1
|
Function of Drosophila Synaptotagmins in membrane trafficking at synapses. Cell Mol Life Sci 2021; 78:4335-4364. [PMID: 33619613 PMCID: PMC8164606 DOI: 10.1007/s00018-021-03788-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
The Synaptotagmin (SYT) family of proteins play key roles in regulating membrane trafficking at neuronal synapses. Using both Ca2+-dependent and Ca2+-independent interactions, several SYT isoforms participate in synchronous and asynchronous fusion of synaptic vesicles (SVs) while preventing spontaneous release that occurs in the absence of stimulation. Changes in the function or abundance of the SYT1 and SYT7 isoforms alter the number and route by which SVs fuse at nerve terminals. Several SYT family members also regulate trafficking of other subcellular organelles at synapses, including dense core vesicles (DCV), exosomes, and postsynaptic vesicles. Although SYTs are linked to trafficking of multiple classes of synaptic membrane compartments, how and when they interact with lipids, the SNARE machinery and other release effectors are still being elucidated. Given mutations in the SYT family cause disorders in both the central and peripheral nervous system in humans, ongoing efforts are defining how these proteins regulate vesicle trafficking within distinct neuronal compartments. Here, we review the Drosophila SYT family and examine their role in synaptic communication. Studies in this invertebrate model have revealed key similarities and several differences with the predicted activity of their mammalian counterparts. In addition, we highlight the remaining areas of uncertainty in the field and describe outstanding questions on how the SYT family regulates membrane trafficking at nerve terminals.
Collapse
|
2
|
Jeganathan N, Predescu D, Predescu S. Intersectin-1s deficiency in pulmonary pathogenesis. Respir Res 2017; 18:168. [PMID: 28874189 PMCID: PMC5585975 DOI: 10.1186/s12931-017-0652-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/28/2017] [Indexed: 02/07/2023] Open
Abstract
Intersectin-1s (ITSN-1s), a multidomain adaptor protein, plays a vital role in endocytosis, cytoskeleton rearrangement and cell signaling. Recent studies have demonstrated that deficiency of ITSN-1s is a crucial early event in pulmonary pathogenesis. In lung cancer, ITSN-1s deficiency impairs Eps8 ubiquitination and favors Eps8-mSos1 interaction which activates Rac1 leading to enhanced lung cancer cell proliferation, migration and metastasis. Restoring ITSN-1s deficiency in lung cancer cells facilitates cytoskeleton changes favoring mesenchymal to epithelial transformation and impairs lung cancer progression. ITSN-1s deficiency in acute lung injury leads to impaired endocytosis which leads to ubiquitination and degradation of growth factor receptors such as Alk5. This deficiency is counterbalanced by microparticles which, via paracrine effects, transfer Alk5/TGFβRII complex to non-apoptotic cells. In the presence of ITSN-1s deficiency, Alk5-restored cells signal via Erk1/2 MAPK pathway leading to restoration and repair of lung architecture. In inflammatory conditions such as pulmonary artery hypertension, ITSN-1s full length protein is cleaved by granzyme B into EHITSN and SH3A-EITSN fragments. The EHITSN fragment leads to pulmonary cell proliferation via activation of p38 MAPK and Elk-1/c-Fos signaling. In vivo, ITSN-1s deficient mice transduced with EHITSN plasmid develop pulmonary vascular obliteration and plexiform lesions consistent with pathological findings seen in severe pulmonary arterial hypertension. These novel findings have significantly contributed to understanding the mechanisms and pathogenesis involved in pulmonary pathology. As demonstrated in these studies, genetically modified ITSN-1s expression mouse models will be a valuable tool to further advance our understanding of pulmonary pathology and lead to novel targets for treating these conditions.
Collapse
Affiliation(s)
| | - Dan Predescu
- Department of Pharmacology and Division of Pulmonary and Critical Care Medicine, Rush University, 1750 W. Harrison Street, 1415 Jelke, Chicago, IL, 60612, USA
| | - Sanda Predescu
- Department of Pharmacology and Division of Pulmonary and Critical Care Medicine, Rush University Medical Center and Rush Medical College, 1750 W. Harrison Street, 1535 Jelke, Chicago, IL, 60612, USA
| |
Collapse
|
3
|
Garafalo SD, Luth ES, Moss BJ, Monteiro MI, Malkin E, Juo P. The AP2 clathrin adaptor protein complex regulates the abundance of GLR-1 glutamate receptors in the ventral nerve cord of Caenorhabditis elegans. Mol Biol Cell 2015; 26:1887-900. [PMID: 25788288 PMCID: PMC4436833 DOI: 10.1091/mbc.e14-06-1048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 03/06/2015] [Indexed: 01/23/2023] Open
Abstract
Regulation of glutamate receptor trafficking controls synaptic strength and plasticity. This study takes advantage of viable, null mutations in subunits of the clathrin adaptor protein 2 (AP2) complex in Caenorhabditis elegans to reveal a novel and unexpected AP2-dependent trafficking step for glutamate receptors early in the secretory pathway. Regulation of glutamate receptor (GluR) abundance at synapses by clathrin-mediated endocytosis can control synaptic strength and plasticity. We take advantage of viable, null mutations in subunits of the clathrin adaptor protein 2 (AP2) complex in Caenorhabditis elegans to characterize the in vivo role of AP2 in GluR trafficking. In contrast to our predictions for an endocytic adaptor, we found that levels of the GluR GLR-1 are decreased at synapses in the ventral nerve cord (VNC) of animals with mutations in the AP2 subunits APM-2/μ2, APA-2/α, or APS-2/σ2. Rescue experiments indicate that APM-2/μ2 functions in glr-1–expressing interneurons and the mature nervous system to promote GLR-1 levels in the VNC. Genetic analyses suggest that APM-2/μ2 acts upstream of GLR-1 endocytosis in the VNC. Consistent with this, GLR-1 accumulates in cell bodies of apm-2 mutants. However, GLR-1 does not appear to accumulate at the plasma membrane of the cell body as expected, but instead accumulates in intracellular compartments including Syntaxin-13– and RAB-14–labeled endosomes. This study reveals a novel role for the AP2 clathrin adaptor in promoting the abundance of GluRs at synapses in vivo, and implicates AP2 in the regulation of GluR trafficking at an early step in the secretory pathway.
Collapse
Affiliation(s)
- Steven D Garafalo
- Department of Developmental, Molecular & Chemical Biology Graduate Program in Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, MA 02111
| | - Eric S Luth
- Department of Developmental, Molecular & Chemical Biology
| | - Benjamin J Moss
- Department of Developmental, Molecular & Chemical Biology Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Michael I Monteiro
- Department of Developmental, Molecular & Chemical Biology Graduate Program in Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, MA 02111
| | - Emily Malkin
- Department of Developmental, Molecular & Chemical Biology
| | - Peter Juo
- Department of Developmental, Molecular & Chemical Biology
| |
Collapse
|
4
|
Abstract
Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization.
Collapse
Affiliation(s)
- Yasunori Saheki
- Department of Cell Biology, Howard Hughes Medical Institute and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
5
|
Mullen GP, Grundahl KM, Gu M, Watanabe S, Hobson RJ, Crowell JA, McManus JR, Mathews EA, Jorgensen EM, Rand JB. UNC-41/stonin functions with AP2 to recycle synaptic vesicles in Caenorhabditis elegans. PLoS One 2012; 7:e40095. [PMID: 22808098 PMCID: PMC3393740 DOI: 10.1371/journal.pone.0040095] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/31/2012] [Indexed: 11/20/2022] Open
Abstract
The recycling of synaptic vesicles requires the recovery of vesicle proteins and membrane. Members of the stonin protein family (Drosophila Stoned B, mammalian stonin 2) have been shown to link the synaptic vesicle protein synaptotagmin to the endocytic machinery. Here we characterize the unc-41 gene, which encodes the stonin ortholog in the nematode Caenorhabditis elegans. Transgenic expression of Drosophila stonedB rescues unc-41 mutant phenotypes, demonstrating that UNC-41 is a bona fide member of the stonin family. In unc-41 mutants, synaptotagmin is present in axons, but is mislocalized and diffuse. In contrast, UNC-41 is localized normally in synaptotagmin mutants, demonstrating a unidirectional relationship for localization. The phenotype of snt-1 unc-41 double mutants is stronger than snt-1 mutants, suggesting that UNC-41 may have additional, synaptotagmin-independent functions. We also show that unc-41 mutants have defects in synaptic vesicle membrane endocytosis, including a ∼50% reduction of vesicles in both acetylcholine and GABA motor neurons. These endocytic defects are similar to those observed in apm-2 mutants, which lack the µ2 subunit of the AP2 adaptor complex. However, no further reduction in synaptic vesicles was observed in unc-41 apm-2 double mutants, suggesting that UNC-41 acts in the same endocytic pathway as µ2 adaptin.
Collapse
Affiliation(s)
- Gregory P. Mullen
- Genetic Models of Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Kiely M. Grundahl
- Genetic Models of Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Mingyu Gu
- Howard Hughes Medical Institute and Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Shigeki Watanabe
- Howard Hughes Medical Institute and Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Robert J. Hobson
- Howard Hughes Medical Institute and Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - John A. Crowell
- Genetic Models of Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - John R. McManus
- Genetic Models of Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Eleanor A. Mathews
- Genetic Models of Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Erik M. Jorgensen
- Howard Hughes Medical Institute and Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - James B. Rand
- Genetic Models of Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
6
|
Soekmadji C, Angkawidjaja C, Kelly LE. Ca2+ regulates the Drosophila Stoned-A and Stoned-B proteins interaction with the C2B domain of Synaptotagmin-1. PLoS One 2012; 7:e38822. [PMID: 22701718 PMCID: PMC3373503 DOI: 10.1371/journal.pone.0038822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/11/2012] [Indexed: 02/02/2023] Open
Abstract
The dicistronic Drosophila stoned gene is involved in exocytosis and/or endocytosis of synaptic vesicles. Mutations in either stonedA or stonedB cause a severe disruption of neurotransmission in fruit flies. Previous studies have shown that the coiled-coil domain of the Stoned-A and the µ-homology domain of the Stoned-B protein can interact with the C2B domain of Synaptotagmin-1. However, very little is known about the mechanism of interaction between the Stoned proteins and the C2B domain of Synaptotagmin-1. Here we report that these interactions are increased in the presence of Ca(2+). The Ca(2+)-dependent interaction between the µ-homology domain of Stoned-B and C2B domain of Synaptotagmin-1 is affected by phospholipids. The C-terminal region of the C2B domain, including the tryptophan-containing motif, and the Ca(2+) binding loop region that modulate the Ca(2+)-dependent oligomerization, regulates the binding of the Stoned-A and Stoned-B proteins to the C2B domain. Stoned-B, but not Stoned-A, interacts with the Ca(2+)-binding loop region of C2B domain. The results indicate that Ca(2+)-induced self-association of the C2B domain regulates the binding of both Stoned-A and Stoned-B proteins to Synaptotagmin-1. The Stoned proteins may regulate sustainable neurotransmission in vivo by binding to Ca(2+)-bound Synaptotagmin-1 associated synaptic vesicles.
Collapse
Affiliation(s)
- Carolina Soekmadji
- Department of Genetics, The University of Melbourne, Parkville, Victoria, Australia.
| | | | | |
Collapse
|
7
|
Impaired caveolae function and upregulation of alternative endocytic pathways induced by experimental modulation of intersectin-1s expression in mouse lung endothelium. Biochem Res Int 2012; 2012:672705. [PMID: 22506115 PMCID: PMC3299393 DOI: 10.1155/2012/672705] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/16/2011] [Indexed: 11/17/2022] Open
Abstract
Intersectin-1s (ITSN-1s), a protein containing five SH3 (A-E) domains, regulates via the SH3A the function of dynamin-2 (dyn2) at the endocytic site. ITSN-1s expression was modulated in mouse lung endothelium by liposome delivery of either a plasmid cDNA encoding myc-SH3A or a specific siRNA targeting ITSN-1 gene. The lung vasculature of SH3A-transduced and ITSN-1s- deficient mice was perfused with gold albumin (Au-BSA) to analyze by electron microscopy the morphological intermediates and pathways involved in transendothelial transport or with dinitrophenylated (DNP)-BSA to quantify by ELISA its transport. Acute modulation of ITSN-1s expression decreased the number of caveolae, impaired their transport, and opened the interendothelial junctions, while upregulating compensatory nonconventional endocytic/transcytotic structures. Chronic inhibition of ITSN-1s further increased the occurrence of nonconventional intermediates and partially restored the junctional integrity. These findings indicate that ITSN-1s expression is required for caveolae function and efficient transendothelial transport. Moreover, our results demonstrate that ECs are highly adapted to perform their transport function while maintaining lung homeostasis.
Collapse
|
8
|
Abstract
We review mainly the work from our research group here. Our focus has been on the use of genetic methods to delineate the mechanisms of synaptic vesicle recycling and cellular trafficking. Acute temperature-sensitive paralytic mutants have been of particular value in this approach. We have primarily used screens for suppressor and enhancer mutations to identify genetic loci coding for proteins that interact with Dynamin in Drosophila. In addition, we have used reverse genetic approaches to investigate few other candidate molecules that may play a role in synaptic vesicle endocytosis. We have in particular discussed at some length the role of endocytic accessory proteins Stoned and Eps15 in vesicle recycling.
Collapse
Affiliation(s)
- Riddhi Majumder
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | | |
Collapse
|
9
|
Intersectin multidomain adaptor proteins: Regulation of functional diversity. Gene 2011; 473:67-75. [DOI: 10.1016/j.gene.2010.11.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 11/30/2010] [Accepted: 11/30/2010] [Indexed: 12/17/2022]
|
10
|
Vijayakrishnan N, Phillips SE, Broadie K. Drosophila rolling blackout displays lipase domain-dependent and -independent endocytic functions downstream of dynamin. Traffic 2010; 11:1567-78. [PMID: 21029287 DOI: 10.1111/j.1600-0854.2010.01117.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drosophila temperature-sensitive rolling blackout (rbo(ts) ) mutants display a total block of endocytosis in non-neuronal cells and a weaker, partial defect at neuronal synapses. RBO is an integral plasma membrane protein and is predicted to be a serine esterase. To determine if lipase activity is required for RBO function, we mutated the catalytic serine 358 to alanine in the G-X-S-X-G active site, and assayed genomic rescue of rbo mutant non-neuronal and neuronal phenotypes. The rbo(S358A) mutant is unable to rescue rbo null 100% embryonic lethality, indicating that the lipase domain is critical for RBO essential function. Likewise, the rbo(S358A) mutant cannot provide any rescue of endocytic blockade in rbo(ts) Garland cells, showing that the lipase domain is indispensable for non-neuronal endocytosis. In contrast, rbo(ts) conditional paralysis, synaptic transmission block and synapse endocytic defects are all fully rescued by the rbo(S358A) mutant, showing that the RBO lipase domain is dispensable in neuronal contexts. We identified a synthetic lethal interaction between rbo(ts) and the well-characterized dynamin GTPase conditional shibire (shi(ts1)) mutant. In both non-neuronal cells and neuronal synapses, shi(ts1); rbo(ts) phenocopies shi(ts1) endocytic defects, indicating that dynamin and RBO act in the same pathway, with dynamin functioning upstream of RBO. We conclude that RBO possesses both lipase domain-dependent and scaffolding functions with differential requirements in non-neuronal versus neuronal endocytosis mechanisms downstream of dynamin GTPase activity.
Collapse
Affiliation(s)
- Niranjana Vijayakrishnan
- Department of Biological Sciences, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235-1634, USA
| | | | | |
Collapse
|
11
|
Abstract
The stoned proteins, stoned A (STNA) and stoned B (STNB), are essential for normal vesicle trafficking in Drosophila melanogaster neurons, and deletion of the stoned locus is lethal. Although there is a growing body of research aimed at defining the roles of these proteins, particularly for STNB where homologues have now been identified in all multicellular species, their functions and mechanisms of action are not yet established. The two proteins are structurally unrelated, consistent with two distinct cellular functions. The evidence suggests a critical requirement for stoned proteins in recycling/regulation or specification of a competent synaptic vesicle pool. As stoned proteins may be specific to a particular pathway of endocytosis, studies of their function are likely to be valuable in distinguishing between the different mechanisms of membrane retrieval and their respective contributions to synaptic vesicle recycling, a subject of considerable scientific debate. In this review, we examine the published literature on stoned and comment on the available data, conclusions from these analyses and how they may relate to alternative models of vesicle cycling.
Collapse
Affiliation(s)
- A Marie Phillips
- Department of Genetics, The University of Melbourne, Parkville 3010, Australia.
| | | | | |
Collapse
|
12
|
Cattaert T, Urrea V, Naj AC, De Lobel L, De Wit V, Fu M, Mahachie John JM, Shen H, Calle ML, Ritchie MD, Edwards TL, Van Steen K. FAM-MDR: a flexible family-based multifactor dimensionality reduction technique to detect epistasis using related individuals. PLoS One 2010; 5:e10304. [PMID: 20421984 PMCID: PMC2858665 DOI: 10.1371/journal.pone.0010304] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/01/2010] [Indexed: 12/05/2022] Open
Abstract
We propose a novel multifactor dimensionality reduction method for epistasis detection in small or extended pedigrees, FAM-MDR. It combines features of the Genome-wide Rapid Association using Mixed Model And Regression approach (GRAMMAR) with Model-Based MDR (MB-MDR). We focus on continuous traits, although the method is general and can be used for outcomes of any type, including binary and censored traits. When comparing FAM-MDR with Pedigree-based Generalized MDR (PGMDR), which is a generalization of Multifactor Dimensionality Reduction (MDR) to continuous traits and related individuals, FAM-MDR was found to outperform PGMDR in terms of power, in most of the considered simulated scenarios. Additional simulations revealed that PGMDR does not appropriately deal with multiple testing and consequently gives rise to overly optimistic results. FAM-MDR adequately deals with multiple testing in epistasis screens and is in contrast rather conservative, by construction. Furthermore, simulations show that correcting for lower order (main) effects is of utmost importance when claiming epistasis. As Type 2 Diabetes Mellitus (T2DM) is a complex phenotype likely influenced by gene-gene interactions, we applied FAM-MDR to examine data on glucose area-under-the-curve (GAUC), an endophenotype of T2DM for which multiple independent genetic associations have been observed, in the Amish Family Diabetes Study (AFDS). This application reveals that FAM-MDR makes more efficient use of the available data than PGMDR and can deal with multi-generational pedigrees more easily. In conclusion, we have validated FAM-MDR and compared it to PGMDR, the current state-of-the-art MDR method for family data, using both simulations and a practical dataset. FAM-MDR is found to outperform PGMDR in that it handles the multiple testing issue more correctly, has increased power, and efficiently uses all available information.
Collapse
Affiliation(s)
- Tom Cattaert
- Montefiore Institute, University of Liège, Liège, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shen G, Whittington A, Song K, Wang P. Pleiotropic function of intersectin homologue Cin1 in Cryptococcus neoformans. Mol Microbiol 2010; 76:662-76. [PMID: 20345666 DOI: 10.1111/j.1365-2958.2010.07121.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The manifestation of virulence traits in Cryptococcus neoformans is thought to rely on intracellular transport, a process not fully explored in this pathogenic fungus. Through interaction cloning, we identified a multi-modular protein, Cin1 (cryptococcal intersectin 1), whose domain structure is similar to that of the human endocytic protein ITSN1. Cin1 contains an N-terminal EH domain, a central coiled-coil region, a WH2 domain, two SH3 domains and a C-terminal RhoGEF (DH)-PH domain. Interestingly, alternative mRNA splicing resulted in two Cin1 isoforms, and Cin1 homologues are also restricted to basidiomycetous fungi. Disruption of the CIN1 gene had a pleiotropic effect on growth, normal cytokinesis, intracellular transports and the production of several virulence factors. Additionally, Cin1 interacts with cryptococcal Cdc42 and Wsp1 (a WASP homologue) proteins in vitro, suggesting a conserved role in the regulation of the actin cytoskeleton. However, deletion of RhoGEF or SH3 and RhoGEF domains did not result in any phenotypic changes, suggesting that functional redundancy exists in proteins containing similar domains or that the activities by other domains are necessary for Cin1 function. Our study presents the first evidence of a multi-modular protein whose function in intracellular transport underlies the growth, differentiation and virulence of a pathogenic microorganism.
Collapse
Affiliation(s)
- Gui Shen
- The Research Institute for Children, Louisiana State University Health Sciences Center, New Orleans, LA 70118, USA
| | | | | | | |
Collapse
|
14
|
Abstract
During neurotransmitter release, SVs (synaptic vesicles) fuse at the active zone and are recovered predominantly via clathrin-mediated endocytosis at the presynaptic compartment surrounding the site of release, referred to as the periactive zone. Exo- and endo-cytosis in synapses are tightly temporarily and spatially coupled to sustain synaptic transmission. The molecular mechanisms linking these two cellular events, which take place in separate compartments of the nerve terminal, remain largely enigmatic. Several lines of evidence indicate that multiple factors may be involved in exocytic–endocytic coupling including SV integral membrane proteins, SV membrane lipids and the membrane-associated actin cytoskeleton. A number of recent studies also indicate that multimodular adaptor proteins shuttling between the active and periactive zones aid the dynamic assembly of macromolecular protein complexes that execute the exo- and endo-cytic limbs of the SV cycle. Here, we discuss recent evidence implicating the multidomain scaffolding and adaptor protein ITSN1 (intersectin 1) as a central regulator of SV cycling.
Collapse
|
15
|
Affiliation(s)
- Jeremy Dittman
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065; ,
| | - Timothy A. Ryan
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065; ,
| |
Collapse
|
16
|
Maritzen T, Podufall J, Haucke V. Stonins-Specialized Adaptors for Synaptic Vesicle Recycling and Beyond? Traffic 2009; 11:8-15. [DOI: 10.1111/j.1600-0854.2009.00971.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Ma N, Niu RF, Ma YJ. Intersectin 1: a molecular linker in the central nervous system. Neurosci Bull 2008; 24:401-5. [PMID: 19037327 DOI: 10.1007/s12264-008-0715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Down syndrome (DS) is the most common cause of cognitive impairment associated with a congenital chromosomal abnormality, trisomy of chromosome 21. Mental retardation and congenital heart defects are key features of DS. All DS individuals develop early-onset Alzheimer's disease-like neuropathology. Intersectin 1 gene is localized on human chromosome 21, the critical region of DS, and it has higher expression in the brain of DS patients than in normal individuals. So fully understanding functions of intersectin 1 is critical for revealing the pathogenesis of DS. Intersectin 1 protein has two isoforms: intersectin 1-L and intersectin 1-S. This review will focus on the distribution, expression characters and functions of intersectin 1 in the central nervous system.
Collapse
Affiliation(s)
- Ning Ma
- Center Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital of Ministry of Education, Tianjin, China
| | | | | |
Collapse
|
18
|
Mohrmann R, Matthies HJ, Woodruff E, Broadie K. Stoned B mediates sorting of integral synaptic vesicle proteins. Neuroscience 2008; 153:1048-63. [PMID: 18436388 DOI: 10.1016/j.neuroscience.2008.02.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 02/01/2008] [Accepted: 02/01/2008] [Indexed: 10/22/2022]
Abstract
A continuous supply of fusion-competent synaptic vesicles is essential for sustainable neurotransmission. Drosophila mutations of the dicistronic stoned locus disrupt normal vesicle cycling and cause functional deficits in synaptic transmission. Although both Stoned A and B proteins putatively participate in reconstituting synaptic vesicles, their precise function is still unclear. Here we investigate the effects of progressive depletion of Stoned B protein (STNB) on the release properties of neuromuscular synapses using a novel set of synthetic stnB hypomorphic alleles. Decreasing neuronal STNB expression to < or =35% of wild-type level causes a strong reduction in excitatory junctional current amplitude at low stimulation frequencies and a marked slowing in synaptic depression during high-frequency stimulation, suggesting vesicle depletion is attenuated by decreased release probability. Recovery from synaptic depression after prolonged stimulation is also decelerated in mutants, indicating a delayed recovery of fusion-ready vesicles. These phenotypes appear not to be due to a diminished vesicle population, since the docked vesicle pool is ultrastructurally unaffected, and the total number of vesicles is only slightly reduced in these hypomorphs, unlike lethal stoned mutants. Therefore, we conclude that STNB not only functions as an essential component of the endocytic complex for vesicle reconstitution, as previously proposed, but also regulates the competence of recycled vesicles to undergo fusion. In support of such role of STNB, synaptic levels of the vesicular glutamate transporter (vGLUT) and synaptotagmin-1 are strongly reduced with diminishing STNB function, while other synaptic proteins are largely unaffected. We conclude that STNB organizes the endocytic sorting of a subset of integral synaptic vesicle proteins thereby regulating the fusion-competence of the recycled vesicle.
Collapse
Affiliation(s)
- R Mohrmann
- Department of Biological Sciences, Vanderbilt University, 1210 Medical Research Building III, , Nashville, TN 37235-1634, USA
| | | | | | | |
Collapse
|
19
|
Khanna R, Li Q, Stanley EF. 'Fractional recovery' analysis of a presynaptic synaptotagmin 1-anchored endocytic protein complex. PLoS One 2006; 1:e67. [PMID: 17183698 PMCID: PMC1762330 DOI: 10.1371/journal.pone.0000067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 10/30/2006] [Indexed: 11/18/2022] Open
Abstract
Background The integral synaptic vesicle protein and putative calcium sensor, synaptotagmin 1 (STG), has also been implicated in synaptic vesicle (SV) recovery. However, proteins with which STG interacts during SV endocytosis remain poorly understood. We have isolated an STG-associated endocytic complex (SAE) from presynaptic nerve terminals and have used a novel fractional recovery (FR) assay based on electrostatic dissociation to identify SAE components and map the complex structure. The location of SAE in the presynaptic terminal was determined by high-resolution quantitative immunocytochemistry at the chick ciliary ganglion giant calyx-type synapse. Methodology/Principle Findings The first step in FR analysis was to immunoprecipitate (IP) the complex with an antibody against one protein component (the IP-protein). The immobilized complex was then exposed to a high salt (1150 mM) stress-test that caused shedding of co-immunoprecipitated proteins (co-IP-proteins). A Fractional Recovery ratio (FR: recovery after high salt/recovery with control salt as assayed by Western blot) was calculated for each co-IP-protein. These FR values reflect complex structure since an easily dissociated protein, with a low FR value, cannot be intermediary between the IP-protein and a salt-resistant protein. The structure of the complex was mapped and a blueprint generated with a pair of FR analyses generated using two different IP-proteins. The blueprint of SAE contains an AP180/X/STG/stonin 2/intersectin/epsin core (X is unknown and epsin is hypothesized), and an AP2 adaptor, H-/L-clathrin coat and dynamin scission protein perimeter. Quantitative immunocytochemistry (ICA/ICQ method) at an isolated calyx-type presynaptic terminal indicates that this complex is associated with STG at the presynaptic transmitter release face but not with STG on intracellular synaptic vesicles. Conclusions/Significance We hypothesize that the SAE serves as a recognition site and also as a seed complex for clathrin-mediated synaptic vesicle recovery. The combination of FR analysis with quantitative immunocytochemistry provides a novel and effective strategy for the identification and characterization of biologically-relevant multi-molecular complexes.
Collapse
|
20
|
Keating DJ, Chen C, Pritchard MA. Alzheimer's disease and endocytic dysfunction: clues from the Down syndrome-related proteins, DSCR1 and ITSN1. Ageing Res Rev 2006; 5:388-401. [PMID: 16442855 DOI: 10.1016/j.arr.2005.11.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 11/19/2005] [Accepted: 11/28/2005] [Indexed: 10/25/2022]
Abstract
Down syndrome (DS) is a genetically-based disorder which results in multiple conditions for sufferers. Amongst these is a common early incidence of Alzheimer's disease (AD) which usually affects DS individuals by their mid 40s. This fact provides a clue that one or more of the genes located on chromosome 21 may be involved in the onset of AD. Current evidence suggests that endosomal disorders may underlie the earliest pathology of AD, preceding the classical pathological markers of beta-amyloid plaque deposition and neurofibrillary tangles. Therefore, any genes involved in endocytosis and vesicle trafficking which are over-expressed in DS are novel candidates in the pathogenesis of AD. Intersectin-1 (ITSN1) and Down syndrome candidate region 1 (DSCR1) are two such genes. Extensive in vitro data and data from Drosophila indicates that the over-expression of either of these genes or their products results in inhibition or ablation of endocytosis in neuronal as well as non-neuronal cells. This review discusses in detail the known and potential roles of ITSN1 and DSCR1 in DS, AD, endocytosis and vesicle trafficking.
Collapse
Affiliation(s)
- Damien J Keating
- Prince Henry's Institute of Medical Research, Clayton, Vic., Australia
| | | | | |
Collapse
|
21
|
Malacombe M, Ceridono M, Calco V, Chasserot-Golaz S, McPherson PS, Bader MF, Gasman S. Intersectin-1L nucleotide exchange factor regulates secretory granule exocytosis by activating Cdc42. EMBO J 2006; 25:3494-503. [PMID: 16874303 PMCID: PMC1538555 DOI: 10.1038/sj.emboj.7601247] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 06/29/2006] [Indexed: 11/09/2022] Open
Abstract
Rho GTPases are key regulators of the actin cytoskeleton in membrane trafficking events. We previously reported that Cdc42 facilitates exocytosis in neuroendocrine cells by stimulating actin assembly at docking sites for secretory granules. These findings raise the question of the mechanism activating Cdc42 in exocytosis. The neuronal guanine nucleotide exchange factor, intersectin-1L, which specifically activates Cdc42 and is at an interface between membrane trafficking and actin dynamics, appears as an ideal candidate to fulfill this function. Using PC12 and chromaffin cells, we now show the presence of intersectin-1 at exocytotic sites. Moreover, through an RNA interference strategy coupled with expression of various constructs encoding the guanine nucleotide exchange domain, we demonstrate that intersectin-1L is an essential component of the exocytotic machinery. Silencing of intersectin-1 prevents secretagogue-induced activation of Cdc42 revealing intersectin-1L as the factor integrating Cdc42 activation to the exocytotic pathway. Our results extend the current role of intersectin-1L in endocytosis to a function in exocytosis and support the idea that intersectin-1L is an adaptor that coordinates exo-endocytotic membrane trafficking in secretory cells.
Collapse
Affiliation(s)
- Magali Malacombe
- Département Neurotransmission & Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UMR 7168/LC2), Centre National de la Recherche Scientifique & Université Louis Pasteur, Strasbourg, France
| | - Mara Ceridono
- Département Neurotransmission & Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UMR 7168/LC2), Centre National de la Recherche Scientifique & Université Louis Pasteur, Strasbourg, France
| | - Valérie Calco
- Département Neurotransmission & Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UMR 7168/LC2), Centre National de la Recherche Scientifique & Université Louis Pasteur, Strasbourg, France
| | - Sylvette Chasserot-Golaz
- Département Neurotransmission & Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UMR 7168/LC2), Centre National de la Recherche Scientifique & Université Louis Pasteur, Strasbourg, France
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Marie-France Bader
- Département Neurotransmission & Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UMR 7168/LC2), Centre National de la Recherche Scientifique & Université Louis Pasteur, Strasbourg, France
| | - Stéphane Gasman
- Département Neurotransmission & Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UMR 7168/LC2), Centre National de la Recherche Scientifique & Université Louis Pasteur, Strasbourg, France
- Département Neurotransmission & Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UMR 7168/LC2), Centre National de la Recherche Scientifique & Université Louis Pasteur, 5 rue Blaise Pascal, 67084 Strasbourg, France. Tel.: +33 388456712; Fax: +33 388601664; E-mail:
| |
Collapse
|
22
|
Wall AA, Phillips AM, Kelly LE. Effective Translation of the Second Cistron in Two Drosophila Dicistronic Transcripts Is Determined by the Absence of In-frame AUG Codons in the First Cistron. J Biol Chem 2005; 280:27670-8. [PMID: 15951443 DOI: 10.1074/jbc.m500255200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The novel dicistronic transcript encoded by the Drosophila melanogaster stoned gene was recognized as being unusual in that the protein encoded by the first open reading frame, stoned-A (STNA), contains no internal methionine residues in a protein of 93 kDa. The dicistronic nature of the stoned locus and the lack of methionine residues in STNA is conserved across dipteran species. A second methionine-free cistron, encoding Snapin, was identified in Drosophila and also found to be dicistronic, the second open reading frame (ORF) encoding a methyltransferase. We have replaced the methyltransferase cistron with green fluorescent protein (GFP) and used this dicistronic construct to show that the GFP cistron is translated in Drosophila S2 cells. The insertion of in-frame AUG codons into the snapin ORF attenuates the translation of GFP, and the level of attenuation correlates with the number of inserted AUGs. Increasing the efficiency of translation-initiation of the Snapin cistron also attenuates the translation of GFP. This indicates that failure to initiate translation at the first AUG allows ribosomes to scan through the Snapin ORF and to initiate translation of the second cistron, unless new AUG codons are inserted. These data are used to interpret the expression of the stoned locus and in particular, to explain the altered stoned protein levels in the stoned-temperature-sensitive mutant allele, which replaces a lysine with a methionine codon early in the first, stonedA, cistron.
Collapse
Affiliation(s)
- Adam A Wall
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia 3010
| | | | | |
Collapse
|