1
|
Praça YR, Santiago PB, Charneau S, Mandacaru SC, Bastos IMD, Bentes KLDS, Silva SMM, da Silva WMC, da Silva IG, de Sousa MV, Soares CMDA, Ribeiro JMC, Santana JM, de Araújo CN. An Integrative Sialomic Analysis Reveals Molecules From Triatoma sordida (Hemiptera: Reduviidae). Front Cell Infect Microbiol 2022; 11:798924. [PMID: 35047420 PMCID: PMC8762107 DOI: 10.3389/fcimb.2021.798924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Triatomines have evolved salivary glands that produce versatile molecules with various biological functions, including those leading their interactions with vertebrate hosts’ hemostatic and immunological systems. Here, using high-throughput transcriptomics and proteomics, we report the first sialome study on the synanthropic triatomine Triatoma sordida. As a result, 57,645,372 reads were assembled into 26,670 coding sequences (CDS). From these, a total of 16,683 were successfully annotated. The sialotranscriptomic profile shows Lipocalin as the most abundant protein family within putative secreted transcripts. Trialysins and Kazal-type protease inhibitors have high transcript levels followed by ubiquitous protein families and enzyme classes. Interestingly, abundant trialysin and Kazal-type members are highlighted in this triatomine sialotranscriptome. Furthermore, we identified 132 proteins in T. sordida salivary gland soluble extract through LC-MS/MS spectrometry. Lipocalins, Hemiptera specific families, CRISP/Antigen-5 and Kazal-type protein inhibitors proteins were identified. Our study provides a comprehensive description of the transcript and protein compositions of the salivary glands of T. sordida. It significantly enhances the information in the Triatominae sialome databanks reported so far, improving the understanding of the vector’s biology, the hematophagous behaviour, and the Triatominae subfamily’s evolution.
Collapse
Affiliation(s)
- Yanna Reis Praça
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Brazil.,Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Paula Beatriz Santiago
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Samuel Coelho Mandacaru
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - Kaio Luís da Silva Bentes
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Brazil.,Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | | | | | | | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - José Marcos Chaves Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Jaime Martins Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Brazil.,Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Carla Nunes de Araújo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Brazil.,Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, University of Brasilia, Brasilia, Brazil.,Faculty of Ceilândia, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
2
|
Santiago PB, Charneau S, Mandacaru SC, Bentes KLDS, Bastos IMD, de Sousa MV, Ricart CAO, de Araújo CN, Santana JM. Proteomic Mapping of Multifunctional Complexes Within Triatomine Saliva. Front Cell Infect Microbiol 2020; 10:459. [PMID: 32984079 PMCID: PMC7492717 DOI: 10.3389/fcimb.2020.00459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/27/2020] [Indexed: 11/26/2022] Open
Abstract
Triatomines are hematophagous insects that transmit Trypanosoma cruzi, the etiological agent of Chagas disease. This neglected tropical disease represents a global health issue as it is spreading worldwide. The saliva of Triatominae contains miscellaneous proteins crucial for blood feeding acquisition, counteracting host's hemostasis while performing vasodilatory, anti-platelet and anti-coagulant activities, besides modulating inflammation and immune responses. Since a set of biological processes are mediated by protein complexes, here, the sialocomplexomes (salivary protein complexes) of five species of Triatominae were studied to explore the protein-protein interaction networks. Salivary multiprotein complexes from Triatoma infestans, Triatoma dimidiata, Dipetalogaster maxima, Rhodnius prolixus, and Rhodnius neglectus were investigated by Blue-Native- polyacrylamide gel electrophoresis coupled with liquid chromatography tandem mass spectrometry. More than 70 protein groups, uncovering the landscape of the Triatominae salivary interactome, were revealed. Triabin, actin, thioredoxin peroxidase and an uncharacterized protein were identified in sialocomplexes of the five species, while hexamerin, heat shock protein and histone were identified in sialocomplexes of four species. Salivary proteins related to triatomine immunity as well as those required during blood feeding process such as apyrases, antigen 5, procalins, and nitrophorins compose different complexes. Furthermore, unique proteins for each triatomine species were revealed. This study represents the first Triatominae sialocomplexome reference to date and shows that the approach used is a reliable tool for the analysis of Triatominae salivary proteins assembled into complexes.
Collapse
Affiliation(s)
- Paula Beatriz Santiago
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Samuel Coelho Mandacaru
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Kaio Luís da Silva Bentes
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | | | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Carlos André O Ricart
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Carla Nunes de Araújo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Jaime Martins Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| |
Collapse
|
3
|
Santiago PB, de Araújo CN, Charneau S, Bastos IMD, Assumpção TCF, Queiroz RML, Praça YR, Cordeiro TDM, Garcia CHS, da Silva IG, Raiol T, Motta FN, de Araújo Oliveira JV, de Sousa MV, Ribeiro JMC, de Santana JM. Exploring the molecular complexity of Triatoma dimidiata sialome. J Proteomics 2017; 174:47-60. [PMID: 29288089 DOI: 10.1016/j.jprot.2017.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 01/19/2023]
Abstract
Triatoma dimidiata, a Chagas disease vector widely distributed along Central America, has great capability for domestic adaptation as the majority of specimens caught inside human dwellings or in peridomestic areas fed human blood. Exploring the salivary compounds that overcome host haemostatic and immune responses is of great scientific interest. Here, we provide a deeper insight into its salivary gland molecules. We used high-throughput RNA sequencing to examine in depth the T. dimidiata salivary gland transcriptome. From >51 million reads assembled, 92.21% are related to putative secreted proteins. Lipocalin is the most abundant gene family, confirming it is an expanded family in Triatoma genus salivary repertoire. Other putatively secreted members include phosphatases, odorant binding protein, hemolysin, proteases, protease inhibitors, antigen-5 and antimicrobial peptides. This work expands the previous set of functionally annotated sequences from T. dimidiata salivary glands available in NCBI from 388 to 3815. Additionally, we complemented the salivary analysis through proteomics (available data via ProteomeXchange with identifier PXD008510), disclosing the set complexity of 119 secreted proteins and validating the transcriptomic results. Our large-scale approach enriches the pharmacologically active molecules database and improves our knowledge about the complexity of salivary compounds from haematophagous vectors and their biological interactions. SIGNIFICANCE Several haematophagous triatomine species can transmit Trypanosoma cruzi, the etiological agent of Chagas disease. Due to the reemergence of this disease, new drugs for its prevention and treatment are considered priorities. For this reason, the knowledge of vector saliva emerges as relevant biological finding, contributing to the design of different strategies for vector control and disease transmission. Here we report the transcriptomic and proteomic compositions of the salivary glands (sialome) of the reduviid bug Triatoma dimidiata, a relevant Chagas disease vector in Central America. Our results are robust and disclosed unprecedented insights into the notable diversity of its salivary glands content, revealing relevant anti-haemostatic salivary gene families. Our work expands almost ten times the previous set of functionally annotated sequences from T. dimidiata salivary glands available in NCBI. Moreover, using an integrated transcriptomic and proteomic approach, we showed a correlation pattern of transcription and translation processes for the main gene families found, an important contribution to the research of triatomine sialomes. Furthermore, data generated here reinforces the secreted proteins encountered can greatly contribute for haematophagic habit, Trypanosoma cruzi transmission and development of therapeutic agent studies.
Collapse
Affiliation(s)
- Paula Beatriz Santiago
- Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, The University of Brasília, Brasília, Brazil
| | - Carla Nunes de Araújo
- Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, The University of Brasília, Brasília, Brazil; Faculty of Ceilândia, The University of Brasília, Brasília, Brazil.
| | - Sébastien Charneau
- Department of Cell Biology, The University of Brasília, Brasília, Brazil
| | | | - Teresa Cristina F Assumpção
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, Rockville, United States
| | | | - Yanna Reis Praça
- Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, The University of Brasília, Brasília, Brazil
| | | | | | | | - Tainá Raiol
- Department of Cell Biology, The University of Brasília, Brasília, Brazil; Instituto Leônidas e Maria Deane - Fiocruz Amazônia, Manaus, AM, Brazil
| | | | | | | | - José Marcos C Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, Rockville, United States
| | - Jaime Martins de Santana
- Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, The University of Brasília, Brasília, Brazil; Department of Cell Biology, The University of Brasília, Brasília, Brazil
| |
Collapse
|
4
|
Walker AA, Weirauch C, Fry BG, King GF. Venoms of Heteropteran Insects: A Treasure Trove of Diverse Pharmacological Toolkits. Toxins (Basel) 2016; 8:43. [PMID: 26907342 PMCID: PMC4773796 DOI: 10.3390/toxins8020043] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 11/16/2022] Open
Abstract
The piercing-sucking mouthparts of the true bugs (Insecta: Hemiptera: Heteroptera) have allowed diversification from a plant-feeding ancestor into a wide range of trophic strategies that include predation and blood-feeding. Crucial to the success of each of these strategies is the injection of venom. Here we review the current state of knowledge with regard to heteropteran venoms. Predaceous species produce venoms that induce rapid paralysis and liquefaction. These venoms are powerfully insecticidal, and may cause paralysis or death when injected into vertebrates. Disulfide-rich peptides, bioactive phospholipids, small molecules such as N,N-dimethylaniline and 1,2,5-trithiepane, and toxic enzymes such as phospholipase A2, have been reported in predatory venoms. However, the detailed composition and molecular targets of predatory venoms are largely unknown. In contrast, recent research into blood-feeding heteropterans has revealed the structure and function of many protein and non-protein components that facilitate acquisition of blood meals. Blood-feeding venoms lack paralytic or liquefying activity but instead are cocktails of pharmacological modulators that disable the host haemostatic systems simultaneously at multiple points. The multiple ways venom is used by heteropterans suggests that further study will reveal heteropteran venom components with a wide range of bioactivities that may be recruited for use as bioinsecticides, human therapeutics, and pharmacological tools.
Collapse
Affiliation(s)
- Andrew A Walker
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Christiane Weirauch
- Department of Entomology, University of California, Riverside, CA 92521, USA.
| | - Bryan G Fry
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Glenn F King
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
5
|
Guiguet A, Dubreuil G, Harris MO, Appel HM, Schultz JC, Pereira MH, Giron D. Shared weapons of blood- and plant-feeding insects: Surprising commonalities for manipulating hosts. JOURNAL OF INSECT PHYSIOLOGY 2016; 84:4-21. [PMID: 26705897 DOI: 10.1016/j.jinsphys.2015.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 05/04/2023]
Abstract
Insects that reprogram host plants during colonization remind us that the insect side of plant-insect story is just as interesting as the plant side. Insect effectors secreted by the salivary glands play an important role in plant reprogramming. Recent discoveries point to large numbers of salivary effectors being produced by a single herbivore species. Since genetic and functional characterization of effectors is an arduous task, narrowing the field of candidates is useful. We present ideas about types and functions of effectors from research on blood-feeding parasites and their mammalian hosts. Because of their importance for human health, blood-feeding parasites have more tools from genomics and other - omics than plant-feeding parasites. Four themes have emerged: (1) mechanical damage resulting from attack by blood-feeding parasites triggers "early danger signals" in mammalian hosts, which are mediated by eATP, calcium, and hydrogen peroxide, (2) mammalian hosts need to modulate their immune responses to the three "early danger signals" and use apyrases, calreticulins, and peroxiredoxins, respectively, to achieve this, (3) blood-feeding parasites, like their mammalian hosts, rely on some of the same "early danger signals" and modulate their immune responses using the same proteins, and (4) blood-feeding parasites deploy apyrases, calreticulins, and peroxiredoxins in their saliva to manipulate the "danger signals" of their mammalian hosts. We review emerging evidence that plant-feeding insects also interfere with "early danger signals" of their hosts by deploying apyrases, calreticulins and peroxiredoxins in saliva. Given emerging links between these molecules, and plant growth and defense, we propose that these effectors interfere with phytohormone signaling, and therefore have a special importance for gall-inducing and leaf-mining insects, which manipulate host-plants to create better food and shelter.
Collapse
Affiliation(s)
- Antoine Guiguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France; Département de Biologie, École Normale Supérieure de Lyon, 69007 Lyon, France
| | - Géraldine Dubreuil
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France
| | - Marion O Harris
- Department of Entomology, North Dakota State University, Fargo, ND 58105, USA; Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France
| | - Heidi M Appel
- Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Jack C Schultz
- Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Marcos H Pereira
- Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France; Laboratório de Fisiologia de Insectos Hematófagos, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France.
| |
Collapse
|
6
|
Flores-Herrera O, Olvera-Sánchez S, Esparza-Perusquía M, Pardo JP, Rendón JL, Mendoza-Hernández G, Martínez F. Membrane potential regulates mitochondrial ATP-diphosphohydrolase activity but is not involved in progesterone biosynthesis in human syncytiotrophoblast cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:143-152. [PMID: 25444704 DOI: 10.1016/j.bbabio.2014.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/17/2014] [Accepted: 10/07/2014] [Indexed: 11/26/2022]
Abstract
ATP-diphosphohydrolase is associated with human syncytiotrophoblast mitochondria. The activity of this enzyme is implicated in the stimulation of oxygen uptake and progesterone synthesis. We reported previously that: (1) the detergent-solubilized ATP-diphosphohydrolase has low substrate specificity, and (2) purine and pyrimidine nucleosides, tri- or diphosphates, are fully dephosphorylated in the presence of calcium or magnesium (Flores-Herrera 1999, 2002). In this study we show that ATP-diphosphohydrolase hydrolyzes first the nucleoside triphosphate to nucleoside diphosphate, and then to nucleotide monophosphate, in the case of all tested nucleotides. The activation energies (Ea) for ATP, GTP, UTP, and CTP were 6.06, 4.10, 6.25, and 5.26 kcal/mol, respectively; for ADP, GDP, UDP, and CDP, they were 4.67, 5.42, 5.43, and 6.22 kcal/mol, respectively. The corresponding Arrhenius plots indicated a single rate-limiting step for each hydrolyzed nucleoside, either tri- or diphosphate. In intact mitochondria, the ADP produced by ATP-diphosphohydrolase activity depolarized the membrane potential (ΔΨm) and stimulated oxygen uptake. Mitochondrial respiration showed the state-3/state-4 transition when ATP was added, suggesting that ATP-diphosphohydrolase and the F1F0-ATP synthase work in conjunction to avoid a futile cycle. Substrate selectivity of the ATP-diphosphohydrolase was modified by ΔΨm (i.e. ATP was preferred over GTP when the inner mitochondrial membrane was energized). In contrast, dissipation of ΔΨm by CCCP produced a loss of substrate specificity and so the ATP-diphosphohydrolase was able to hydrolyze ATP and GTP at the same rate. In intact mitochondria, ATP hydrolysis increased progesterone synthesis as compared with GTP. Although dissipation of ΔΨm by CCCP decreased progesterone synthesis, NADPH production restores steroidogenesis. Overall, our results suggest a novel physiological role for ΔΨm in steroidogenesis.
Collapse
Affiliation(s)
- Oscar Flores-Herrera
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular, México City, Mexico.
| | - Sofia Olvera-Sánchez
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular, México City, Mexico
| | - Mercedes Esparza-Perusquía
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular, México City, Mexico
| | - Juan Pablo Pardo
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular, México City, Mexico
| | - Juan Luis Rendón
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular, México City, Mexico
| | - Guillermo Mendoza-Hernández
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular, México City, Mexico
| | - Federico Martínez
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular, México City, Mexico
| |
Collapse
|
7
|
de Araújo CN, Bussacos AC, Sousa AO, Hecht MM, Teixeira ARL. Interactome: Smart hematophagous triatomine salivary gland molecules counteract human hemostasis during meal acquisition. J Proteomics 2012; 75:3829-41. [PMID: 22579750 DOI: 10.1016/j.jprot.2012.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 04/09/2012] [Accepted: 05/01/2012] [Indexed: 01/06/2023]
Abstract
Human populations are constantly plagued by hematophagous insects' bites, in particular the triatomine insects that are vectors of the Trypanosoma cruzi agent in Chagas disease. The pharmacologically-active molecules present in the salivary glands of hematophagous insects are injected into the human skin to initiate acquisition of blood meals. Sets of vasodilators, anti-platelet aggregators, anti-coagulants, immunogenic polypeptides, anesthetics, odorants, antibiotics, and detoxifying molecules have been disclosed with the aid of proteomics and recombinant cDNA techniques. These molecules can provide insights about the insect-pathogen-host interactions essential for understanding the physiopathology of the insect bite. The data and information presented in this review aim for the development of new drugs to prevent insect bites and the insect-transmitted endemic of Chagas disease.
Collapse
Affiliation(s)
- Carla Nunes de Araújo
- Chagas Disease Multidisciplinary Research Laboratory, Faculty of Medicine of the University of Brasilia, 70.910.900, Brasília Federal District, Brazil.
| | | | | | | | | |
Collapse
|
8
|
Chagas AC, Calvo E, Pimenta PFP, Ribeiro JMC. An insight into the sialome of Simulium guianense (DIPTERA:SIMulIIDAE), the main vector of River Blindness Disease in Brazil. BMC Genomics 2011; 12:612. [PMID: 22182526 PMCID: PMC3285218 DOI: 10.1186/1471-2164-12-612] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 12/19/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Little is known about the composition and function of the saliva in black flies such as Simulium guianense, the main vector of river blindness disease in Brazil. The complex salivary potion of hematophagous arthropods counteracts their host's hemostasis, inflammation, and immunity. RESULTS Transcriptome analysis revealed ubiquitous salivary protein families--such as the Antigen-5, Yellow, Kunitz domain, and serine proteases--in the S. guianense sialotranscriptome. Insect-specific families were also found. About 63.4% of all secreted products revealed protein families found only in Simulium. Additionally, we found a novel peptide similar to kunitoxin with a structure distantly related to serine protease inhibitors. This study revealed a relative increase of transcripts of the SVEP protein family when compared with Simulium vittatum and S. nigrimanum sialotranscriptomes. We were able to extract coding sequences from 164 proteins associated with blood and sugar feeding, the majority of which were confirmed by proteome analysis. CONCLUSIONS Our results contribute to understanding the role of Simulium saliva in transmission of Onchocerca volvulus and evolution of salivary proteins in black flies. It also consists of a platform for mining novel anti-hemostatic compounds, vaccine candidates against filariasis, and immuno-epidemiologic markers of vector exposure.
Collapse
Affiliation(s)
- Andrezza C Chagas
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway, National Institutes of Health, Rockville, Maryland 20892-8132, USA
- Entomology Laboratory, Centro de Pesquisa René Rachou, Belo Horizonte, Minas Gerais, Brazil
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway, National Institutes of Health, Rockville, Maryland 20892-8132, USA
| | - Paulo FP Pimenta
- Entomology Laboratory, Centro de Pesquisa René Rachou, Belo Horizonte, Minas Gerais, Brazil
| | - José MC Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway, National Institutes of Health, Rockville, Maryland 20892-8132, USA
| |
Collapse
|
9
|
Cadavid-Restrepo G, Gastardelo TS, Faudry E, de Almeida H, Bastos IMD, Negreiros RS, Lima MM, Assumpção TC, Almeida KC, Ragno M, Ebel C, Ribeiro BM, Felix CR, Santana JM. The major leucyl aminopeptidase of Trypanosoma cruzi (LAPTc) assembles into a homohexamer and belongs to the M17 family of metallopeptidases. BMC BIOCHEMISTRY 2011; 12:46. [PMID: 21861921 PMCID: PMC3179936 DOI: 10.1186/1471-2091-12-46] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 08/23/2011] [Indexed: 11/11/2022]
Abstract
Background Pathogens depend on peptidase activities to accomplish many physiological processes, including interaction with their hosts, highlighting parasitic peptidases as potential drug targets. In this study, a major leucyl aminopeptidolytic activity was identified in Trypanosoma cruzi, the aetiological agent of Chagas disease. Results The enzyme was isolated from epimastigote forms of the parasite by a two-step chromatographic procedure and associated with a single 330-kDa homohexameric protein as determined by sedimentation velocity and light scattering experiments. Peptide mass fingerprinting identified the enzyme as the predicted T. cruzi aminopeptidase EAN97960. Molecular and enzymatic analysis indicated that this leucyl aminopeptidase of T. cruzi (LAPTc) belongs to the peptidase family M17 or leucyl aminopeptidase family. LAPTc has a strong dependence on neutral pH, is mesophilic and retains its oligomeric form up to 80°C. Conversely, its recombinant form is thermophilic and requires alkaline pH. Conclusions LAPTc is a 330-kDa homohexameric metalloaminopeptidase expressed by all T. cruzi forms and mediates the major parasite leucyl aminopeptidolytic activity. Since biosynthetic pathways for essential amino acids, including leucine, are lacking in T. cruzi, LAPTc could have a function in nutritional supply.
Collapse
|
10
|
Ribeiro JM, Anderson JM, Manoukis NC, Meng Z, Francischetti IM. A further insight into the sialome of the tropical bont tick, Amblyomma variegatum. BMC Genomics 2011; 12:136. [PMID: 21362191 PMCID: PMC3060141 DOI: 10.1186/1471-2164-12-136] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 03/01/2011] [Indexed: 01/02/2023] Open
Abstract
Background Ticks--vectors of medical and veterinary importance--are themselves also significant pests. Tick salivary proteins are the result of adaptation to blood feeding and contain inhibitors of blood clotting, platelet aggregation, and angiogenesis, as well as vasodilators and immunomodulators. A previous analysis of the sialotranscriptome (from the Greek sialo, saliva) of Amblyomma variegatum is revisited in light of recent advances in tick sialomes and provides a database to perform a proteomic study. Results The clusterized data set has been expertly curated in light of recent reviews on tick salivary proteins, identifying many new families of tick-exclusive proteins. A proteome study using salivary gland homogenates identified 19 putative secreted proteins within a total of 211 matches. Conclusions The annotated sialome of A. variegatum allows its comparison to other tick sialomes, helping to consolidate an emerging pattern in the salivary composition of metastriate ticks; novel protein families were also identified. Because most of these proteins have no known function, the task of functional analysis of these proteins and the discovery of novel pharmacologically active compounds becomes possible.
Collapse
Affiliation(s)
- José Mc Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA.
| | | | | | | | | |
Collapse
|
11
|
Assumpção TCF, Charneau S, Santiago PBM, Francischetti IMB, Meng Z, Araújo CN, Pham VM, Queiroz RML, de Castro CN, Ricart CA, Santana JM, Ribeiro JMC. Insight into the salivary transcriptome and proteome of Dipetalogaster maxima. J Proteome Res 2011; 10:669-79. [PMID: 21058630 DOI: 10.1021/pr100866h] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dipetalogaster maxima is a blood-sucking Hemiptera that inhabits sylvatic areas in Mexico. It usually takes its blood meal from lizards, but following human population growth, it invaded suburban areas, feeding also on humans and domestic animals. Hematophagous insect salivary glands produce potent pharmacologic compounds that counteract host hemostasis, including anticlotting, antiplatelet, and vasodilatory molecules. To obtain further insight into the salivary biochemical and pharmacologic complexity of this insect, a cDNA library from its salivary glands was randomly sequenced. Salivary proteins were also submitted to one- and two-dimensional gel electrophoresis (1DE and 2DE) followed by mass spectrometry analysis. We present the analysis of a set of 2728 cDNA sequences, 1375 of which coded for proteins of a putative secretory nature. The saliva 2DE proteome displayed approximately 150 spots. The mass spectrometry analysis revealed mainly lipocalins, pallidipins, antigen 5-like proteins, and apyrases. The redundancy of sequence identification of saliva-secreted proteins suggests that proteins are present in multiple isoforms or derive from gene duplications.
Collapse
Affiliation(s)
- Teresa C F Assumpção
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ribeiro JMC, Valenzuela JG, Pham VM, Kleeman L, Barbian KD, Favreau AJ, Eaton DP, Aoki V, Hans-Filho G, Rivitti EA, Diaz LA. An insight into the sialotranscriptome of Simulium nigrimanum, a black fly associated with fogo selvagem in South America. Am J Trop Med Hyg 2010; 82:1060-75. [PMID: 20519601 DOI: 10.4269/ajtmh.2010.09-0769] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pemphigus foliaceus is a life threatening skin disease that is associated with autoimmunity to desmoglein, a skin protein involved in the adhesion of keratinocytes. This disease is endemic in certain areas of South America, suggesting the mediation of environmental factors triggering autoimmunity. Among the possible environmental factors, exposure to bites of black flies, in particular Simulium nigrimanum has been suggested. In this work, we describe the sialotranscriptome of adult female S. nigrimanum flies. It reveals the complexity of the salivary potion of this insect, comprised by over 70 distinct genes within over 30 protein families, including several novel families, even when compared with the previously described sialotranscriptome of the autogenous black fly, S. vittatum. The uncovering of this sialotranscriptome provides a platform for testing pemphigus patient sera against recombinant salivary proteins from S. nigrimanum and for the discovery of novel pharmacologically active compounds.
Collapse
Affiliation(s)
- José M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Venom proteins of the parasitoid wasp Nasonia vitripennis: recent discovery of an untapped pharmacopee. Toxins (Basel) 2010; 2:494-516. [PMID: 22069597 PMCID: PMC3153221 DOI: 10.3390/toxins2040494] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 03/22/2010] [Accepted: 03/24/2010] [Indexed: 01/08/2023] Open
Abstract
Adult females of Nasonia vitripennis inject a venomous mixture into its host flies prior to oviposition. Recently, the entire genome of this ectoparasitoid wasp was sequenced, enabling the identification of 79 venom proteins. The next challenge will be to unravel their specific functions, but based on homolog studies, some predictions already can be made. Parasitization has an enormous impact on hosts physiology of which five major effects are discussed in this review: the impact on immune responses, induction of developmental arrest, increases in lipid levels, apoptosis and nutrient releases. The value of deciphering this venom is also discussed.
Collapse
|
14
|
Alves-Silva J, Ribeiro JMC, Van Den Abbeele J, Attardo G, Hao Z, Haines LR, Soares MB, Berriman M, Aksoy S, Lehane MJ. An insight into the sialome of Glossina morsitans morsitans. BMC Genomics 2010; 11:213. [PMID: 20353571 PMCID: PMC2853526 DOI: 10.1186/1471-2164-11-213] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 03/30/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Blood feeding evolved independently in worms, arthropods and mammals. Among the adaptations to this peculiar diet, these animals developed an armament of salivary molecules that disarm their host's anti-bleeding defenses (hemostasis), inflammatory and immune reactions. Recent sialotranscriptome analyses (from the Greek sialo = saliva) of blood feeding insects and ticks have revealed that the saliva contains hundreds of polypeptides, many unique to their genus or family. Adult tsetse flies feed exclusively on vertebrate blood and are important vectors of human and animal diseases. Thus far, only limited information exists regarding the Glossina sialome, or any other fly belonging to the Hippoboscidae. RESULTS As part of the effort to sequence the genome of Glossina morsitans morsitans, several organ specific, high quality normalized cDNA libraries have been constructed, from which over 20,000 ESTs from an adult salivary gland library were sequenced. These ESTs have been assembled using previously described ESTs from the fat body and midgut libraries of the same fly, thus totaling 62,251 ESTs, which have been assembled into 16,743 clusters (8,506 of which had one or more EST from the salivary gland library). Coding sequences were obtained for 2,509 novel proteins, 1,792 of which had at least one EST expressed in the salivary glands. Despite library normalization, 59 transcripts were overrepresented in the salivary library indicating high levels of expression. This work presents a detailed analysis of the salivary protein families identified. Protein expression was confirmed by 2D gel electrophoresis, enzymatic digestion and mass spectrometry. Concurrently, an initial attempt to determine the immunogenic properties of selected salivary proteins was undertaken. CONCLUSIONS The sialome of G. m. morsitans contains over 250 proteins that are possibly associated with blood feeding. This set includes alleles of previously described gene products, reveals new evidence that several salivary proteins are multigenic and identifies at least seven new polypeptide families unique to Glossina. Most of these proteins have no known function and thus, provide a discovery platform for the identification of novel pharmacologically active compounds, innovative vector-based vaccine targets, and immunological markers of vector exposure.
Collapse
|
15
|
de Graaf DC, Aerts M, Brunain M, Desjardins CA, Jacobs FJ, Werren JH, Devreese B. Insights into the venom composition of the ectoparasitoid wasp Nasonia vitripennis from bioinformatic and proteomic studies. INSECT MOLECULAR BIOLOGY 2010; 19 Suppl 1:11-26. [PMID: 20167014 PMCID: PMC3544295 DOI: 10.1111/j.1365-2583.2009.00914.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
With the Nasonia vitripennis genome sequences available, we attempted to determine the proteins present in venom by two different approaches. First, we searched for the transcripts of venom proteins by a bioinformatic approach using amino acid sequences of known hymenopteran venom proteins. Second, we performed proteomic analyses of crude N. vitripennis venom removed from the venom reservoir, implementing both an off-line two-dimensional liquid chromatography matrix-assisted laser desorption/ ionization time-of-flight (2D-LC-MALDI-TOF) mass spectrometry (MS) and a two-dimensional liquid chromatography electrospray ionization Founer transform ion cyclotron resonance (2D-LC-ESI-FT-ICR) MS setup. This combination of bioinformatic and proteomic studies resulted in an extraordinary richness of identified venom constituents. Moreover, half of the 79 identified proteins were not yet associated with insect venoms: 16 proteins showed similarity only to known proteins from other tissues or secretions, and an additional 23 did not show similarity to any known protein. Serine proteases and their inhibitors were the most represented. Fifteen nonsecretory proteins were also identified by proteomic means and probably represent so-called 'venom trace elements'. The present study contributes greatly to the understanding of the biological diversity of the venom of parasitoid wasps at the molecular level.
Collapse
Affiliation(s)
- D C de Graaf
- Laboratory of Zoophysiology, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
16
|
Schwarz A, Helling S, Collin N, Teixeira CR, Medrano-Mercado N, Hume JCC, Assumpção TC, Marcus K, Stephan C, Meyer HE, Ribeiro JMC, Billingsley PF, Valenzuela JG, Sternberg JM, Schaub GA. Immunogenic salivary proteins of Triatoma infestans: development of a recombinant antigen for the detection of low-level infestation of triatomines. PLoS Negl Trop Dis 2009; 3:e532. [PMID: 19841746 PMCID: PMC2760138 DOI: 10.1371/journal.pntd.0000532] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 09/16/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Triatomines are vectors of Trypanosoma cruzi, the etiological agent of Chagas disease in Latin America. The most effective vector, Triatoma infestans, has been controlled successfully in much of Latin America using insecticide spraying. Though rarely undertaken, surveillance programs are necessary in order to identify new infestations and estimate the intensity of triatomine bug infestations in domestic and peridomestic habitats. Since hosts exposed to triatomines develop immune responses to salivary antigens, these responses can be evaluated for their usefulness as epidemiological markers to detect infestations of T. infestans. METHODOLOGY/PRINCIPAL FINDINGS T. infestans salivary proteins were separated by 2D-gel electrophoresis and tested for their immunogenicity by Western blotting using sera from chickens and guinea pigs experimentally exposed to T. infestans. From five highly immunogenic protein spots, eight salivary proteins were identified by nano liquid chromatography-electrospray ionization-tandem mass spectrometry (nanoLC-ESI-MS/MS) and comparison to the protein sequences of the National Center for Biotechnology Information (NCBI) database and expressed sequence tags of a unidirectionally cloned salivary gland cDNA library from T. infestans combined with the NCBI yeast protein sub-database. The 14.6 kDa salivary protein [gi|149689094] was produced as recombinant protein (rTiSP14.6) in a mammalian cell expression system and recognized by all animal sera. The specificity of rTiSP14.6 was confirmed by the lack of reactivity to anti-mosquito and anti-sand fly saliva antibodies. However, rTiSP14.6 was recognized by sera from chickens exposed to four other triatomine species, Triatoma brasiliensis, T. sordida, Rhodnius prolixus, and Panstrongylus megistus and by sera of chickens from an endemic area of T. infestans and Chagas disease in Bolivia. CONCLUSIONS/SIGNIFICANCE The recombinant rTiSP14.6 is a suitable and promising epidemiological marker for detecting the presence of small numbers of different species of triatomines and could be developed for use as a new tool in surveillance programs, especially to corroborate vector elimination in Chagas disease vector control campaigns.
Collapse
Affiliation(s)
- Alexandra Schwarz
- School of Biological Sciences, Zoology Building, University of Aberdeen, Aberdeen, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
An insight into the sialome of the oriental rat flea, Xenopsylla cheopis (Rots). BMC Genomics 2007; 8:102. [PMID: 17437641 PMCID: PMC1876217 DOI: 10.1186/1471-2164-8-102] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 04/16/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The salivary glands of hematophagous animals contain a complex cocktail that interferes with the host hemostasis and inflammation pathways, thus increasing feeding success. Fleas represent a relatively recent group of insects that evolved hematophagy independently of other insect orders. RESULTS Analysis of the salivary transcriptome of the flea Xenopsylla cheopis, the vector of human plague, indicates that gene duplication events have led to a large expansion of a family of acidic phosphatases that are probably inactive, and to the expansion of the FS family of peptides that are unique to fleas. Several other unique polypeptides were also uncovered. Additionally, an apyrase-coding transcript of the CD39 family appears as the candidate for the salivary nucleotide hydrolysing activity in X.cheopis, the first time this family of proteins is found in any arthropod salivary transcriptome. CONCLUSION Analysis of the salivary transcriptome of the flea X. cheopis revealed the unique pathways taken in the evolution of the salivary cocktail of fleas. Gene duplication events appear as an important driving force in the creation of salivary cocktails of blood feeding arthropods, as was observed with ticks and mosquitoes. Only five other flea salivary sequences exist at this time at NCBI, all from the cat flea C. felis. This work accordingly represents the only relatively extensive sialome description of any flea species. Sialotranscriptomes of additional flea genera will reveal the extent that these novel polypeptide families are common throughout the Siphonaptera.
Collapse
|