Post-graduate Program in Biodiversity and Biotechnology (BIONORTE), Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Heliton Patrick Cordovil Brígido
- Post-Graduate Program in Pharmaceutica Innovation, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.Q.G.); (H.P.C.B.); (V.V.V.); (M.F.D.)
| | - Valdicley Vieira Vale
- Post-Graduate Program in Pharmaceutica Innovation, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.Q.G.); (H.P.C.B.); (V.V.V.); (M.F.D.)
| | - Maria Fâni Dolabela
- Post-Graduate Program in Pharmaceutica Innovation, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.Q.G.); (H.P.C.B.); (V.V.V.); (M.F.D.)
- Post-graduate Program in Biodiversity and Biotechnology (BIONORTE), Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Eliete Pereira de Carvalho
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (N.C.); (E.L.P.V.); (E.P.d.C.)
- Post-graduate Program in Biodiversity and Biotechnology (BIONORTE), Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Sandro Percário
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (N.C.); (E.L.P.V.); (E.P.d.C.)
- Post-graduate Program in Biodiversity and Biotechnology (BIONORTE), Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
- Correspondence:
| |
Collapse
|
7
|
Zhu P, Zhou B. The Antagonizing Role of Heme in the Antimalarial Function of Artemisinin: Elevating Intracellular Free Heme Negatively Impacts Artemisinin Activity in Plasmodium falciparum. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061755. [PMID: 35335120 PMCID: PMC8949904 DOI: 10.3390/molecules27061755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022]
Abstract
The rich source of heme within malarial parasites has been considered to underly the action specificity of artemisinin. We reasoned that increasing intraparasitic free heme levels might further sensitize the parasites to artemisinin. Various means, such as modulating heme synthesis, degradation, polymerization, or hemoglobin digestion, were tried to boost intracellular heme levels, and under several scenarios, free heme levels were significantly augmented. Interestingly, all results arrived at the same conclusion, i.e., elevating heme acted in a strongly negative way, impacting the antimalarial action of artemisinin, but exerted no effect on several other antimalarial drugs. Suppression of the elevated free heme level by introducing heme oxygenase expression effectively restored artemisinin potency. Consistently, zinc protoporphyrin IX/zinc mesoporphyrin, as analogues of heme, drastically increased free heme levels and, concomitantly, the EC50 values of artemisinin. We were unable to effectively mitigate free heme levels, possibly due to an unknown compensating heme uptake pathway, as evidenced by our observation of efficient uptake of a fluorescent heme homologue by the parasite. Our results thus indicate the existence of an effective and mutually compensating heme homeostasis network in the parasites, including an uncharacterized heme uptake pathway, to maintain a certain level of free heme and that augmentation of the free heme level negatively impacts the antimalarial action of artemisinin. Importance: It is commonly believed that heme is critical in activating the antimalarial action of artemisinins. In this work, we show that elevating free heme levels in the malarial parasites surprisingly negatively impacts the action of artemisinin. We tried to boost free heme levels with various means, such as by modulating heme synthesis, heme polymerization, hemoglobin degradation and using heme analogues. Whenever we saw elevation of free heme levels, reduction in artemisinin potency was also observed. The homeostasis of heme appears to be complex, as there exists an unidentified heme uptake pathway in the parasites, nullifying our attempts to effectively reduce intraparasitic free heme levels. Our results thus indicate that too much heme is not good for the antimalarial action of artemisinins. This research can help us better understand the biological properties of this mysterious drug.
Collapse
Affiliation(s)
- Pan Zhu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China;
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China;
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
8
|
The Potential Mechanisms by which Artemisinin and Its Derivatives Induce Ferroptosis in the Treatment of Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1458143. [PMID: 35028002 PMCID: PMC8752222 DOI: 10.1155/2022/1458143] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023]
Abstract
Artemisinin (ART) is a bioactive molecule derived from the Chinese medicinal plant Artemisia annua (Asteraceae). ART and artemisinin derivatives (ARTs) have been effectively used for antimalaria treatment. The structure of ART is composed of a sesquiterpene lactone, including a peroxide internal bridge that is essential for its activity. In addition to their well-known antimalarial effects, ARTs have been shown recently to resist a wide range of tumors. The antineoplastic mechanisms of ART mainly include cell cycle inhibition, inhibition of tumor angiogenesis, DNA damage, and ferroptosis. In particular, ferroptosis is a novel nonapoptotic type of programmed cell death. However, the antitumor mechanisms of ARTs by regulating ferroptosis remain unclear. Through this review, we focus on the potential antitumor function of ARTs by acting on ferroptosis, including the regulation of iron metabolism, generation of reactive oxygen species (ROS), and activation of endoplasmic reticulum stress (ERS). This article systematically reviews the recent progress in ferroptosis research and provides a basis for ARTs as an anticancer drug in clinical practice.
Collapse
|
9
|
Wu Z, Zhong M, Liu Y, Xiong Y, Gao Z, Ma J, Zhuang G, Hong X. Application of natural products for inducing ferroptosis in tumor cells. Biotechnol Appl Biochem 2021; 69:190-197. [PMID: 33393679 DOI: 10.1002/bab.2096] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/25/2020] [Indexed: 01/17/2023]
Abstract
Ferroptosis is a regulated cell death pathway based on the deposition of lipid-based reactive oxygen species (L-ROS) in the presence of iron ions. The term was first coined in 2012 by Dixon. Decreased glutathione (GSH) synthesis and low glutathione-dependent antioxidant peroxidase 4 (GPX4) activity are the major causes of ferroptosis. Sensitivity to ferroptosis for example in tumor cells may be further enhanced by high cellular iron concentrations and/or high p53 levels. Therefore, driving ferroptosis in tumor cells could be a new way to treat tumors. Thus far, natural products have played considerable roles in antitumor research and treatment, and some drugs, such as paclitaxel, have proven beneficial in many cancer patients. According to current research, natural products can induce ferroptosis when used alone or in conjunction with other cancer therapies. This review mainly elaborates the main mechanism of ferroptosis and the regulating effects of some natural products on ferroptosis, aiming to create a new space for the research and development of novel anticancer drugs.
Collapse
Affiliation(s)
- Zhengxin Wu
- School of Medicine, Guangxi University, Nanning, People's Republic of China
| | - Mengya Zhong
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, People's Republic of China.,Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Yu Liu
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, People's Republic of China.,Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Yubo Xiong
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, People's Republic of China.,Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Zhi Gao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Medical University, Nanning, People's Republic of China
| | - Jingsong Ma
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, People's Republic of China.,Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Guohong Zhuang
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Organ Transplantation Institute of Xiamen University, Xiamen University, Xiamen, People's Republic of China
| | - Xuehui Hong
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, People's Republic of China.,Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
10
|
Clark RL. Teratogen update: Malaria in pregnancy and the use of antimalarial drugs in the first trimester. Birth Defects Res 2020; 112:1403-1449. [PMID: 33079495 DOI: 10.1002/bdr2.1798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 02/04/2023]
Abstract
Malaria is a particular problem in pregnancy because of enhanced sensitivity, the possibility of placental malaria, and adverse effects on pregnancy outcome. Artemisinin-containing combination therapies (ACTs) are the most effective antimalarials known. WHO recommends 7-day quinine therapy for uncomplicated Plasmodium falciparum malaria in the first trimester despite the superior tolerability and efficacy of 3-day ACT regimens because artemisinins caused embryolethality and/or cardiovascular malformations at relatively low doses in rats, rabbits, and monkeys. The developmental toxicity of artesunate, artemether, and DHA were similar in rats but artesunate was embryotoxic at lower doses in rabbits (5 mg/kg/day) than artemether (no effect level = 25 mg/kg/day). In clinical studies in Africa, treatment with artemether-lumefantrine in the first trimester was observed to be highly efficacious and the miscarriage rate (≤3.1%) was similar to no antimalarial treatment (2.6%). When data from the first-trimester use of largely artesunate-based therapies in Thailand were pooled together, there was no difference in miscarriage rate compared to quinine. However, individually, artesunate-mefloquine was associated with a higher miscarriage rate (15/71 = 21%) compared to other artemisinin-based therapies including 7-day artesunate + clindamycin (2/50 = 4%) and quinine (92/842 = 11%). Thus, appropriate statistical comparisons of individual ACT groups are needed prior to assuming that they all have the same risk for developmental toxicity. Current limitations in the assessment of the safety of ACTs in the first trimester are a lack of exposures early in gestation (gestational weeks 6-7), limited postnatal evaluation for cardiovascular malformations, and the pooling of all ACTs for the assessment of risk.
Collapse
Affiliation(s)
- Robert L Clark
- Artemis Pharmaceutical Research, Saint Augustine, Florida, USA
| |
Collapse
|
11
|
Yi R, Wang H, Deng C, Wang X, Yao L, Niu W, Fei M, Zhaba W. Dihydroartemisinin initiates ferroptosis in glioblastoma through GPX4 inhibition. Biosci Rep 2020; 40:BSR20193314. [PMID: 32452511 PMCID: PMC7313443 DOI: 10.1042/bsr20193314] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022] Open
Abstract
It has been demonstrated from previous studies about the killing effect of dihydroartemisinin (DHA) on glioblastoma, which involves multiple aspects: cytotoxicity, cell cycle arrest and invasion inhibition. DHA has the advantages of low cytotoxicity to normal cells, selective killing effect and low drug resistance, making it one of the popular anti-tumor research directions. Ferroptosis is a newly discovered form of cell death characterized by iron dependence and lipid reactive oxygen species (ROS) accumulation. In the present study, we found differences in the expression of transferrin receptors in normal human astrocytes (NHA) and glioblastoma cells (U87 and A172), which may be one of the mechanisms of DHA selective killing effect. Through the determination of ferroptosis-related protein expression, we found that the significant decrease of GPX4, accompanied by the constant expression of xCT and ACSL4, suggesting GPX4 was a pivotal target for DHA-activated ferroptosis in glioblastoma. Total and lipid ROS levels were increased and all these results could be reversed by the ferroptosis inhibitor, ferrostatin-1. These findings demonstrated ferroptosis would be a critical component of cell death caused by DHA and GPX4 was the main target. All these results provide a novel treatment direction to glioblastoma. The association between ferroptosis and polyamines is also discussed, which will provide new research directions for ferroptosis caused by DHA in glioblastoma.
Collapse
Affiliation(s)
- Renxin Yi
- Department of Neurosurgery, Jinling Hospital, Southeast University, School of Medicine, Nanjing 210002, P.R. China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Nanjing University, School of Medicine, Nanjing 210002, P.R. China
| | - Chulei Deng
- Department of Neurosurgery, Jinling Hospital, South Medical University, School of Medicine, Nanjing 210002, P.R. China
| | - Xinyue Wang
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210002, P.R. China
| | - Lei Yao
- Department of Neurosurgery, Jinling Hospital, Southeast University, School of Medicine, Nanjing 210002, P.R. China
| | - Wenhao Niu
- Department of Neurosurgery, Jinling Hospital, Southeast University, School of Medicine, Nanjing 210002, P.R. China
| | - Maoxing Fei
- Department of Neurosurgery, Jinling Hospital, Nanjing Medical University, School of Medicine, Nanjing 210002, P.R. China
| | - Wangdui Zhaba
- Department of Neurosurgery, Jinling Hospital, Nanjing University, School of Medicine, Nanjing 210002, P.R. China
| |
Collapse
|
12
|
Geroldinger G, Tonner M, Quirgst J, Walter M, De Sarkar S, Machín L, Monzote L, Stolze K, Catharina Duvigneau J, Staniek K, Chatterjee M, Gille L. Activation of artemisinin and heme degradation in Leishmania tarentolae promastigotes: A possible link. Biochem Pharmacol 2020; 173:113737. [PMID: 31786259 PMCID: PMC7116464 DOI: 10.1016/j.bcp.2019.113737] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/26/2019] [Indexed: 11/17/2022]
Abstract
Endoperoxides (EPs) appear to be promising drug candidates against protozoal diseases, including malaria and leishmaniasis. Previous studies have shown that these drugs need an intracellular activation to exert their pharmacological potential. The efficiency of these drugs is linked to the extensive iron demand of these intracellular protozoal parasites. An essential step of the activation mechanism of these drugs is the formation of radicals in Leishmania. Iron is a known trigger for intracellular radical formation. However, the activation of EPs by low molecular iron or by heme iron may strongly depend on the structure of the EPs themselves. In this study, we focused on the activation of artemisinin (Art) in Leishmania tarentolae promastigotes (LtP) in comparison to reference compounds. Viability assays in different media in the presence of different iron sources (hemin/fetal calf serum) showed that IC50 values of Art in LtP were modulated by assay conditions, but overall were within the low micromolar range. Low temperature electron paramagnetic resonance (EPR) spectroscopy of LtP showed that Art shifted the redox state of the labile iron pool less than the EP ascaridole questioning its role as a major activator of Art in LtP. Based on the high reactivity of Art with hemin in previous biomimetic experiments, we focused on putative heme-metabolizing enzymes in Leishmania, which were so far not well described. Inhibitors of mammalian heme oxygenase (HO; tin and chromium mesoporphyrin) acted antagonistically to Art in LtP and boosted its IC50 value for several magnitudes. By inductively coupled plasma methods (ICP-OES, ICP-MS) we showed that these inhibitors do not block iron (heme) accumulation, but are taken up and act within LtP. These inhibitors blocked the conversion of hemin to bilirubin in LtP homogenates, suggesting that an HO-like enzyme activity in LtP exists. NADPH-dependent degradation of Art and hemin was highest in the small granule and microsomal fractions of LtP. Photometric measurements in the model Art/hemin demonstrated that hemin requires reduction to heme and that subsequently an Art/heme complex (λmax 474 nm) is formed. EPR spin-trapping in the system Art/hemin revealed that NADPH, ascorbate and cysteine are suitable reductants and finally activate Art to acyl-carbon centered radicals. These findings suggest that heme is a major activator of Art in LtP either via HO-like enzyme activities and/or chemical interaction of heme with Art.
Collapse
Affiliation(s)
- Gerald Geroldinger
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Matthias Tonner
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Judith Quirgst
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Martin Walter
- Department of Environmental Geosciences, University of Vienna, Vienna, Austria
| | - Sritama De Sarkar
- Department of Pharmacology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Laura Machín
- Institute of Pharmacy and Food, Havana University, Havana, Cuba
| | - Lianet Monzote
- Parasitology Department, Institute of Tropical Medicine "Pedro Kouri", Havana, Cuba
| | - Klaus Stolze
- Institute of Animal Nutrition and Functional Plant Compounds, Department of Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - J Catharina Duvigneau
- Institute for Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Katrin Staniek
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Lars Gille
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
13
|
Lechuga GC, Pereira MCS, Bourguignon SC. Heme metabolism as a therapeutic target against protozoan parasites. J Drug Target 2018; 27:767-779. [DOI: 10.1080/1061186x.2018.1536982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Guilherme Curty Lechuga
- Laboratório de Interação celular e molecular, Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense, Rua Outeiro São João Batista, Rio de Janeiro, Brazil
- Fundação Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Rio de Janeiro, Brazil
- Instituto de Biologia, Programa de Pós-graduação em Ciências e Biotecnologia (PPBI), Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Mirian C. S. Pereira
- Fundação Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Rio de Janeiro, Brazil
| | - Saulo C. Bourguignon
- Laboratório de Interação celular e molecular, Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense, Rua Outeiro São João Batista, Rio de Janeiro, Brazil
- Instituto de Biologia, Programa de Pós-graduação em Ciências e Biotecnologia (PPBI), Universidade Federal Fluminense, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Clark RL, Edwards TL, Longo M, Kinney J, Walker DK, Rhodes J, Clode SA, Rückle T, Wells T, Andenmatten N, Huber AC. Improved safety margin for embryotoxicity in rats for the new endoperoxide artefenomel (OZ439) as compared to artesunate. Birth Defects Res 2017; 110:553-578. [DOI: 10.1002/bdr2.1170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | | | - Jon Rhodes
- Covance Laboratories Ltd, Reproduction Toxicology; Harrogate North Yorkshire United Kingdom
| | - Sally A. Clode
- Covance Laboratories Ltd, Reproduction Toxicology; Harrogate North Yorkshire United Kingdom
| | | | | | | | | |
Collapse
|
15
|
Tiensomjitr K, Prabpai S, Kongsaeree P. Characterization of the selective alkylation site in hemoglobin A by dihydroartemisinin with tandem mass spectrometry. Int J Biol Macromol 2017; 99:358-364. [PMID: 28259625 DOI: 10.1016/j.ijbiomac.2017.02.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/24/2017] [Accepted: 02/26/2017] [Indexed: 10/20/2022]
Abstract
The reaction between the antimalarial drug dihydroartemisinin (DHA) and hemoglobin A (HbA) was investigated in vitro. A fluorescein-tagged artemisinin analog reacted with HbA and fluorescent HbA-drug adducts could be visualized on SDS-PAGE to confirm stable covalent reaction adducts and necessity of the endoperoxide moiety and Fe(II). Mass spectrometric analyses revealed that DHA favourably alkylated protein part rather than heme and the modification site was identified to be at Tyr35 of the beta globin chain.
Collapse
Affiliation(s)
- Khomsan Tiensomjitr
- Department of Chemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Samran Prabpai
- Department of Chemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Palangpon Kongsaeree
- Department of Chemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
16
|
Starkl Renar K, Iskra J, Križaj I. Understanding malarial toxins. Toxicon 2016; 119:319-29. [PMID: 27353131 DOI: 10.1016/j.toxicon.2016.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/26/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
Recognized since antiquity, malaria is one of the most infamous and widespread infectious diseases in humans and, although the death rate during the last century has been diminishing, it still accounts for more than a half million deaths annually. It is caused by the Plasmodium parasite and typical symptoms include fever, shivering, headache, diaphoresis and nausea, all resulting from an excessive inflammatory response induced by malarial toxins released into the victim's bloodstream. These toxins are hemozoin and glycosylphosphatidylinositols. The former is the final product of the parasite's detoxification of haeme, a by-product of haemoglobin catabolism, while the latter anchor proteins to the Plasmodium cell surface or occur as free molecules. Currently, only two groups of antimalarial toxin drugs exist on the market, quinolines and artemisinins. As we describe, they both target biosynthesis of hemozoin. Other substances, currently in various phases of clinical trials, are directed towards biosynthesis of glycosylphosphatidylinositol, formation of hemozoin, or attenuation of the inflammatory response of the patient. Among the innovative approaches to alleviating the effects of malarial toxins, is the development of antimalarial toxin vaccines. In this review the most important lessons learned from the use of treatments directed against the action of malarial toxins in antimalarial therapy are emphasized and the most relevant and promising directions for future research in obtaining novel antimalarial agents acting on malarial toxins are discussed.
Collapse
Affiliation(s)
- Katarina Starkl Renar
- Laboratory of Organic and Bioorganic Chemistry, Department of Physical and Organic Chemistry, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia.
| | - Jernej Iskra
- Laboratory of Organic and Bioorganic Chemistry, Department of Physical and Organic Chemistry, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia.
| |
Collapse
|
17
|
Eastman RT, Khine P, Huang R, Thomas CJ, Su XZ. PfCRT and PfMDR1 modulate interactions of artemisinin derivatives and ion channel blockers. Sci Rep 2016; 6:25379. [PMID: 27147113 PMCID: PMC4857081 DOI: 10.1038/srep25379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/15/2016] [Indexed: 01/01/2023] Open
Abstract
Treatment of the symptomatic asexual stage of Plasmodium falciparum relies almost exclusively on artemisinin (ART) combination therapies (ACTs) in endemic regions. ACTs combine ART or its derivative with a long-acting partner drug to maximize efficacy during the typical three-day regimen. Both laboratory and clinical studies have previously demonstrated that the common drug resistance determinants P. falciparum chloroquine resistance transporter (PfCRT) and multidrug resistance transporter (PfMDR1) can modulate the susceptibility to many current antimalarial drugs and chemical compounds. Here we investigated the parasite responses to dihydroartemisinin (DHA) and various Ca2+ and Na+ channel blockers and showed positively correlated responses between DHA and several channel blockers, suggesting potential shared transport pathways or mode of action. Additionally, we demonstrated that PfCRT and PfMDR1 could also significantly modulate the pharmacodynamic interactions of the compounds and that the interactions were influenced by the parasite genetic backgrounds. These results provide important information for better understanding of drug resistance and for assessing the overall impact of drug resistance markers on parasite response to ACTs.
Collapse
Affiliation(s)
- Richard T Eastman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.,Division of Preclinical Development, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Pwint Khine
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ruili Huang
- Division of Preclinical Development, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Craig J Thomas
- Division of Preclinical Development, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Mohammadnejad F, Ghaffarifar F, Dalimi A, Mohammad Hassan Z. In Vitro Effects of Artemether, Artemisinine, Albendazole, and Their Combinations on Echinococcus granolosus Protoscoleces. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.17795/jjnpp-30565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
19
|
Pandey N, Pandey-Rai S. Updates on artemisinin: an insight to mode of actions and strategies for enhanced global production. PROTOPLASMA 2016; 253:15-30. [PMID: 25813833 DOI: 10.1007/s00709-015-0805-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/16/2015] [Indexed: 06/04/2023]
Abstract
Application of traditional Chinese drug, artemisinin, originally derived from Artemisia annua L., in malaria therapy has now been globally accepted. Artemisinin and its derivatives, with their established safety records, form the first line of malaria treatment via artemisinin combination therapies (ACTs). In addition to its antimalarial effects, artemisinin has recently been evaluated in terms of its antitumour, antibacterial, antiviral, antileishmanial, antischistosomiatic, herbicidal and other properties. However, low levels of artemisinin in plants have emerged various conventional, transgenic and nontransgenic approaches for enhanced production of the drug. According to WHO (2014), approximately 3.2 billion people are at risk of this disease. However, unfortunately, artemisinin availability is still facing its short supply. To fulfil artemisinin's global demand, no single method alone is reliable, and there is a need to collectively use conventional and advanced approaches for its higher production. Further, it is the unique structure of artemisinin that makes it a potential drug not only against malaria but to other diseases as well. Execution of its action through multiple mechanisms is probably the reason behind its wide spectrum of action. Unfortunately, due to clues for developing artemisinin resistance in malaria parasites, it has become desirable to explore all possible modes of action of artemisinin so that new generation antimalarial drugs can be developed in future. The present review provides a comprehensive updates on artemisinin modes of action and strategies for enhanced artemisinin production at global level.
Collapse
Affiliation(s)
- Neha Pandey
- Laboratory of Morphogenesis, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Shashi Pandey-Rai
- Laboratory of Morphogenesis, Department of Botany, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
20
|
Amolegbe SA, Ohmagari H, Wakata K, Takehira H, Ohtani R, Nakamura M, Yu C, Hayami S. Synthesis of mesoporous materials as nano-carriers for an antimalarial drug. J Mater Chem B 2016; 4:1040-1043. [DOI: 10.1039/c5tb02200b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An antimalarial drug artesunate (ATS) was encapsulated in both functionalized MCM-41 and ordinary MCM-41 with an excellent loading capacity and sustained release behavior for possible biomedical applications.
Collapse
Affiliation(s)
- Saliu Alao Amolegbe
- Department of Chemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| | - Hitomi Ohmagari
- Department of Chemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| | - Kosuke Wakata
- Department of Chemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| | - Hiroshi Takehira
- Department of Chemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| | - Ryo Ohtani
- Department of Chemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| | - Masaaki Nakamura
- Department of Chemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland Queensland
- Australia
| | - Shinya Hayami
- Department of Chemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| |
Collapse
|
21
|
Sun C, Li J, Cao Y, Long G, Zhou B. Two distinct and competitive pathways confer the cellcidal actions of artemisinins. MICROBIAL CELL 2015; 2:14-25. [PMID: 28357259 PMCID: PMC5361647 DOI: 10.15698/mic2015.01.181] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The biological actions of artemisinin (ART), an antimalarial drug derived from Artemisia annua, remain poorly understood and controversial. Besides potent antimalarial activity, some of artemisinin derivatives (together with artemisinin, hereafter referred to as ARTs), in particular dihydroartemisinin (DHA), are also associated with anticancer and other antiparasitic activities. In this study, we used baker’s yeast Saccharomyces cerevisiae as cellular and genetic model to investigate the molecular and cellular properties of ARTs. Two clearly separable pathways exist. While all ARTs exhibit potent anti-mitochondrial actions as shown before, DHA exerts an additional strong heme-dependent, likely mitochondria-independent inhibitory action. More importantly, heme antagonizes the mitochondria-dependent cellcidal action. Indeed, when heme synthesis was inhibited, the mitochondria-dependent cellcidal action of ARTs could be dramatically strengthened, and significant yeast growth inhibition at as low as 100 nM ART, an increase of about 25 folds in sensitivity, was observed. We conclude that ARTs are endowed with two major and distinct types of properties: a potent and specific mitochondria-dependent reaction and a more general and less specific heme-mediated reaction. The competitive nature of these two actions could be explained by their shared source of the consumable ARTs, so that inhibition of the heme-mediated degradation pathway would enable more ARTs to be available for the mitochondrial action. These properties of ARTs can be used to interpret the divergent antimalarial and anticancer actions of ARTs.
Collapse
Affiliation(s)
- Chen Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jian Li
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yu Cao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Gongbo Long
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bing Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
22
|
Prakash K, Goyal M, Soni A, Siddiqui AJ, Bhardwaj J, Puri SK. Molecular cloning and biochemical characterization of iron superoxide dismutase from the rodent malaria parasite Plasmodium vinckei. Parasitol Int 2014; 63:817-25. [DOI: 10.1016/j.parint.2014.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 07/11/2014] [Accepted: 07/16/2014] [Indexed: 10/24/2022]
|
23
|
Adams M, de Kock C, Smith PJ, Malatji P, Hutton AT, Chibale K, Smith GS. Heterobimetallic ferrocenylthiosemicarbazone palladium(II) complexes: Synthesis, electrochemistry and antiplasmodial evaluation. J Organomet Chem 2013. [DOI: 10.1016/j.jorganchem.2013.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Doménech-Carbó A, Maciuk A, Figadère B, Poupon E, Cebrián-Torrejón G. Solid-State Electrochemical Assay of Heme-Binding Molecules for Screening of Drugs with Antimalarial Potential. Anal Chem 2013; 85:4014-21. [DOI: 10.1021/ac303746k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antonio Doménech-Carbó
- Departament
de Química Analítica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100
Burjassot, Valencia, Spain
| | - Alexandre Maciuk
- Laboratoire de Pharmacognosie, UMR CNRS 8076 BioCIS, LabEx LERMIT,
Faculté de Pharmacie, Université Paris-Sud, 5, rue J.-B. Clément, 92296 Châtenay-Malabry, France
| | - Bruno Figadère
- Laboratoire de Pharmacognosie, UMR CNRS 8076 BioCIS, LabEx LERMIT,
Faculté de Pharmacie, Université Paris-Sud, 5, rue J.-B. Clément, 92296 Châtenay-Malabry, France
| | - Erwan Poupon
- Laboratoire de Pharmacognosie, UMR CNRS 8076 BioCIS, LabEx LERMIT,
Faculté de Pharmacie, Université Paris-Sud, 5, rue J.-B. Clément, 92296 Châtenay-Malabry, France
| | - Gerardo Cebrián-Torrejón
- Departament
de Química Analítica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100
Burjassot, Valencia, Spain
- Laboratoire de Pharmacognosie, UMR CNRS 8076 BioCIS, LabEx LERMIT,
Faculté de Pharmacie, Université Paris-Sud, 5, rue J.-B. Clément, 92296 Châtenay-Malabry, France
| |
Collapse
|
25
|
Saleh G, Soave R, Lo Presti L, Destro R. Progress in the Understanding of the Key Pharmacophoric Features of the Antimalarial Drug Dihydroartemisinin: An Experimental and Theoretical Charge Density Study. Chemistry 2013; 19:3490-503. [DOI: 10.1002/chem.201202486] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/29/2012] [Indexed: 12/12/2022]
Affiliation(s)
- Gabriele Saleh
- Università degli Studi di Milano, Dipartimento di Chimica, Via Golgi 19, I‐20133 Milano (Italy), Fax: (+39) 02‐50314300
- Center for Materials Crystallography, Århus University, Langelandsgade 140, 8000 Århus (Denmark)
| | - Raffaella Soave
- Istituto di Scienze e Tecnologie Molecolari del CNR (CNR‐ISTM), Via Golgi 19 I‐20133 Milano (Italy), Fax: (+39) 02‐50314300
| | - Leonardo Lo Presti
- Università degli Studi di Milano, Dipartimento di Chimica, Via Golgi 19, I‐20133 Milano (Italy), Fax: (+39) 02‐50314300
- Center for Materials Crystallography, Århus University, Langelandsgade 140, 8000 Århus (Denmark)
- Istituto di Scienze e Tecnologie Molecolari del CNR (CNR‐ISTM), Via Golgi 19 I‐20133 Milano (Italy), Fax: (+39) 02‐50314300
| | - Riccardo Destro
- Università degli Studi di Milano, Dipartimento di Chimica, Via Golgi 19, I‐20133 Milano (Italy), Fax: (+39) 02‐50314300
- Istituto di Scienze e Tecnologie Molecolari del CNR (CNR‐ISTM), Via Golgi 19 I‐20133 Milano (Italy), Fax: (+39) 02‐50314300
| |
Collapse
|
26
|
Adams M, Li Y, Khot H, De Kock C, Smith PJ, Land K, Chibale K, Smith GS. The synthesis and antiparasitic activity of aryl- and ferrocenyl-derived thiosemicarbazone ruthenium(ii)–arene complexes. Dalton Trans 2013; 42:4677-85. [DOI: 10.1039/c3dt32740j] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Abstract
INTRODUCTION The relict plastid, or apicoplast, is a characteristic feature of Plasmodium spp. and reflects the unusual evolutionary origins of these parasites. The essential role this organelle plays in the life of the parasite, and its unusual, non-mammalian metabolism, make the apicoplast an excellent drug target. AREAS COVERED This review focuses on the biological role of the apicoplast in the erythrocytic life cycle and what that reveals about existing drug targets. We also discuss the future of the apicoplast in the development of anti-malarials, emphasizing those pathways with greatest potential as a source of novel drug targets and emphasizing the need to understand in vitro drug responses to optimize eventual use of these drugs to treat malaria. EXPERT OPINION More than a decade of research on the apicoplast has confirmed the promise of this organelle as a source of drug targets. It is now possible to rationally assess the value of existing drugs and new drug targets, and to understand the role these drugs can play in the arsenal of anti-malarial treatments.
Collapse
Affiliation(s)
- Christopher D Goodman
- University of Melbourne, School of Botany, Professor's Walk, Parkville, Vic, 3010, Australia.
| | | |
Collapse
|
28
|
CRISTINO MARIADAGLÓRIAG, DE MENESES CARLACAROLINAF, SOEIRO MALÚCIAMARQUES, FERREIRA JOÃOELIASV, DE FIGUEIREDO ANTONIOFLORÊNCIO, BARBOSA JARDELPINTO, DE ALMEIDA RUTHCO, PINHEIRO JOSÉC, PINHEIRO ANDRÉIADELOURDESR. COMPUTATIONAL MODELING OF ANTIMALARIAL 10-SUBSTITUTED DEOXOARTEMISININS. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2012. [DOI: 10.1142/s0219633612500162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nineteen 10-substitued deoxoartemisinin derivatives and artemisinin with activity against D-6 strains of malarial falciparum designated as Sierra Leone are studied. We use molecular electrostatic potential maps in an attempt to identify key structural features of the artemisinins that are necessary for their activities and molecular docking to investigate the interaction with the molecular receptor (heme). Chemometric modeling: Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), K-Nearest Neighbor (KNN), Soft Independent Modeling of Class Analogy (SIMCA) and Stepwise Discriminant Analysis (SDA) are employed to reduce dimensionality and investigate which subset of descriptors are responsible for the classification between more active (MA) and less active (LA) artemisinins. The PCA, HCA, KNN, SIMCA and SDA studies showed that the descriptors LUMO (Lowest Unoccupied Molecular Orbital) energy, DFeO1 (Distance between the O 1 atom from ligand and iron atom from heme), X1A (Average Connectivity Index Chi-1) and Mor15u (Molecular Representation of Structure Based on Electron Diffraction) code of signal 15, unweighted, are responsible for separating the artemisinins according to their degree of antimalarial activity. The prediction study was done with a new set of eight artemisinins by using the chemometric methods and five of them were predicted as active against D-6 strains of falciparum malaria. In order to verify if the key structural features that are necessary for their antimalarial activities were investigated for the interaction with the heme, we also carried out calculations of the molecular electrostatic potential (MEP) and molecular docking. MEP maps and molecular docking were analyzed for more active compounds of the prediction set.
Collapse
Affiliation(s)
- MARIA DA GLÓRIA G. CRISTINO
- Laboratório de Química Teórica e Computacional, Faculdade de Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA, CEP: 66075-110, Brazil
| | - CARLA CAROLINA F. DE MENESES
- Laboratório de Química Teórica e Computacional, Faculdade de Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA, CEP: 66075-110, Brazil
| | - MALÚCIA MARQUES SOEIRO
- Laboratório de Química Teórica e Computacional, Faculdade de Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA, CEP: 66075-110, Brazil
| | - JOÃO ELIAS V. FERREIRA
- Laboratório de Química Teórica e Computacional, Faculdade de Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA, CEP: 66075-110, Brazil
| | - ANTONIO FLORÊNCIO DE FIGUEIREDO
- Laboratório de Química Teórica e Computacional, Faculdade de Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA, CEP: 66075-110, Brazil
| | - JARDEL PINTO BARBOSA
- Laboratório de Química Teórica e Computacional, Faculdade de Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA, CEP: 66075-110, Brazil
| | - RUTH C. O. DE ALMEIDA
- Laboratório de Química Teórica e Computacional, Faculdade de Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA, CEP: 66075-110, Brazil
| | - JOSÉ C. PINHEIRO
- Laboratório de Química Teórica e Computacional, Faculdade de Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA, CEP: 66075-110, Brazil
| | - ANDRÉIA DE LOURDES R. PINHEIRO
- Departamento de Química e Biologia, Centro de Educação, Ciências Exatas e Naturais, Universidade Estadual do Maranhão, Cidade Universitária Paulo VI, Caixa Postal 09, CEP 65055-900 São Luís, MA, Brazil
| |
Collapse
|
29
|
Muñoz-Durango K, Maciuk A, Harfouche A, Torijano-Gutiérrez S, Jullian JC, Quintin J, Spelman K, Mouray E, Grellier P, Figadère B. Detection, characterization, and screening of heme-binding molecules by mass spectrometry for malaria drug discovery. Anal Chem 2012; 84:3324-9. [PMID: 22409647 DOI: 10.1021/ac300065t] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Drug screening for antimalarials uses heme biocrystallization inhibition methods as an alternative to parasite cultures, but they involve complex processes and cannot detect artemisinin-like molecules. The described method detects heme-binding compounds by mass spectrometry, using dissociation of the drug-heme adducts to evaluate putative antiplasmodial activity. Applied to a chemical library, it showed a good hit-to-lead ratio and is an efficient early stage screening for complex mixtures like natural extracts.
Collapse
Affiliation(s)
- Katalina Muñoz-Durango
- Laboratoire de Pharmacognosie, UMR 8076 CNRS BioCIS, Faculté de Pharmacie, Université Paris-Sud, 5 rue J.-B. Clément, 92296 Châtenay-Malabry, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dubar F, Egan TJ, Pradines B, Kuter D, Ncokazi KK, Forge D, Paul JF, Pierrot C, Kalamou H, Khalife J, Buisine E, Rogier C, Vezin H, Forfar I, Slomianny C, Trivelli X, Kapishnikov S, Leiserowitz L, Dive D, Biot C. The antimalarial ferroquine: role of the metal and intramolecular hydrogen bond in activity and resistance. ACS Chem Biol 2011; 6:275-87. [PMID: 21162558 DOI: 10.1021/cb100322v] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inhibition of hemozoin biocrystallization is considered the main mechanism of action of 4-aminoquinoline antimalarials including chloroquine (CQ) but cannot fully explain the activity of ferroquine (FQ) which has been related to redox properties and intramolecular hydrogen bonding. Analogues of FQ, methylferroquine (Me-FQ), ruthenoquine (RQ), and methylruthenoquine (Me-RQ), were prepared. Combination of physicochemical and molecular modeling methods showed that FQ and RQ favor intramolecular hydrogen bonding between the 4-aminoquinoline NH group and the terminal amino group in the absence of water, suggesting that this structure may enhance its passage through the membrane. This was further supported by the use of Me-FQ and Me-RQ where the intramolecular hydrogen bond cannot be formed. Docking studies suggest that FQ can interact specifically with the {0,0,1} and {1,0,0} faces of hemozoin, blocking crystal growth. With respect to the structure-activity relationship, the antimalarial activity on 15 different P. falciparum strains showed that the activity of FQ and RQ were correlated with each other but not with CQ, confirming lack of cross resistance. Conversely, Me-FQ and Me-RQ showed significant cross-resistance with CQ. Mutations or copy number of pfcrt, pfmrp, pfmdr1, pfmdr2, or pfnhe-1 did not exhibit significant correlations with the IC(50) of FQ or RQ. We next showed that FQ and Me-FQ were able to generate hydroxyl radicals, whereas RQ and me-RQ did not. Ultrastructural studies revealed that FQ and Me-FQ but not RQ or Me-RQ break down the parasite digestive vacuole membrane, which could be related to the ability of the former to generate hydroxyl radicals.
Collapse
Affiliation(s)
- Faustine Dubar
- Université de Lille1, Unité de Catalyse et Chimie du Solide - UMR CNRS 8181, ENSCL, Bâtiment C7, B.P. 90108, 59652 Villeneuve d’Ascq Cedex, France
- Université de Lille1, Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR 8576, IFR 147, 59650 Villeneuve d'Ascq Cédex, France
| | - Timothy J. Egan
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| | - Bruno Pradines
- Institut de Recherche Biomédicale des Armées, Antenne de Marseille, Unité de Recherche en Biologie et Epidémiologie Parasitaires, URMITE -UMR 6236, Allée du Médecin Colonel Jamot, Parc le Pharo, BP 60109, 13262 Marseille Cedex 07, France
| | - David Kuter
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| | - Kanyile K. Ncokazi
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| | - Delphine Forge
- Laboratoire de chimie organique, Université de Mons, 20 place du parc, 7000 Mons, Belgium
| | - Jean-François Paul
- Université de Lille1, Unité de Catalyse et Chimie du Solide - UMR CNRS 8181, ENSCL, Bâtiment C7, B.P. 90108, 59652 Villeneuve d’Ascq Cedex, France
| | - Christine Pierrot
- CIIL, Inserm U 1019, UMR CNRS 8024 Université Lille Nord de France, Institut Pasteur de Lille, 1 rue du Pr Calmette, 59019 Lille Cedex, France
| | - Hadidjatou Kalamou
- CIIL, Inserm U 1019, UMR CNRS 8024 Université Lille Nord de France, Institut Pasteur de Lille, 1 rue du Pr Calmette, 59019 Lille Cedex, France
| | - Jamal Khalife
- CIIL, Inserm U 1019, UMR CNRS 8024 Université Lille Nord de France, Institut Pasteur de Lille, 1 rue du Pr Calmette, 59019 Lille Cedex, France
| | - Eric Buisine
- Ecole Nationale Supérieure de Chimie de Lille, Bâtiment C7, Avenue Mendeleïev - B.P. 90108, 59652 Villeneuve d’Ascq cedex, France
| | - Christophe Rogier
- Institut de Recherche Biomédicale des Armées, Antenne de Marseille, Unité de Recherche en Biologie et Epidémiologie Parasitaires, URMITE -UMR 6236, Allée du Médecin Colonel Jamot, Parc le Pharo, BP 60109, 13262 Marseille Cedex 07, France
| | - Hervé Vezin
- Université de Lille1, Laboratoire de Spectrochimie Infrarouge et Raman (LASIR), CNRS UMR 8516, Bâtiment C4, 59655 Villeneuve d'Ascq Cedex, France
| | - Isabelle Forfar
- Université de Bordeaux, Pharmacochimie EA 4138, Bordeaux, France
| | - Christian Slomianny
- Université de Lille1, Inserm U1003 - Laboratoire de Physiologie Cellulaire, Bâtiment SN3, 59655 Villeneuve d'Ascq Cédex, France
| | - Xavier Trivelli
- Université de Lille1, Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR 8576, IFR 147, 59650 Villeneuve d'Ascq Cédex, France
| | - Sergey Kapishnikov
- Department of Materials and Interfaces, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Leslie Leiserowitz
- Department of Materials and Interfaces, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Daniel Dive
- CIIL, Inserm U 1019, UMR CNRS 8024 Université Lille Nord de France, Institut Pasteur de Lille, 1 rue du Pr Calmette, 59019 Lille Cedex, France
| | - Christophe Biot
- Université de Lille1, Unité de Catalyse et Chimie du Solide - UMR CNRS 8181, ENSCL, Bâtiment C7, B.P. 90108, 59652 Villeneuve d’Ascq Cedex, France
- Université de Lille1, Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR 8576, IFR 147, 59650 Villeneuve d'Ascq Cédex, France
| |
Collapse
|
31
|
Moles P, Oliva M, Safont VS. Topological Study of the Late Steps of the Artemisinin Decomposition Process: Modeling the Outcome of the Experimentally Obtained Products. J Phys Chem B 2010; 115:333-46. [DOI: 10.1021/jp1064903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pamela Moles
- Departament de Química Física i Analítica, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castelló, Spain
| | - Mónica Oliva
- Departament de Química Física i Analítica, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castelló, Spain
| | - Vicent S. Safont
- Departament de Química Física i Analítica, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castelló, Spain
| |
Collapse
|
32
|
Waknine-Grinberg JH, Hunt N, Bentura-Marciano A, McQuillan JA, Chan HW, Chan WC, Barenholz Y, Haynes RK, Golenser J. Artemisone effective against murine cerebral malaria. Malar J 2010; 9:227. [PMID: 20691118 PMCID: PMC2928250 DOI: 10.1186/1475-2875-9-227] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 08/09/2010] [Indexed: 11/12/2022] Open
Abstract
Background Artemisinins are the newest class of drug approved for malaria treatment. Due to their unique mechanism of action, rapid effect on Plasmodium, and high efficacy in vivo, artemisinins have become essential components of malaria treatment. Administration of artemisinin derivatives in combination with other anti-plasmodials has become the first-line treatment for uncomplicated falciparum malaria. However, their efficiency in cases of cerebral malaria (CM) remains to be determined. Methods The efficacy of several artemisinin derivatives for treatment of experimental CM was evaluated in ICR or C57BL/6 mice infected by Plasmodium berghei ANKA. Both mouse strains serve as murine models for CM. Results Artemisone was the most efficient drug tested, and could prevent death even when administered at relatively late stages of cerebral pathogenesis. No parasite resistance to artemisone was detected in recrudescence. Co-administration of artemisone together with chloroquine was more effective than monotherapy with either drug, and led to complete cure. Artemiside was even more effective than artemisone, but this substance has yet to be submitted to preclinical toxicological evaluation. Conclusions Altogether, the results support the use of artemisone for combined therapy of CM.
Collapse
Affiliation(s)
- Judith H Waknine-Grinberg
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
This chapter summarizes recent developments in the design, synthesis, and structure–activity relationship studies of organometallic antimalarials. It begins with a general introduction to malaria and the biology of the parasite Plasmodium falciparum, with a focus on the heme detoxification system. Then, a number of metal complexes from the literature are reported for their antiplasmodial activity. The second half of the chapter deals with the serendipitous discovery of ferroquine, its mechanism(s) of action, and the failure to induce a resistance. Last, but not least, we suggest that the bioorganometallic approach offers the potential for the design of novel therapeutic agents.
Collapse
|
34
|
Moles P, Oliva M, Sánchez-González A, Safont VS. A topological study of the decomposition of 6,7,8-trioxabicyclo[3.2.2]nonane induced by Fe(II): modeling the artemisinin reaction with heme. J Phys Chem B 2010; 114:1163-73. [PMID: 20028005 DOI: 10.1021/jp910207z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a theoretical study on the electronic and topological aspects of the reaction of dihydrated Fe(OH)(2) with 6,7,8-trioxabicyclo[3.2.2]nonane, as a model for the reaction of heme with artemisinin. A comparison is made with the reaction of dihydrated ferrous hydroxide with O(2), as a model for the heme interaction with oxygen. We found that dihydrated Fe(OH)(2) reacts more efficiently with the artemisinin model than with O(2). This result suggests that artemisinin instead of molecular oxygen would interact with heme, disrupting its detoxification process by avoiding the initial heme to hemin oxidation, and killing in this way the malaria parasite. The ELF and AIM theories provide support for such a conclusion, which further clarifies our understanding on how artemisinin acts as an antimalarial agent.
Collapse
Affiliation(s)
- Pamela Moles
- Departament de Química Física i Analítica, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castelló, Spain
| | | | | | | |
Collapse
|
35
|
Biological actions of artemisinin: insights from medicinal chemistry studies. Molecules 2010; 15:1378-97. [PMID: 20335987 PMCID: PMC6257283 DOI: 10.3390/molecules15031378] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/23/2010] [Accepted: 03/02/2010] [Indexed: 11/17/2022] Open
Abstract
Artemisinins have become essential antimalarial drugs for increasingly widespread drug-resistant malaria strains. Although tremendous efforts have been devoted to decipher how this class of molecules works, their exact antimalarial mechanism is still an enigma. Several hypotheses have been proposed to explain their actions, including alkylation of heme by carbon-centered free radicals, interference with proteins such as the sarcoplasmic/endoplasmic calcium ATPase (SERCA), as well as damaging of normal mitochondrial functions. Besides artemisinins, other endoperoxides with various backbones have also been synthesized, some of which showed comparable or even higher antimalarial effects. It is noteworthy that among these artemisinin derivatives, some enantiomers displayed similar in vitro malaria killing efficacy. In this article, the proposed mechanisms of action of artemisinins are reviewed in light of medicinal chemistry findings characterized by efficacy-structure studies, with the hope of gaining more insight into how these potent drugs work.
Collapse
|
36
|
Graziose R, Lila MA, Raskin I. Merging traditional Chinese medicine with modern drug discovery technologies to find novel drugs and functional foods. Curr Drug Discov Technol 2010; 7:2-12. [PMID: 20156139 PMCID: PMC3017680 DOI: 10.2174/157016310791162767] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 01/04/2010] [Indexed: 05/01/2023]
Abstract
Traditional Chinese Medicines (TCM) are rapidly gaining attention in the West as sources of new drugs, dietary supplements and functional foods. However, lack of consistent manufacturing practices and quality standards, fear of adulteration, and perceived deficiencies in scientific validation of efficacy and safety impede worldwide acceptance of TCM. In addition, Western pharmaceutical industries and regulatory agencies are partial toward single ingredient drugs based on synthetic molecules, and skeptical of natural product mixtures. This review concentrates on three examples of TCM-derived pharmaceuticals and functional foods that have, despite these usual obstacles, risen to wide acceptance in the West based on their remarkable performance in recent scientific investigations. They are: Sweet wormwood (Artemisia annua), the source of artemisinin, which is the currently preferred single compound anti-malarial drug widely used in combination therapies and recently approved by US FDA; Thunder god vine (Tripterygium wilfordii) which is being developed as a botanical drug for rheumatoid arthritis; and green tea (Camellia sinensis) which is used as a functional beverage and a component of dietary supplements.
Collapse
Affiliation(s)
- Rocky Graziose
- Rutgers University, 59 Dudley Rd., New Brunswick, NJ 08901, USA
| | - Mary Ann Lila
- North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
| | - Ilya Raskin
- Rutgers University, 59 Dudley Rd., New Brunswick, NJ 08901, USA
- Address correspondence to this author at Rutgers University, 59 Dudley Rd., New Brunswick, NJ 08901, USA; Tel: 732-932-8734 x 227; Mobile: 732-794-5600; Fax: 732-932-6535;
| |
Collapse
|
37
|
Eastman RT, Fidock DA. Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat Rev Microbiol 2009; 7:864-74. [PMID: 19881520 DOI: 10.1038/nrmicro2239] [Citation(s) in RCA: 369] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Plasmodium falciparum resistance to chloroquine and sulphadoxine-pyrimethamine has led to the recent adoption of artemisinin-based combination therapies (ACTs) as the first line of treatment against malaria. ACTs comprise semisynthetic artemisinin derivatives paired with distinct chemical classes of longer acting drugs. These artemisinins are exceptionally potent against the pathogenic asexual blood stages of Plasmodium parasites and also act on the transmissible sexual stages. These combinations increase the rates of clinical and parasitological cures and decrease the selection pressure for the emergence of antimalarial resistance. This Review article discusses our current knowledge about the mode of action of ACTs, their pharmacological properties and the proposed mechanisms of drug resistance.
Collapse
Affiliation(s)
- Richard T Eastman
- Department of Microbiology & Immunology, Columbia University College of Physicians and Surgeons, Hammer Health Sciences Center, Room 1502, 701 West 168th Street, New York 10032, New York, USA.
| | | |
Collapse
|
38
|
Coghi P, Basilico N, Taramelli D, Chan WC, Haynes R, Monti D. Interaction of Artemisinins with Oxyhemoglobin Hb-FeII, Hb-FeII, CarboxyHb-FeII, Heme-FeII, and Carboxyheme FeII: Significance for Mode of Action and Implications for Therapy of Cerebral Malaria. ChemMedChem 2009; 4:2045-53. [DOI: 10.1002/cmdc.200900342] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Abstract
Despite great international efforts, malaria still inflicts an enormous toll on human lives, especially in Africa. Throughout history, antimalarial medicines have been one of the most powerful tools in malaria control. However, the acquisition and spread of parasite strains that are resistant to multiple antimalarial drugs have become one of the greatest challenges to malaria treatment, and are associated with the increase in morbidity and mortality in many malaria-endemic countries. To deal with this grave situation, artemisinin-based combinatory therapies (ACTs) have been introduced and widely deployed in malarious regions. Artemisinin is a new class of antimalarial compounds discovered by Chinese scientists from the sweet wormwood Artemisia annua. The potential development of resistance to artemisinins by Plasmodium falciparum threatens the usable lifespan of ACTs, and therefore is a subject of close surveillance and extensive research. Studies at the Thai-Cambodian border, a historical epicenter of multidrug resistance, have detected reduced susceptibility to artemisinins as manifested by prolonged parasite-clearance times, raising considerable concerns on resistance development. Despite this significance, there is still controversy on the mode of action of artemisinins. Although a number of potential cellular targets of artemisinins have been proposed, they remain to be verified experimentally. Here, we review the history of artemisinin discovery, discuss the mode of action and potential drug targets, and present strategies to elucidate resistance mechanisms.
Collapse
Affiliation(s)
- Liwang Cui
- Department of Entomology, Pennsylvania State University, 537 ASI Building, University Park, PA 16802, USA, Tel.: +1 814 863 7663, Fax: +1 814 865 3048,
| | - Xin-zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA, Tel.: +1 301 402 0876, Fax: +1 301 402 2201,
| |
Collapse
|
40
|
|
41
|
Stability of peroxide antimalarials in the presence of human hemoglobin. Antimicrob Agents Chemother 2009; 53:3496-500. [PMID: 19487440 DOI: 10.1128/aac.00363-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Peroxide antimalarials, including artemisinin, are important for the treatment of multidrug-resistant malaria. These peroxides are known to react with iron or heme to produce reactive intermediates that are thought to be responsible for their antimalarial activities. This study investigated the potential interaction of selected peroxide antimalarials with oxyhemoglobin, the most abundant form of iron in the human body. The observed stability of artemisinin derivatives and 1,2,4-trioxolanes in the presence of oxyhemoglobin was in contrast to previous reports in the literature. Spectroscopic analysis of hemoglobin found it to be unstable under the conditions used for previous studies, and it appears likely that the artemisinin reactivity reported in these studies may be attributed to free heme released by protein denaturation. The stability of peroxide antimalarials with intact oxyhemoglobin, and reactivity with free heme, may explain the selective toxicity of these antimalarials toward infected, but not healthy, erythrocytes.
Collapse
|
42
|
Hodel E, Zanolari B, Mercier T, Biollaz J, Keiser J, Olliaro P, Genton B, Decosterd L. A single LC–tandem mass spectrometry method for the simultaneous determination of 14 antimalarial drugs and their metabolites in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:867-86. [DOI: 10.1016/j.jchromb.2009.02.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 01/16/2009] [Accepted: 02/01/2009] [Indexed: 01/14/2023]
|
43
|
Arsenault PR, Wobbe KK, Weathers PJ. Recent advances in artemisinin production through heterologous expression. Curr Med Chem 2009; 15:2886-96. [PMID: 18991643 DOI: 10.2174/092986708786242813] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Artemisinin the sesquiterpene endoperoxide lactone extracted from the herb Artemisia annua, remains the basis for the current preferred treatment against the malaria parasite Plasmodium falciparum. In addition, artemisinin and its derivatives show additional anti-parasite, anti-cancer, and anti-viral properties. Widespread use of this valuable secondary metabolite has been hampered by low production in vivo and high cost of chemical synthesis in vitro. Novel production methods are required to accommodate the ever-growing need for this important drug. Past work has focused on increasing production through traditional breeding approaches, with limited success, and on engineering cultured plants for high production in bioreactors. New research is focusing on heterologous expression systems for this unique biochemical pathway. Recently discovered genes, including a cytochrome P450 and its associated reductase, have been shown to catalyze multiple steps in the biochemical pathway leading to artemisinin. This has the potential to make a semi-synthetic approach to production both possible and cost effective. Artemisinin precursor production in engineered Saccharomyces cerevisiae is about two orders of magnitude higher than from field-grown A. annua. Efforts to increase flux through engineered pathways are on-going in both E. coli and S. cerevisiae through combinations of engineering precursor pathways and downstream optimization of gene expression. This review will compare older approaches to overproduction of this important drug, and then focus on the results from the newer approaches using heterologous expression systems and how they might meet the demands for treating malaria and other diseases.
Collapse
|
44
|
Srivastava M, Singh H, Naik PK. Application of the linear interaction energy method for rational design of artemisinin analogues as haeme polymerisation inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2009; 20:327-355. [PMID: 19544195 DOI: 10.1080/10629360902949294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The anti-malarial activity of artemisinin-derived drugs appears to be mediated by an interaction of the drug's endoperoxide bridge with intra-parasitic haeme. The binding affinity of artemisinin analogues with haeme were computed using linear interaction energy with a surface generalised Born (LIE-SGB) continuum solvation model. Low levels of root mean square error (0.348 and 0.415 kcal/mol) as well as significant correlation coefficients (r(2) = 0.868 and 0.892) between the experimental and predicted free energy of binding (FEB) based on molecular dynamics and hybrid Monte Carlo sampling techniques establish the SGB-LIE method as an efficient tool for generating more potent inhibitors of haeme polymerisation inhibition.
Collapse
Affiliation(s)
- M Srivastava
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173215, Himachal Pradesh, India
| | | | | |
Collapse
|
45
|
Abstract
Artemisinins are the most important anti-malarial drugs in use today, but are more costly than previous anti-malarials and production and price tend to fluctuate. Alternative ways of producing artemisinins are discussed here in the light of a recent paper in BMC Biotechnology on improving the yield of the precursor, artemisinic acid, in genetically engineered yeast.
Collapse
Affiliation(s)
- Marcel Hommel
- Institut Pasteur, 25-28 rue du Dr Roux, Paris 75724 Cedex 15, France.
| |
Collapse
|
46
|
Fidock DA, Eastman RT, Ward SA, Meshnick SR. Recent highlights in antimalarial drug resistance and chemotherapy research. Trends Parasitol 2008; 24:537-44. [PMID: 18938106 DOI: 10.1016/j.pt.2008.09.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/15/2008] [Accepted: 09/16/2008] [Indexed: 01/07/2023]
Abstract
This review summarizes recent investigations into antimalarial drug resistance and chemotherapy, including reports of some of the many exciting talks and posters on this topic that were presented at the third Molecular Approaches to Malaria meeting held in Lorne, Australia, in February 2008 (MAM 2008). After surveying this area of research, we focus on two important questions: what is the molecular contribution of pfcrt to chloroquine resistance, and what is the mechanism of action of artemisinin? We conclude with thoughts about the current state of antimalarial chemotherapy and priorities moving forward.
Collapse
Affiliation(s)
- David A Fidock
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
47
|
Moles P, Oliva M, Safont VS. A theoretical study on the decomposition mechanism of artemisinin. Tetrahedron 2008. [DOI: 10.1016/j.tet.2008.07.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Krishna S, Bustamante L, Haynes RK, Staines HM. Artemisinins: their growing importance in medicine. Trends Pharmacol Sci 2008; 29:520-7. [PMID: 18752857 PMCID: PMC2758403 DOI: 10.1016/j.tips.2008.07.004] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 07/11/2008] [Accepted: 07/16/2008] [Indexed: 11/30/2022]
Abstract
Artemisinins are derived from extracts of sweet wormwood (Artemisia annua) and are well established for the treatment of malaria, including highly drug-resistant strains. Their efficacy also extends to phylogenetically unrelated parasitic infections such as schistosomiasis. More recently, they have also shown potent and broad anticancer properties in cell lines and animal models. In this review, we discuss recent advances in defining the role of artemisinins in medicine, with particular focus on their controversial mechanisms of action. This safe and cheap drug class that saves lives at risk from malaria can also have important potential in oncology.
Collapse
Affiliation(s)
- Sanjeev Krishna
- Centre for Infection, Division of Cellular and Molecular Medicine, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK.
| | | | | | | |
Collapse
|
49
|
Chavain N, Vezin H, Dive D, Touati N, Paul JF, Buisine E, Biot C. Investigation of the redox behavior of ferroquine, a new antimalarial. Mol Pharm 2008; 5:710-6. [PMID: 18563912 DOI: 10.1021/mp800007x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ferroquine (FQ or SR97193) is a unique ferrocene antimalarial drug candidate which just entered phase IIb clinical trials in autumn 2007. FQ is able to overcome the chloroquine (CQ) resistance problem, an important limit to the control of Plasmodium falciparum, the principal causative agent of malaria. However, as for other therapeutic agents such as chloroquine (CQ) and artemisin, its mechanism of action remains partially unknown. Most investigations have so far focused on comparing the activity of FQ to that of CQ in order to understand how the ferrocene core contributes to a stronger antiplasmodial activity. Studies have already shown that the ferrocene altered the shape, volume, lipophilicity, basicity and also electronic profile of the parent molecule and, hence, its pharmacodynamic behavior. However, few investigations have been undertaken to probe the real contribution of redox properties of the ferrocene (iron(II))/ferricinium (iron(III)) system in FQ as reported in this article. In our experimental and theoretical approach, we considered the redox profile of the ferrocene core of FQ in the specific conditions (acidic and oxidizing) of the parasitic digestive vacuole as a possible discriminating property from CQ in the antimalarial activity.
Collapse
Affiliation(s)
- Natascha Chavain
- Universite des Sciences et Technologies de Lille, Unite de Catalyse et Chimie du Solide-UMR CNRS 8181, Ecole Nationale Superieure de Chimie de Lille, Batiment C7, B.P. 90108, 59652 Villeneuve d'Ascq cedex, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Zhang S, Gerhard GS. Heme activates artemisinin more efficiently than hemin, inorganic iron, or hemoglobin. Bioorg Med Chem 2008; 16:7853-61. [PMID: 18676152 DOI: 10.1016/j.bmc.2008.02.034] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 02/08/2008] [Accepted: 02/11/2008] [Indexed: 11/15/2022]
Abstract
Artemisinin derivatives appear to mediate their anti-malarial through an initial redox-mediated reaction. Heme, inorganic iron, and hemoglobin have all been implicated as the key molecules that activate artemisinins. The reactions of artemisinin with different redox forms of heme, ferrous iron, and deoxygenated and oxygenated hemoglobin were analyzed under similar in vitro conditions. Heme reacted with artemisinin much more efficiently than the other iron-containing molecules, supporting the role of redox active heme as the primary activator of artemisinin.
Collapse
Affiliation(s)
- Shiming Zhang
- Weis Center for Research, Geisinger Clinic, Danville, PA 17822, USA.
| | | |
Collapse
|