1
|
de Almeida Schneider R, Barros Terraciano P, Zanon P, Quandt L, Zanini Gotardi DH, Alves Garcez TN, Santi L, Beys da Silva WO, Sereno Montenegro I, Yates J, Almeida Guimarães J, Pandolfi Passos E, Berger M. Mechanisms involved in the cytoprotective effects of Lonomia obliqua venom on human endometrial stromal cells. Toxicon 2024; 240:107630. [PMID: 38342412 DOI: 10.1016/j.toxicon.2024.107630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/23/2023] [Accepted: 01/24/2024] [Indexed: 02/13/2024]
Abstract
The pathophysiology of recurrent pregnancy loss (RPL) involves deficiencies in the proliferation and migration capacities of endometrial stromal cells (hESCs), which impair embryo implantation and development. Since animal venoms are rich source of bioactive molecules, we aimed to characterize the cytoprotective effects of Lonomia obliqua venom on hESCs. hESCs were isolated from endometrial biopsies and the mechanisms of L. obliqua venomous secretions on cell viability, proliferation and migration were characterized. Venom components were identified by chromatography and proteomic analyses. L. obliqua venom induced hESC proliferation, viability and migration in a dose-dependent manner, both in the presence and absence of serum. By ion-exchange chromatography, one fraction enriched in cytoprotective components and devoid of hemotoxins was obtained. Venom proteome identified at least six protein classes with potential cytoprotective properties (hemolins, lipocalins, hemocyannins, antiviral proteins, antimicrobial peptides, and protease inhibitors). L. obliqua venom protected hESCs from oxidative insult. Cytoprotection was also related to nitric oxide and PKC-ERK-activation and down-regulation of cAMP-PKA-dependent pathways that control cell proliferation. L. obliqua venom-induced hESC viability, proliferation and migration occurs mainly by protecting against oxidative damage and activating ERK. Thus, L. obliqua venom components are promising pharmacological tools to understand the underlying mechanisms of hESC deficiency in RPL.
Collapse
Affiliation(s)
- Raquel de Almeida Schneider
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paula Barros Terraciano
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pamela Zanon
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Letícia Quandt
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Debora Helena Zanini Gotardi
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tuane Nerissa Alves Garcez
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Unidade de Experimentação Animal, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Lucélia Santi
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Laboratório de Proteômica e Microbiologia Molecular, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Walter Orlando Beys da Silva
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Laboratório de Proteômica e Microbiologia Molecular, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ivan Sereno Montenegro
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - John Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jorge Almeida Guimarães
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduardo Pandolfi Passos
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Markus Berger
- Grupo de Reprodução e Farmacologia Celular (REPROFARM) - Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Walker AA, Robinson SD, Merritt DJ, Cardoso FC, Goudarzi MH, Mercedes RS, Eagles DA, Cooper P, Zdenek CN, Fry BG, Hall DW, Vetter I, King GF. Horizontal gene transfer underlies the painful stings of asp caterpillars (Lepidoptera: Megalopygidae). Proc Natl Acad Sci U S A 2023; 120:e2305871120. [PMID: 37428925 PMCID: PMC10629529 DOI: 10.1073/pnas.2305871120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023] Open
Abstract
Larvae of the genus Megalopyge (Lepidoptera: Zygaenoidea: Megalopygidae), known as asp or puss caterpillars, produce defensive venoms that cause severe pain. Here, we present the anatomy, chemistry, and mode of action of the venom systems of caterpillars of two megalopygid species, the Southern flannel moth Megalopyge opercularis and the black-waved flannel moth Megalopyge crispata. We show that megalopygid venom is produced in secretory cells that lie beneath the cuticle and are connected to the venom spines by canals. Megalopygid venoms consist of large aerolysin-like pore-forming toxins, which we have named megalysins, and a small number of peptides. The venom system differs markedly from those of previously studied venomous zygaenoids of the family Limacodidae, suggestive of an independent origin. Megalopygid venom potently activates mammalian sensory neurons via membrane permeabilization and induces sustained spontaneous pain behavior and paw swelling in mice. These bioactivities are ablated by treatment with heat, organic solvents, or proteases, indicating that they are mediated by larger proteins such as the megalysins. We show that the megalysins were recruited as venom toxins in the Megalopygidae following horizontal transfer of genes from bacteria to the ancestors of ditrysian Lepidoptera. Megalopygids have recruited aerolysin-like proteins as venom toxins convergently with centipedes, cnidarians, and fish. This study highlights the role of horizontal gene transfer in venom evolution.
Collapse
Affiliation(s)
- Andrew A. Walker
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
- Centre of Excellence for Innovations in Protein and Peptide Science, The University of Queensland, Brisbane, QLD4072, Australia
| | - Samuel D. Robinson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
| | - David J. Merritt
- School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
| | - Fernanda C. Cardoso
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
- Centre of Excellence for Innovations in Protein and Peptide Science, The University of Queensland, Brisbane, QLD4072, Australia
| | - Mohaddeseh Hedayati Goudarzi
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
- Centre of Excellence for Innovations in Protein and Peptide Science, The University of Queensland, Brisbane, QLD4072, Australia
| | - Raine S. Mercedes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
- Centre of Excellence for Innovations in Protein and Peptide Science, The University of Queensland, Brisbane, QLD4072, Australia
| | - David A. Eagles
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
- Centre of Excellence for Innovations in Protein and Peptide Science, The University of Queensland, Brisbane, QLD4072, Australia
| | - Paul Cooper
- Research School of Biology, Australian National University, Canberra, ACT2601, Australia
| | - Christina N. Zdenek
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
| | - Donald W. Hall
- Entomology and Nematology Department, University of Florida, Gainesville, FL32608
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD4102, Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD4072, Australia
- Centre of Excellence for Innovations in Protein and Peptide Science, The University of Queensland, Brisbane, QLD4072, Australia
| |
Collapse
|
3
|
Alvarez AM, Alvarez-Flores MP, DeOcesano-Pereira C, Goldfeder MB, Chudzinski-Tavassi AM, Moreira V, Teixeira C. Losac and Lopap Recombinant Proteins from Lonomia obliqua Bristles Positively Modulate the Myoblast Proliferation Process. Front Mol Biosci 2022; 9:904737. [PMID: 35847970 PMCID: PMC9280836 DOI: 10.3389/fmolb.2022.904737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Abstract
The pursuit of better therapies for disorders creating deficiencies in skeletal muscle regeneration is in progress, and several biotoxins are used in skeletal muscle research. Since recombinant proteins derived from Lonomia obliqua bristles, recombinant Lonomia obliqua Stuart-factor activator (rLosac) and recombinant Lonomia obliqua prothrombin activator protease (rLopap) act as cytoprotective agents and promote cell survival, we hypothesize that both rLosac and rLopap favour the skeletal muscle regeneration process. In the present work, we investigate the ability of these recombinant proteins rLosac and rLopap to modulate the production of key mediators of the myogenic process. The expression of myogenic regulatory factors (MRFs), cell proliferation, the production of prostaglandin E2 (PGE2) and the protein expression of cyclooxygenases COX-1 and COX-2 were evaluated in C2C12 mouse myoblasts pre-treated with rLosac and rLopap. We found an increased proliferation of myoblasts, stimulated by both recombinant proteins. Moreover, these proteins modulated PGE2 release and MRFs activities. We also found an increased expression of the EP4 receptor in the proliferative phase of C2C12 cells, suggesting the involvement of this receptor in the effects of PGE2 in these cells. Moreover, the recombinant proteins inhibited the release of IL-6 and PGE2, which is induced by an inflammatory stimulus by IL-1β. This work reveals rLopap and rLosac as promising proteins to modulate processes involving tissue regeneration as occurs during skeletal muscle injury.
Collapse
Affiliation(s)
- Angela María Alvarez
- Centre of Excellence in New Target Discovery -CENTD-, Butantan Institute, São Paulo, Brazil
- Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Mauricio Barbugiani Goldfeder
- Centre of Excellence in New Target Discovery -CENTD-, Butantan Institute, São Paulo, Brazil
- Innovation and Development Labororatory, Butantan Institute, São Paulo, Brazil
| | - Ana Marisa Chudzinski-Tavassi
- Centre of Excellence in New Target Discovery -CENTD-, Butantan Institute, São Paulo, Brazil
- Innovation and Development Labororatory, Butantan Institute, São Paulo, Brazil
| | - Vanessa Moreira
- Centre of Excellence in New Target Discovery -CENTD-, Butantan Institute, São Paulo, Brazil
- Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Vanessa Moreira, ; Catarina Teixeira,
| | - Catarina Teixeira
- Centre of Excellence in New Target Discovery -CENTD-, Butantan Institute, São Paulo, Brazil
- Pharmacology Laboratory, Butantan Institute, São Paulo, Brazil
- *Correspondence: Vanessa Moreira, ; Catarina Teixeira,
| |
Collapse
|
4
|
Lonomia obliqua Envenoming and Innovative Research. Toxins (Basel) 2021; 13:toxins13120832. [PMID: 34941670 PMCID: PMC8706654 DOI: 10.3390/toxins13120832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/21/2023] Open
Abstract
As a tribute to Butantan Institute in its 120th anniversary, this review describes some of the scientific research efforts carried out in the study of Lonomia envenoming in Brazil, a country where accidents with caterpillars reach over 42,000 individuals per year (especially in South and Southeast Brazil). Thus, the promising data regarding the studies with Lonomia’s toxins contributed to the creation of new research centers specialized in toxinology based at Butantan Institute, as well as to the production of the antilonomic serum (ALS), actions which are in line with the Butantan Institute mission “to research, develop, manufacture, and provide products and services for the health of the population”. In addition, the study of the components of the Lonomia obliqua bristle extract led to the discovery of new molecules with peculiar properties, opening a field of knowledge that could lead to the development and innovation of new drugs aimed at cell regeneration and inflammatory diseases.
Collapse
|
5
|
Oliveira DS, de Souza JG, Alvarez-Flores MP, Cunegundes PS, DeOcesano-Pereira C, Lobba AM, Gomes RN, Chudzinski-Tavassi AM. Lonomia obliqua Venom Induces NF-κB Activation and a Pro-Inflammatory Profile in THP-1-Derived Macrophage. Toxins (Basel) 2021; 13:462. [PMID: 34209394 PMCID: PMC8309978 DOI: 10.3390/toxins13070462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 01/04/2023] Open
Abstract
Envenomation caused by contact with Lonomia obliqua bristles is characterized by pain, an intense systemic proinflammatory reaction and disturbances in the coagulation cascade that can cause severe clinical manifestations and death. However, the role of immune system components in these effects is still poorly understood. In this study, we evaluated the cytotoxic effect of L. obliqua venom on THP-1-derived macrophages and its ability to modulate inflammatory markers, as well as the cytokine and chemokine release profile. Our results show that L. obliqua venom is able to directly exert a potent pro-inflammatory reaction in macrophages, characterized by the activation of the NF-κB transcription factor pathway, the expression of CD80 and CD83, and the release of pro-inflammatory mediators such as TNF-α, IL-1β, IL-6, IL-8 and CXCL10. These results suggest that macrophages can play an important role during the orchestration of the inflammatory response present in envenomation caused by Lonomia obliqua caterpillars.
Collapse
Affiliation(s)
- Douglas Souza Oliveira
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
- Biochemistry Department, Federal University of São Paulo, Vila Clementino 04044-020, SP, Brazil
| | - Jean Gabriel de Souza
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
| | - Miryam Paola Alvarez-Flores
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
| | - Priscila S. Cunegundes
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
- Biochemistry Department, Federal University of São Paulo, Vila Clementino 04044-020, SP, Brazil
| | - Carlos DeOcesano-Pereira
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
| | - Aline Maia Lobba
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
| | - Renata N. Gomes
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
| | - Ana Marisa Chudzinski-Tavassi
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
| |
Collapse
|
6
|
Bordon KDCF, Cologna CT, Fornari-Baldo EC, Pinheiro-Júnior EL, Cerni FA, Amorim FG, Anjolette FAP, Cordeiro FA, Wiezel GA, Cardoso IA, Ferreira IG, de Oliveira IS, Boldrini-França J, Pucca MB, Baldo MA, Arantes EC. From Animal Poisons and Venoms to Medicines: Achievements, Challenges and Perspectives in Drug Discovery. Front Pharmacol 2020; 11:1132. [PMID: 32848750 PMCID: PMC7396678 DOI: 10.3389/fphar.2020.01132] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
Animal poisons and venoms are comprised of different classes of molecules displaying wide-ranging pharmacological activities. This review aims to provide an in-depth view of toxin-based compounds from terrestrial and marine organisms used as diagnostic tools, experimental molecules to validate postulated therapeutic targets, drug libraries, prototypes for the design of drugs, cosmeceuticals, and therapeutic agents. However, making these molecules applicable requires extensive preclinical trials, with some applications also demanding clinical trials, in order to validate their molecular target, mechanism of action, effective dose, potential adverse effects, as well as other fundamental parameters. Here we go through the pitfalls for a toxin-based potential therapeutic drug to become eligible for clinical trials and marketing. The manuscript also presents an overview of the current picture for several molecules from different animal venoms and poisons (such as those from amphibians, cone snails, hymenopterans, scorpions, sea anemones, snakes, spiders, tetraodontiformes, bats, and shrews) that have been used in clinical trials. Advances and perspectives on the therapeutic potential of molecules from other underexploited animals, such as caterpillars and ticks, are also reported. The challenges faced during the lengthy and costly preclinical and clinical studies and how to overcome these hindrances are also discussed for that drug candidates going to the bedside. It covers most of the drugs developed using toxins, the molecules that have failed and those that are currently in clinical trials. The article presents a detailed overview of toxins that have been used as therapeutic agents, including their discovery, formulation, dosage, indications, main adverse effects, and pregnancy and breastfeeding prescription warnings. Toxins in diagnosis, as well as cosmeceuticals and atypical therapies (bee venom and leech therapies) are also reported. The level of cumulative and detailed information provided in this review may help pharmacists, physicians, biotechnologists, pharmacologists, and scientists interested in toxinology, drug discovery, and development of toxin-based products.
Collapse
Affiliation(s)
- Karla de Castro Figueiredo Bordon
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila Takeno Cologna
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Ernesto Lopes Pinheiro-Júnior
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe Augusto Cerni
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernanda Gobbi Amorim
- Postgraduate Program in Pharmaceutical Sciences, Vila Velha University, Vila Velha, Brazil
| | | | - Francielle Almeida Cordeiro
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Gisele Adriano Wiezel
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Iara Aimê Cardoso
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isabela Gobbo Ferreira
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isadora Sousa de Oliveira
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | - Mateus Amaral Baldo
- Health and Science Institute, Paulista University, São José do Rio Pardo, Brazil
| | - Eliane Candiani Arantes
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
7
|
Sachetto A, Mackman N. Modulation of the mammalian coagulation system by venoms and other proteins from snakes, arthropods, nematodes and insects. Thromb Res 2019; 178:145-154. [DOI: 10.1016/j.thromres.2019.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/04/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022]
|
8
|
Bernardi L, Pinto AFM, Mendes E, Yates JR, Lamers ML. Lonomia obliqua bristle extract modulates Rac1 activation, membrane dynamics and cell adhesion properties. Toxicon 2019; 162:32-39. [PMID: 30849455 DOI: 10.1016/j.toxicon.2019.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 01/01/2023]
Abstract
Lonomia obliqua is a caterpillar of potential therapeutic interest whose venom is able to induce severe blood leakage and modulate leukocyte migration. Since both phenotypes are associated with changes in cytoskeleton dynamics and cell adhesion properties, the aim of this study was to analyze the effects of Lonomia obliqua bristle extract (LOBE) in cell adhesion and migration signaling. Proteomic analysis revealed that epithelial cells (CHO-K1) exposed to LOBE (30 μg/mL, 30 min) exhibited changes in levels of actin regulatory proteins, including RhoGTPases. These changes correlated with an increase in the activity of the RhoGTPase family member Rac as measured by Förster resonance energy transfer (FRET). When plated in migration promoting conditions, CHO-K1 cells exposed to LOBE (10 μg/mL) showed an increase in membrane ruffling after short (30 min) period of incubation that was accompanied by changes in the distribution of the adhesion markers paxillin, vinculin and an increase of focal adhesion kinase autophosphorylation levels (Y397), suggesting changes in cell-extracellular matrix (ECM) adhesion properties and signaling. These data suggest that LOBE possesses bioactive molecules that are capable to modulated cell migration signaling, cytoskeletal dynamics and cell-ECM properties of several cell types.
Collapse
Affiliation(s)
- L Bernardi
- Basic Research Center, Dentistry School, Federal University of Rio Grande of Sul, Brazil; Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - A F M Pinto
- Clayton Foundation Peptide Biology Lab, Salk Institute for Biological Studies, USA
| | - E Mendes
- Basic Research Center, Dentistry School, Federal University of Rio Grande of Sul, Brazil
| | - J R Yates
- Department of Molecular Medicine, The Scripps Research Institute, USA
| | - M L Lamers
- Basic Research Center, Dentistry School, Federal University of Rio Grande of Sul, Brazil; Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil.
| |
Collapse
|
9
|
Arthropod venoms: Biochemistry, ecology and evolution. Toxicon 2018; 158:84-103. [PMID: 30529476 DOI: 10.1016/j.toxicon.2018.11.433] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022]
Abstract
Comprising of over a million described species of highly diverse invertebrates, Arthropoda is amongst the most successful animal lineages to have colonized aerial, terrestrial, and aquatic domains. Venom, one of the many fascinating traits to have evolved in various members of this phylum, has underpinned their adaptation to diverse habitats. Over millions of years of evolution, arthropods have evolved ingenious ways of delivering venom in their targets for self-defence and predation. The morphological diversity of venom delivery apparatus in arthropods is astounding, and includes extensively modified pedipalps, tail (telson), mouth parts (hypostome), fangs, appendages (maxillulae), proboscis, ovipositor (stinger), and hair (urticating bristles). Recent investigations have also unravelled an astonishing venom biocomplexity with molecular scaffolds being recruited from a multitude of protein families. Venoms are a remarkable bioresource for discovering lead compounds in targeted therapeutics. Several components with prospective applications in the development of advanced lifesaving drugs and environment friendly bio-insecticides have been discovered from arthropod venoms. Despite these fascinating features, the composition, bioactivity, and molecular evolution of venom in several arthropod lineages remains largely understudied. This review highlights the prevalence of venom, its mode of toxic action, and the evolutionary dynamics of venom in Arthropoda, the most speciose phylum in the animal kingdom.
Collapse
|
10
|
Walker AA, Robinson SD, Yeates DK, Jin J, Baumann K, Dobson J, Fry BG, King GF. Entomo-venomics: The evolution, biology and biochemistry of insect venoms. Toxicon 2018; 154:15-27. [DOI: 10.1016/j.toxicon.2018.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022]
|
11
|
Villas-Boas IM, Bonfá G, Tambourgi DV. Venomous caterpillars: From inoculation apparatus to venom composition and envenomation. Toxicon 2018; 153:39-52. [PMID: 30145232 DOI: 10.1016/j.toxicon.2018.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 07/27/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022]
Abstract
Envenomation by the larval or pupal stages of moths occurs when the victim presses their hairs. They penetrate the subcutaneous tissue, releasing toxins such as proteolytic enzymes, histamine and other pro-inflammatory substances. Cutaneous reactions, including severe pain, oedema and erythema are frequent local manifestations of caterpillar envenomation, but, in some cases, the reactions can evolve into vesicles, bullae, erosions, petechiae, superficial skin necrosis and ulcerations. Alternatively, some individual can develop allergic reactions, renal failure, osteochondritis, deformity and immobilization of the affected joints and intracerebral bleeding. Caterpillars produce venom to protect themselves from predators; contact with humans is accidental and deserves close attention. Their venoms have not been well studied, except for toxins from some few species. The present review brings together data on venomous caterpillars of moths, primarily addressing the available literature on diversity among the different families that cause accident in humans, the structures used in their defense, venom composition and clinical aspects of the envenomations. Understanding the molecular mechanisms of action of caterpillars' toxins may lead to the development of more adequate treatments.
Collapse
Affiliation(s)
- Isadora Maria Villas-Boas
- Immunochemistry Laboratory, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Giuliano Bonfá
- Immunochemistry Laboratory, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Denise V Tambourgi
- Immunochemistry Laboratory, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil.
| |
Collapse
|
12
|
Verdes A, Simpson D, Holford M. Are Fireworms Venomous? Evidence for the Convergent Evolution of Toxin Homologs in Three Species of Fireworms (Annelida, Amphinomidae). Genome Biol Evol 2018; 10:249-268. [PMID: 29293976 PMCID: PMC5778601 DOI: 10.1093/gbe/evx279] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2017] [Indexed: 12/14/2022] Open
Abstract
Amphinomids, more commonly known as fireworms, are a basal lineage of marine annelids characterized by the presence of defensive dorsal calcareous chaetae, which break off upon contact. It has long been hypothesized that amphinomids are venomous and use the chaetae to inject a toxic substance. However, studies investigating fireworm venom from a morphological or molecular perspective are scarce and no venom gland has been identified to date, nor any toxin characterized at the molecular level. To investigate this question, we analyzed the transcriptomes of three species of fireworms-Eurythoe complanata, Hermodice carunculata, and Paramphinome jeffreysii-following a venomics approach to identify putative venom compounds. Our venomics pipeline involved de novo transcriptome assembly, open reading frame, and signal sequence prediction, followed by three different homology search strategies: BLAST, HMMER sequence, and HMMER domain. Following this pipeline, we identified 34 clusters of orthologous genes, representing 13 known toxin classes that have been repeatedly recruited into animal venoms. Specifically, the three species share a similar toxin profile with C-type lectins, peptidases, metalloproteinases, spider toxins, and CAP proteins found among the most highly expressed toxin homologs. Despite their great diversity, the putative toxins identified are predominantly involved in three major biological processes: hemostasis, inflammatory response, and allergic reactions, all of which are commonly disrupted after fireworm stings. Although the putative fireworm toxins identified here need to be further validated, our results strongly suggest that fireworms are venomous animals that use a complex mixture of toxins for defense against predators.
Collapse
Affiliation(s)
- Aida Verdes
- Department of Chemistry, Hunter College Belfer Research Center, and The Graduate Center, Program in Biology, Chemistry and Biochemistry, City University of New York
- Department of Invertebrate Zoology, Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York
- Departamento de Biología (Zoología), Facultad de Ciencias, Universidad Autónoma de Madrid, Spain
| | - Danny Simpson
- Department of Population Health, New York University School of Medicine
| | - Mandë Holford
- Department of Chemistry, Hunter College Belfer Research Center, and The Graduate Center, Program in Biology, Chemistry and Biochemistry, City University of New York
- Department of Invertebrate Zoology, Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York
- Department of Biochemistry, Weill Cornell Medical College, Cornell University
| |
Collapse
|
13
|
Moraes JA, Rodrigues G, Nascimento-Silva V, Renovato-Martins M, Berger M, Guimarães JA, Barja-Fidalgo C. Effects of Lonomia obliqua Venom on Vascular Smooth Muscle Cells: Contribution of NADPH Oxidase-Derived Reactive Oxygen Species. Toxins (Basel) 2017; 9:toxins9110360. [PMID: 29112156 PMCID: PMC5705975 DOI: 10.3390/toxins9110360] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 10/25/2017] [Accepted: 11/03/2017] [Indexed: 12/26/2022] Open
Abstract
Envenomation caused by human contact with the caterpillar Lonomia is characterized by deleterious effects on coagulation and patency of blood vessels. The cellular effects induced by Lonomia obliqua venom highlights its capacity to activate endothelial cells, leading to a proinflammatory phenotype. Having more knowledge about the mechanisms involved in envenomation may contribute to better treatment. We aimed to evaluate the effects of Lonomia obliqua caterpillar bristle extract (LOCBE) on vascular smooth muscle cells (VSMC). We observed that LOCBE induced VSMC migration, which was preceded by alterations in actin cytoskeleton dynamics and Focal Adhesion Kinase activation. LOCBE also induced Extracellular Signal-Regulated Kinase (ERK) phosphorylation in VSMC, and the inhibition of this pathway impaired cell proliferation. Stimulation of VSMC with LOCBE triggered reactive oxygen species (ROS) production through the activation of NADPH oxidase. The rapid increase in these ROS further induced mitochondrial ROS production, however only NADPH oxidase-derived ROS were involved in ERK activation in VSMC. We that demonstrated the chemotactic and proliferative effects of LOCBE on VSMC were dependent on ROS production, mainly through NADPH oxidase. Together, the data show that Lonomia obliqua venom can interact with and activate VSMC. These effects rely on ROS production, suggesting new potential targets for treatment against vascular damage during envenomation.
Collapse
Affiliation(s)
- João Alfredo Moraes
- Laboratório de Biologia RedOx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro CEP 21941-902, Brazil.
- Laboratório de Farmacologia Celular e Molecular, Departamento de Biologia Celular, Universidade do Estado do Rio de Janeiro, Rio de Janeiro CEP 20550-030, Brazil.
| | - Genilson Rodrigues
- Laboratório de Farmacologia Celular e Molecular, Departamento de Biologia Celular, Universidade do Estado do Rio de Janeiro, Rio de Janeiro CEP 20550-030, Brazil.
| | - Vany Nascimento-Silva
- Laboratório de Farmacologia Celular e Molecular, Departamento de Biologia Celular, Universidade do Estado do Rio de Janeiro, Rio de Janeiro CEP 20550-030, Brazil.
| | - Mariana Renovato-Martins
- Laboratório de Farmacologia Celular e Molecular, Departamento de Biologia Celular, Universidade do Estado do Rio de Janeiro, Rio de Janeiro CEP 20550-030, Brazil.
| | - Markus Berger
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (CPE/HCPA/UFRGS), Porto Alegre CEP 90035-903, Brazil.
| | - Jorge Almeida Guimarães
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (CPE/HCPA/UFRGS), Porto Alegre CEP 90035-903, Brazil.
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre CEP 951501-970, Brazil.
| | - Christina Barja-Fidalgo
- Laboratório de Farmacologia Celular e Molecular, Departamento de Biologia Celular, Universidade do Estado do Rio de Janeiro, Rio de Janeiro CEP 20550-030, Brazil.
| |
Collapse
|
14
|
Spadacci-Morena DD, Soares MAM, Moraes RHP, Sano-Martins IS, Sciani JM. The urticating apparatus in the caterpillar of Lonomia obliqua (Lepidoptera: Saturniidae). Toxicon 2016; 119:218-24. [DOI: 10.1016/j.toxicon.2016.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/09/2016] [Accepted: 06/14/2016] [Indexed: 11/28/2022]
|
15
|
Maggi S, Faulhaber GAM. Lonomia obliqua Walker (Lepidoptera: Saturniidae): hemostasis implications. Rev Assoc Med Bras (1992) 2015; 61:263-8. [DOI: 10.1590/1806-9282.61.03.263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 06/15/2014] [Indexed: 11/22/2022] Open
Abstract
Summary In southern Brazil, since 1989, several cases of accidents produced by unwilling contact with the body of poisonous caterpillars of the moth species Lonomia obliqua Walker, 1855 (Lepidoptera: Saturniidae), were described. L. obliqua caterpillars have gregarious behavior and feed on leaves of host trees during the night, staying grouped in the trunk during the day, which favors the occurrence of accidents with the species. This caterpillar has the body covered with bristles that on contact with the skin of individuals, breaks and release their contents, inoculating the venom into the victim. The basic constitution of the venom is protein and its components produce physiological changes in the victim, which include disturbances in hemostasis. Hemorrhagic syndrome associated with consumption coagulopathy, intravascular hemolysis and acute renal failure are some of the possible clinical manifestations related to poisoning by L. obliqua. Specific laboratory tests for diagnosis of poisoning have not been described previously. The diagnosis of poisoning is made based on the patient's medical history, clinical manifestations, erythrocyte levels, and, primarily, parameters that evaluate blood coagulation. Treatment is performed with the use of supportive care and the administration of specific hyperimmune antivenom. Poisoning can be serious and even fatal.
Collapse
|
16
|
Veiga ABG, Ribeiro JMC, Francischetti IMB, Xu X, Guimarães JA, Andersen JF. Examination of the ligand-binding and enzymatic properties of a bilin-binding protein from the poisonous caterpillar Lonomia obliqua. PLoS One 2014; 9:e95424. [PMID: 24972000 PMCID: PMC4074040 DOI: 10.1371/journal.pone.0095424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 03/27/2014] [Indexed: 11/18/2022] Open
Abstract
The bilin-binding proteins (BBP) from lepidopteran insects are members of the lipocalin family of proteins and play a special role in pigmentation through the binding of biliverdin IXγ. Lopap, a BBP-like protein from the venom of the toxic caterpillar Lonomia obliqua has been reported to act as a serine protease that activates the coagulation proenzyme prothrombin. Here we show that BBPLo, a variant of lopap from the same organism binds biliverdin IXγ, forming a complex that is spectrally identical with previously described BBP proteins. Although BBPLo is nearly identical in sequence to lopap, no prothrombinase activity was detected in our recombinant preparations using reconstituted systems containing coagulation factors Xa and Va, as well as anionic phospholipids. In addition to biliverdin, BBPLo was found to form a 1∶1 complex with heme prompting us to examine whether the unusual biliverdin IXγ ligand of BBPs forms as a result of oxidation of bound heme in situ rather than by a conventional heme oxygenase. Using ascorbate or a NADPH+-ferredoxin reductase-ferredoxin system as a source of reducing equivalents, spectral changes are seen that suggest an initial reduction of heme to the Fe(II) state and formation of an oxyferrous complex. The complex then disappears and a product identified as a 5-coordinate carbonyl complex of verdoheme, an intermediate in the biosynthesis of biliverdin, is formed. However, further reaction to form biliverdin was not observed, making it unlikely that biliverdin IXγ is formed by this pathway.
Collapse
Affiliation(s)
- Ana B. G. Veiga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| | - José M. C. Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ivo M. B. Francischetti
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Xueqing Xu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jorge A. Guimarães
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| | - John F. Andersen
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Berger M, Santi L, Beys-da-Silva WO, Oliveira FMS, Caliari MV, Yates JR, Vieira MAR, Guimarães JA. Mechanisms of acute kidney injury induced by experimental Lonomia obliqua envenomation. Arch Toxicol 2014; 89:459-83. [PMID: 24798088 DOI: 10.1007/s00204-014-1264-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 04/15/2014] [Indexed: 12/17/2022]
Abstract
Lonomia obliqua caterpillar envenomation causes acute kidney injury (AKI), which can be responsible for its deadly actions. This study evaluates the possible mechanisms involved in the pathogenesis of renal dysfunction. To characterize L. obliqua venom effects, we subcutaneously injected rats and examined renal functional, morphological and biochemical parameters at several time points. We also performed discovery-based proteomic analysis to measure protein expression to identify molecular pathways of renal disease. L. obliqua envenomation causes acute tubular necrosis, which is associated with renal inflammation; formation of hematic casts, resulting from intravascular hemolysis; increase in vascular permeability and fibrosis. The dilation of Bowman's space and glomerular tuft is related to fluid leakage and intra-glomerular fibrin deposition, respectively, since tissue factor procoagulant activity increases in the kidney. Systemic hypotension also contributes to these alterations and to the sudden loss of basic renal functions, including filtration and excretion capacities, urinary concentration and maintenance of fluid homeostasis. In addition, envenomed kidneys increase the expression of proteins involved in cell stress, inflammation, tissue injury, heme-induced oxidative stress, coagulation and complement system activation. Finally, the localization of the venom in renal tissue agrees with morphological and functional alterations, suggesting also a direct nephrotoxic activity. In conclusion, the mechanisms of L. obliqua-induced AKI are complex involving mainly glomerular and tubular functional impairment and vascular alterations. These results are important to understand the mechanisms of renal injury and may suggest more efficient ways to prevent or attenuate the pathology of Lonomia's envenomation.
Collapse
Affiliation(s)
- Markus Berger
- Laboratório de Bioquímica Farmacológica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, CEP 91501-970, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Berger M, Beys-da-Silva WO, Santi L, de Oliveira IM, Jorge PM, Henriques JAP, Driemeier D, Vieira MAR, Guimarães JA. Acute Lonomia obliqua caterpillar envenomation-induced physiopathological alterations in rats: evidence of new toxic venom activities and the efficacy of serum therapy to counteract systemic tissue damage. Toxicon 2013; 74:179-92. [PMID: 23994591 DOI: 10.1016/j.toxicon.2013.08.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 07/30/2013] [Accepted: 08/13/2013] [Indexed: 02/01/2023]
Abstract
The clinical manifestations of Lonomia obliqua caterpillar envenomation are systemic hemorrhage and acute kidney injury. In an effort to better understand the physiopathological mechanisms of envenomation, a rat model was established to study systemic tissue damage during L. obliqua envenomation. An array of acute venom effects was characterized, including biochemical, hematological, histopathological, myotoxic and genotoxic alterations. Rapid increases in serum alanine and aspartate transaminases, γ-glutamyl transferase, lactate dehydrogenase, hemoglobin, bilirubin, creatinine, urea and uric acid were observed, indicating that intravascular hemolysis and liver and kidney damage had occurred. Treatment with a specific antivenom (antilonomic serum) for up to 2 h post-venom injection neutralized the biochemical alterations. However, treatment after 6 h post-venom injection failed to normalize all biochemical parameters, despite its efficacy in reversing coagulation dysfunction. The hematological findings were consistent with hemolytic anemia and neutrophilic leukocytosis. The histopathological alterations were mainly related to hemorrhage and inflammation in the subcutaneous tissue, lung, heart and kidneys. Signs of congestion and hemosiderosis were evident in the spleen, and hemoglobin and/or myoglobin casts were also detected in the renal tubules. Increased levels of creatine kinase and creatine kinase-MB were correlated with the myocardial necrosis observed in vivo and confirmed the myotoxicity detected in vitro in isolated extensor digitorum longus muscles. Significant DNA damage was observed in the kidneys, heart, lung, liver and lymphocytes. The majority of the DNA lesions in the kidney were due to oxidative damage. The results presented here will aid in understanding the pathology underlying Lonomia's envenomation.
Collapse
Affiliation(s)
- Markus Berger
- Laboratório de Bioquímica Farmacológica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Cep 91501-970, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nascimento-Silva V, Rodrigues da Silva G, Moraes JA, Cyrino FZ, Seabra SH, Bouskela E, Almeida Guimarães J, Barja-Fidalgo C. A pro-inflammatory profile of endothelial cell in Lonomia obliqua envenomation. Toxicon 2012; 60:50-60. [PMID: 22779081 DOI: 10.1016/j.toxicon.2012.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Lonomia obliqua envenomation is characterized by intense local inflammatory reaction, which, dependent on the severity of the case, is followed by severe clinical manifestations related to hemorrhagic disorders that can lead to fatal outcome. These effects were imputed to several toxins present in L. obliqua venom, which are responsible for procoagulant, anticoagulant as well as antithrombotic activities, being also able to interfere with vascular cells functions. In this work, the intravital microscopy analysis show that after administration of low doses of L. obliqua venom (1-3 μg/ml) on hamster cheek pouch, there was no alterations neither on arterioles or venules caliber nor in the vascular permeability up to 30 min. However, after 10 min in contact with venom occurred a clear activation in the vascular bed, characterized by an increase in leukocyte rolling and adhesion on endothelium of hamster cheek pouch venules. A confocal analysis of vascular beds, confirmed these results showing an increase in endothelial E-selectin and VCAM-1 expression. The effects of L. obliqua venom on human endothelial cell (EC) in vitro were also investigated. The treatment of EC with venom (1-3 μg/ml) did not affect cell viability. However, at concentrations as low as 3 μg/ml of L. obliqua venom modifies actin cytoskeleton dynamics, and increases focal adhesion contacts, inducing stress fiber formation, focal adhesion kinase (FAK) phosphorylation and its subsequent association to actin. These effects are followed by the activation of NF-κB pathway, a critical signaling in several events associated to vascular inflammation. Accordingly, L. obliqua venom leads to a significant increase in COX-2, NOS-2, HO-1, MMP-2 and MMP-9 expression. Taken together the data show that, even at low concentrations, L. obliqua venom can activate endothelial cells, which assume a pro-inflammatory profile, contributing for local effects and probably also for systemic disturbances due to its ability to modulate the properties of the vascular system.
Collapse
Affiliation(s)
- Vany Nascimento-Silva
- Laboratory of Biochemistry and Cellular Pharmacology, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Andrade SA, Carrijo-Carvalho LC, Peceguini LAM, Wlian L, Sato AC, Luchiari C, Silva ED, Maffei FHA, Chudzinski-Tavassi AM. Reversal of the anticoagulant and anti-hemostatic effect of low molecular weight heparin by direct prothrombin activation. Braz J Med Biol Res 2012; 45:929-34. [PMID: 22735179 PMCID: PMC3854179 DOI: 10.1590/s0100-879x2012007500108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 06/11/2012] [Indexed: 11/22/2022] Open
Abstract
Lopap, found in the bristles of Lonomia obliqua caterpillar, is the first exogenous prothrombin activator that shows serine protease-like activity, independent of prothrombinase components and unique lipocalin reported to interfere with hemostasis mechanisms. To assess the action of an exogenous prothrombin activator reversing the anticoagulant and antihemostatic effect induced by low molecular weight heparin (LMWH), male New Zealand rabbits (N = 20, weighing 3.8-4.0 kg) allocated to 4 groups were anticoagulated with 1800 IU/kg LMWH (iv) over 2 min, followed by iv administration of saline or recombinant Lopap (rLopap) at 1 µg/kg (LG1) or 10 µg/kg (LG10), 10 min after the injection of LMWH, in a blind manner. Control animals were treated only with saline. The action of rLopap was assessed in terms of activated partial thromboplastin time (aPTT), prothrombin fragment F1+2, fibrinogen, and ear puncture bleeding time (BT) at 5, 10, 15, 17, 20, 30, 40, 60, and 90 min after initiation of LMWH infusion. LG10 animals showed a decrease of aPTT in more than 50% and BT near to normal baseline. The level of prothrombin fragment F1+2 measured by ELISA had a 6-fold increase with rLopap treatment (10 µg/kg) and was inversely proportional to BT in LMWH-treated animals. Thus, Lopap, obtained in recombinant form using E. coli expression system, was useful in antagonizing the effect of LMWH through direct prothrombin activation, which can be a possible strategy for the reversal of bleeding and anticoagulant events.
Collapse
Affiliation(s)
- S A Andrade
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
A lipocalin-derived Peptide modulating fibroblasts and extracellular matrix proteins. J Toxicol 2012; 2012:325250. [PMID: 22737165 PMCID: PMC3379166 DOI: 10.1155/2012/325250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/23/2012] [Accepted: 04/15/2012] [Indexed: 02/06/2023] Open
Abstract
Lipocalin family members have been implicated in development, regeneration, and pathological processes, but their roles are unclear. Interestingly, these proteins are found abundant in the venom of the Lonomia obliqua caterpillar. Lipocalins are β-barrel proteins, which have three conserved motifs in their amino acid sequence. One of these motifs was shown to be a sequence signature involved in cell modulation. The aim of this study is to investigate the effects of a synthetic peptide comprising the lipocalin sequence motif in fibroblasts. This peptide suppressed caspase 3 activity and upregulated Bcl-2 and Ki-67, but did not interfere with GPCR calcium mobilization. Fibroblast responses also involved increased expression of proinflammatory mediators. Increase of extracellular matrix proteins, such as collagen, fibronectin, and tenascin, was observed. Increase in collagen content was also observed in vivo. Results indicate that modulation effects displayed by lipocalins through this sequence motif involve cell survival, extracellular matrix remodeling, and cytokine signaling. Such effects can be related to the lipocalin roles in disease, development, and tissue repair.
Collapse
|
22
|
Menezes MA, Aires KA, Ozaki CY, Ruiz RM, Pereira MC, Abreu PA, Elias WP, Ramos OH, Piazza RM. Cloning approach and functional analysis of anti-intimin single-chain variable fragment (scFv). BMC Res Notes 2011; 4:30. [PMID: 21288327 PMCID: PMC3038928 DOI: 10.1186/1756-0500-4-30] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 02/02/2011] [Indexed: 01/28/2023] Open
Abstract
Background Intimin is an important virulence factor involved in the pathogenesis of enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic Escherichia coli (EHEC). Both pathogens are still important causes of diarrhea in children and adults in many developing and industrialized countries. Considering the fact that antibodies are important tools in the detection of various pathogens, an anti-intimin IgG2b monoclonal antibody was previously raised in immunized mice with the conserved sequence of the intimin molecule (int388-667). In immunoblotting assays, this monoclonal antibody showed excellent specificity. Despite good performance, the monoclonal antibody failed to detect some EPEC and EHEC isolates harboring variant amino acids within the 338-667 regions of intimin molecules. Consequently, motivated by its use for diagnosis purposes, in this study we aimed to the cloning and expression of the single-chain variable fragment from this monoclonal antibody (scFv). Findings Anti-intimin hybridoma mRNA was extracted and reversely transcripted to cDNA, and the light and heavy chains of the variable fragment of the antibody were amplified using commercial primers. The amplified chains were cloned into pGEM-T Easy vector. Specific primers were designed and used in an amplification and chain linkage strategy, obtaining the scFv, which in turn was cloned into pAE vector. E. coli BL21(DE3)pLys strain was transformed with pAE scFv-intimin plasmid and subjected to induction of protein expression. Anti-intimin scFv, expressed as inclusion bodies (insoluble fraction), was denatured, purified and submitted to refolding. The protein yield was 1 mg protein per 100 mL of bacterial culture. To test the functionality of the scFv, ELISA and immunofluorescence assays were performed, showing that 275 ng of scFv reacted with 2 mg of purified intimin, resulting in an absorbance of 0.75 at 492 nm. The immunofluorescence assay showed a strong reactivity with EPEC E2348/69. Conclusion This study demonstrated that the recombinant anti-intimin antibody obtained is able to recognize the conserved region of intimin (Int388-667) in purified form and the EPEC isolate.
Collapse
Affiliation(s)
- Márcio A Menezes
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brazil, 1500, São Paulo, SP, 05503-900, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Alvarez-Flores MP, Furlin D, Ramos OHP, Balan A, Konno K, Chudzinski-Tavassi AM. Losac, the first hemolin that exhibits procogulant activity through selective factor X proteolytic activation. J Biol Chem 2010; 286:6918-28. [PMID: 21177860 DOI: 10.1074/jbc.m110.167718] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Envenoming by the contact of human skin with Lonomia obliqua caterpillars promotes a hemorrhagic syndrome characterized by a consumptive coagulopathy. Losac (Lonomia obliqua Stuart factor activator) is a component of the bristle of L. obliqua that is probably partially responsible for the observed syndrome because it activates factor X and is recognized by an effective antilonomic serum. Here we unveil the proteolytic activity of Losac and demonstrate the feasibility of its recombinant production. On the other hand, Losac has no homology to known proteases, but it can be inhibited by PMSF, a serine protease inhibitor. Instead, it shows closer homology to members of the hemolin family of proteins, a group of cell adhesion molecules. The recombinant protein (rLosac) shortened the coagulation time of normal and deficient plasmas, whereas it was ineffective in factor X-deficient plasma unless reconstituted with this protein. rLosac was able to activate factor X in a dose- and time-dependent manner but not γ-carboxyglutamic acid domainless factor X. Moreover, phospholipids and calcium ions increased rLosac activity. Also, rLosac had no effect on fibrin or fibrinogen, indicating its specificity for blood coagulation activation. Linear double reciprocal plots indicate that rLosac follows a Michaelis-Menten kinetics. Cleavage of factor X by rLosac resulted in fragments that are compatible with those generated by RVV-X (a well known factor X activator). Together, our results validate Losac as the first protein from the hemolin family exhibiting procoagulant activity through selective proteolysis on coagulation factor X.
Collapse
|
24
|
Chudzinski-Tavassi AM, Carrijo-Carvalho LC, Waismam K, Farsky SH, Ramos OH, Reis CV. A lipocalin sequence signature modulates cell survival. FEBS Lett 2010; 584:2896-900. [DOI: 10.1016/j.febslet.2010.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/21/2010] [Accepted: 05/03/2010] [Indexed: 10/19/2022]
|
25
|
Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JD, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS, Renjifo C, de la Vega RCR. The Toxicogenomic Multiverse: Convergent Recruitment of Proteins Into Animal Venoms. Annu Rev Genomics Hum Genet 2009; 10:483-511. [DOI: 10.1146/annurev.genom.9.081307.164356] [Citation(s) in RCA: 587] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Throughout evolution, numerous proteins have been convergently recruited into the venoms of various animals, including centipedes, cephalopods, cone snails, fish, insects (several independent venom systems), platypus, scorpions, shrews, spiders, toxicoferan reptiles (lizards and snakes), and sea anemones. The protein scaffolds utilized convergently have included AVIT/colipase/prokineticin, CAP, chitinase, cystatin, defensins, hyaluronidase, Kunitz, lectin, lipocalin, natriuretic peptide, peptidase S1, phospholipase A2, sphingomyelinase D, and SPRY. Many of these same venom protein types have also been convergently recruited for use in the hematophagous gland secretions of invertebrates (e.g., fleas, leeches, kissing bugs, mosquitoes, and ticks) and vertebrates (e.g., vampire bats). Here, we discuss a number of overarching structural, functional, and evolutionary generalities of the protein families from which these toxins have been frequently recruited and propose a revised and expanded working definition for venom. Given the large number of striking similarities between the protein compositions of conventional venoms and hematophagous secretions, we argue that the latter should also fall under the same definition.
Collapse
Affiliation(s)
- Bryan G. Fry
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne 3010 Australia
| | - Kim Roelants
- Unit of Ecology and Systematics, Vrije Universiteit Brussels, 1050 Brussels, Belgium
| | - Donald E. Champagne
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602
| | | | - Joel D.A. Tyndall
- National School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | - Janette A. Norman
- Sciences Department, Museum Victoria, Melbourne, Victoria 3001, Australia
| | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Raymond S. Norton
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3050, Victoria, Australia
| | - Camila Renjifo
- Department of Physiological Sciences, Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Ricardo C. Rodríguez de la Vega
- Structural and Computational Biology/Gene Expression Units, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
26
|
Waismam K, Chudzinski-Tavassi AM, Carrijo-Carvalho LC, Fernandes Pacheco MT, Farsky SH. Lopap: A non-inflammatory and cytoprotective molecule in neutrophils and endothelial cells. Toxicon 2009; 53:652-9. [DOI: 10.1016/j.toxicon.2009.01.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Ricci-Silva ME, Valente RH, León IR, Tambourgi DV, Ramos OHP, Perales J, Chudzinski-Tavassi AM. Immunochemical and proteomic technologies as tools for unravelling toxins involved in envenoming by accidental contact with Lonomia obliqua caterpillars. Toxicon 2008; 51:1017-28. [PMID: 18342903 DOI: 10.1016/j.toxicon.2008.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 01/22/2008] [Accepted: 01/28/2008] [Indexed: 10/22/2022]
Abstract
The accidental contact with Lonomia obliqua caterpillar causes local and systemic symptoms (such as fibrinogen depletion), leading, in some cases, to serious clinical complications (acute renal failure and intracranial haemorrhage). Fortunately, a successful therapeutical approach using anti-Lonomic serum, produced in horses against L. obliqua's bristle extract, has already been put in place. However, a global view of immunogenic toxins involved in the coagulation disorders could help to elucidate the envenoming process. In the present study, our aim was to identify bristle extract's immunogenic components, especially those related to the haemostasis, coupling proteomics and immunochemical approaches (bidimensional electrophoresis, mass spectrometry and immunoblotting). The bidimensional map of bristle extract showed a broad profile of 157 silver-stained spots, where at least 153 spots were immunochemically revealed. Twenty-four of these spots were submitted to sequencing by mass spectrometry and three different categories of proteins were identified: lipocalins, cuticle proteins and serpins. From these protein families, it was observed that the most abundant was the lipocalin family, specifically represented by different isoforms of Lopap (a prothrombin activator protein), reinforcing its relevance during envenoming. Peptide sequences of several other immunochemically revealed spots showed no correspondence to any known sequence and were classified as unknown proteins. These proteins could represent new immunogenic molecules and/or toxins. The sequences presented in this article can be used for oligonucleotide design aiming the amplification of cDNAs coding for new molecules using L. obliqua bristles' cDNA libraries or isolated RNAs as template.
Collapse
Affiliation(s)
- Maria Esther Ricci-Silva
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, Av. Vital Brazil 1500, São Paulo, CEP 05503900, Brazil
| | | | | | | | | | | | | |
Collapse
|
28
|
Carrijo-Carvalho LC, Chudzinski-Tavassi AM. The venom of the Lonomia caterpillar: an overview. Toxicon 2007; 49:741-57. [PMID: 17320134 DOI: 10.1016/j.toxicon.2006.11.033] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 11/17/2006] [Accepted: 11/24/2006] [Indexed: 11/20/2022]
Abstract
Contact with the Lonomia caterpillar causes numerous accidents, especially in Venezuela and the southern region of Brazil, where it is considered a public health problem. The Lonomia obliqua venom causes disseminated intravascular coagulation and a consumptive coagulopathy, which can lead to a hemorrhagic syndrome. The venom of Lonomia achelous also causes hemorrhage, but through increased fibrinolysis. In vivo and in vitro studies have shown that the venom of the Lonomia caterpillar contains several toxins with procoagulant, anticoagulant and antithrombotic activities. These toxins also affect the endothelium. The recent construction of cDNA libraries of the transcripts from L. obliqua bristles enables the use of biotechnological approaches to study the venom. This paper presents an overview of the biochemical and biological properties of Lonomia caterpillar venom, discussing aspects of human accidents, experimental envenomation, toxins and targets and future perspectives.
Collapse
|