1
|
Honda A, Seino J, Huang C, Nakano M, Suzuki T. Occurrence of free glycans in salmonid serum. Biochem Biophys Res Commun 2025; 742:151096. [PMID: 39637704 DOI: 10.1016/j.bbrc.2024.151096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Free N-glycans (FNGs) are oligosaccharides that are structurally related to N-linked glycans, and are widely found in nature. The mechanisms responsible for the formation and degradation of intracellular FNGs are well characterized in mammalian cells. More recent analysis in mammalian sera shows that there are various types of extracellular free glycans, including FNGs. However, it is unknown whether these free glycans are widely distributed in vertebrates. In this study, we investigated the occurrence of free glycans in salmonid serum. We found that it contained sialyl or neutral FNGs and sialyl lactose/N-acetyllactosamine (LacNAc)-type glycans, which was consistent with that found in mammalian sera. Many of the structures of FNGs matched those of N-glycans from serum glycoproteins. This study revealed that various types of free glycans are present in fish serum, demonstrating their wide occurrence among vertebrates.
Collapse
Affiliation(s)
- Akinobu Honda
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| | - Junichi Seino
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Chengcheng Huang
- Chemical Glycobiology Laboratory, Institute for Glyco-core (iGOCRE), Tokai National Higher Education and Research System Nagoya University, Furo-cho, Nagoya, Aichi, 464-8601, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, 739-8528, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
2
|
Kendler J, Wӧls F, Thapliyal S, Arcalis E, Gabriel H, Kubitschek S, Malzl D, Strobl MR, Palmberger D, Luber T, Unverzagt C, Paschinger K, Glauser DA, Wilson IBH, Yan S. N-glycan core tri-fucosylation requires Golgi α-mannosidase III activity that impacts nematode growth and behavior. J Biol Chem 2024; 300:107944. [PMID: 39481603 PMCID: PMC11697051 DOI: 10.1016/j.jbc.2024.107944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/04/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
N-glycans with complex core chitobiose modifications are observed in various free-living and parasitic nematodes but are absent in mammals. Using Caenorhabditis elegans as a model, we demonstrated that the core N-acetylglucosamine (GlcNAc) residues are modified by three fucosyltransferases (FUTs), namely FUT-1, FUT-6, and FUT-8. Interestingly, FUT-6 can only fucosylate N-glycans lacking the α1,6-mannose upper arm, indicating that a specific α-mannosidase is required to generate substrates for subsequent FUT-6 activity. By analyzing the N-glycomes of aman-3 KOs using offline HPLC-MALDI-TOF MS/MS, we observed that the absence of aman-3 abolishes α1,3-fucosylation of the distal GlcNAc of N-glycans, which suggests that AMAN-3 is the relevant mannosidase on whose action FUT-6 depends. Enzymatic characterization of recombinant AMAN-3 and confocal microscopy studies using a knock-in strain (aman-3::eGFP) demonstrated a Golgi localization. In contrast to the classical Golgi α-mannosidase II (AMAN-2), AMAN-3 displayed a cobalt-dependent α1,6-mannosidase activity toward N-glycans. Using AMAN-3 and other C. elegans glycoenzymes, we were able to mimic nematode N-glycan biosynthesis in vitro by remodeling a fluorescein conjugated-glycan and generate a tri-fucosylated structure. In addition, using a high-content computer-assisted C. elegans analysis platform, we observed that aman-3 deficient worms display significant developmental delays, morphological, and behavioral alterations in comparison to the WT. Our data demonstrated that AMAN-3 is a Golgi α-mannosidase required for core fucosylation of the distal GlcNAc of N-glycans. This enzyme is essential for the formation of the unusual tri-fucosylated chitobiose modifications in nematodes, which may play important roles in nematode development and behavior.
Collapse
Affiliation(s)
- Jonatan Kendler
- Institut für Parasitologie, Veterinärmedizinische Universität, Wien, Austria
| | - Florian Wӧls
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | - Saurabh Thapliyal
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Elsa Arcalis
- Department für angewandte Genetik und Zellbiologie, Universität für Bodenkultur, Wien, Austria
| | - Hanna Gabriel
- Institut für Parasitologie, Veterinärmedizinische Universität, Wien, Austria
| | - Sascha Kubitschek
- Institut für Parasitologie, Veterinärmedizinische Universität, Wien, Austria
| | - Daniel Malzl
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | - Maria R Strobl
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | - Dieter Palmberger
- Department für Biotechnologie, Universität für Bodenkultur, Wien, Austria
| | - Thomas Luber
- Bioorganic Chemistry, University of Bayreuth, Bayreuth, Germany
| | - Carlo Unverzagt
- Bioorganic Chemistry, University of Bayreuth, Bayreuth, Germany
| | | | | | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | - Shi Yan
- Institut für Parasitologie, Veterinärmedizinische Universität, Wien, Austria.
| |
Collapse
|
3
|
Bouzidi Y, Bosco M, Gao H, Pradeau S, Matheron L, Chantret I, Busca P, Fort S, Gravier-Pelletier C, Moore SEH. Transport of N-acetylchitooligosaccharides and fluorescent N-acetylchitooligosaccharide analogs into rat liver lysosomes. Glycobiology 2024; 34:cwad099. [PMID: 38070184 DOI: 10.1093/glycob/cwad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 03/28/2024] Open
Abstract
Free polymannose-type oligosaccharides (fOS) are processed by cytosolic enzymes to generate Man5GlcNAc which is transferred to lysosomes and degraded. Lysosomal fOS import was demonstrated in vitro but is poorly characterized in part due to lack of convenient substrates. As chitooligosaccharides (COS, oligomers β1,4-linked GlcNAc) block [3H]Man5GlcNAc transport into lysosomes, we asked if COS are themselves transported and if so, can they be chemically modified to generate fluorescent substrates. We show that COS are degraded by lysosomal hydrolases to generate GlcNAc, and robust ATP-dependent transport of [3H]COS2/4 di and tetrasaccharides into intact rat liver lysosomes was observed only after blocking lysosomal [3H]GlcNAc efflux with cytochalasin B. As oligosaccharides with unmodified reducing termini are the most efficient inhibitors of [3H]COS2/4 and [3H]Man5GlcNAc transport, the non-reducing GlcNAc residue of COS2-4 was de-N-acetylated using Sinorhizobium meliloti NodB, and the resulting amine substituted with rhodamine B (RB) to yield RB-COS2-4. The fluorescent compounds inhibit [3H]Man5GlcNAc transport and display temperature-sensitive, ATP-dependent transport into a sedimentable compartment that is ruptured with the lysosomotropic agent L-methyl methionine ester. Once in this compartment, RB-COS3 is converted to RB-COS2 further identifying it as the lysosomal compartment. RB-COS2/3 and [3H]Man5GlcNAc transports are blocked similarly by competing sugars, and are partially inhibited by the vacuolar ATPase inhibitor bafilomycin and high concentrations of the P-type ATPase inhibitor orthovanadate. These data show that Man5GlcNAc, COS2/4 and RB-COS2/3 are transported into lysosomes by the same or closely related mechanism and demonstrate the utility of COS modified at their non-reducing terminus to study lysosomal oligosaccharide transport.
Collapse
Affiliation(s)
- Younès Bouzidi
- INSERM U1149, Université Paris Cité, 16 rue Henri Huchard, Paris 75018, France
| | - Michaël Bosco
- CNRS UMR8601, Université Paris Cité, 45 rue des Saints Pères, Paris 75006, France
| | - Haifei Gao
- CNRS UMR8601, Université Paris Cité, 45 rue des Saints Pères, Paris 75006, France
| | - Stéphanie Pradeau
- CNRS, CERMAV, Université Grenoble Alpes, 601 Rue de la Chimie, 38610 Gières, France
| | - Lucrèce Matheron
- Plateforme MS3U, Fédération de chimie moléculaire Paris centre FR2769, Sorbonne Université, 4 place Jussieu, Paris 75005, France
| | - Isabelle Chantret
- INSERM U1149, Université Paris Cité, 16 rue Henri Huchard, Paris 75018, France
| | - Patricia Busca
- CNRS UMR8601, Université Paris Cité, 45 rue des Saints Pères, Paris 75006, France
| | - Sébastien Fort
- CNRS, CERMAV, Université Grenoble Alpes, 601 Rue de la Chimie, 38610 Gières, France
| | | | - Stuart E H Moore
- INSERM U1149, Université Paris Cité, 16 rue Henri Huchard, Paris 75018, France
| |
Collapse
|
4
|
Huang C, Seino J, Honda A, Fujihira H, Wu D, Okahara K, Kitazume S, Nakaya S, Kitajima K, Sato C, Suzuki T. Rat hepatocytes secrete free oligosaccharides. J Biol Chem 2024; 300:105712. [PMID: 38309509 PMCID: PMC10912633 DOI: 10.1016/j.jbc.2024.105712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024] Open
Abstract
We recently established a method for the isolation of serum-free oligosaccharides, and characterized various features of their structures. However, the precise mechanism for how these glycans are formed still remains unclarified. To further investigate the mechanism responsible for these serum glycans, here, we utilized rat primary hepatocytes to examine whether they are able to secrete free glycans. Our findings indicated that a diverse array of free oligosaccharides such as sialyl/neutral free N-glycans (FNGs), as well as sialyl lactose/LacNAc-type glycans, were secreted into the culture medium by primary hepatocytes. The structural features of these free glycans in the medium were similar to those isolated from the sera of the same rat. Further evidence suggested that an oligosaccharyltransferase is involved in the release of the serum-free N-glycans. Our results indicate that the liver is indeed secreting various types of free glycans directly into the serum.
Collapse
Affiliation(s)
- Chengcheng Huang
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Junichi Seino
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Akinobu Honda
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Haruhiko Fujihira
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Di Wu
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, Japan
| | - Kyohei Okahara
- Discovery Concept Validation Function, KAN Research Institute, Inc, Kobe, Japan
| | - Shinobu Kitazume
- Department of Clinical Laboratory Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Japan
| | - Shuichi Nakaya
- Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, Japan
| | - Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, Japan.
| |
Collapse
|
5
|
Kim Y, Li H, Choi J, Boo J, Jo H, Hyun JY, Shin I. Glycosidase-targeting small molecules for biological and therapeutic applications. Chem Soc Rev 2023; 52:7036-7070. [PMID: 37671645 DOI: 10.1039/d3cs00032j] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Glycosidases are ubiquitous enzymes that catalyze the hydrolysis of glycosidic linkages in oligosaccharides and glycoconjugates. These enzymes play a vital role in a wide variety of biological events, such as digestion of nutritional carbohydrates, lysosomal catabolism of glycoconjugates, and posttranslational modifications of glycoproteins. Abnormal glycosidase activities are associated with a variety of diseases, particularly cancer and lysosomal storage disorders. Owing to the physiological and pathological significance of glycosidases, the development of small molecules that target these enzymes is an active area in glycoscience and medicinal chemistry. Research efforts carried out thus far have led to the discovery of numerous glycosidase-targeting small molecules that have been utilized to elucidate biological processes as well as to develop effective chemotherapeutic agents. In this review, we describe the results of research studies reported since 2018, giving particular emphasis to the use of fluorescent probes for detection and imaging of glycosidases, activity-based probes for covalent labelling of these enzymes, glycosidase inhibitors, and glycosidase-activatable prodrugs.
Collapse
Affiliation(s)
- Yujun Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Hui Li
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Joohee Choi
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Jihyeon Boo
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Hyemi Jo
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
6
|
Lipaeva P, Karkossa I, Bedulina D, Schubert K, Luckenbach T. Cold-adapted amphipod species upon heat stress: Proteomic responses and their correlation with transcriptomic responses. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101048. [PMID: 36525778 DOI: 10.1016/j.cbd.2022.101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/15/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The cellular heat shock response (HSR) comprises transcriptomic and proteomic reactions to thermal stress. It was here addressed, how the proteomic, together with the transcriptomic HSR, relate to the thermal sensitivities of three cold-adapted but differently thermo-sensitive freshwater amphipod species. The proteomes of thermosensitive Eulimnogammarus verrucosus and thermotolerant Eulimnogammarus cyaneus, both endemic to Lake Baikal, and of thermotolerant Holarctic Gammarus lacustris were investigated upon 24 h exposure to the species-specific 10 % lethal temperatures (LT10). Furthermore, correlations of heat stress induced changes in proteomes (this study) and transcriptomes (previous study with identical experimental design) were examined. Proteomes indicated that the HSR activated processes encompassed (i) proteostasis maintenance, (ii) maintenance of cell adhesion, (iii) oxygen transport, (iv) antioxidant response, and (v) regulation of protein synthesis. Thermo-sensitive E. verrucosus showed the most pronounced proteomic HSR and the lowest correlation of transcriptomic and proteomic HSRs. For proteins related to translation (ribosomal proteins, elongation factors), transcriptomic and proteomic changes were inconsistent: transcripts were downregulated in many cases, with levels of corresponding proteins remaining unchanged. In the Eulimnogammarus species, levels of hemocyanin protein but not transcript were increased upon heat stress, suggesting a HSR also directed to enhance oxygen transport. Thermosensitive E. verrucosus showed the most pronounced relocation of transcription/translation activity to proteostasis maintenance, which may indicate that the general species-specific stability of protein structure could be a fundamental determinant of thermotolerance. By combining transcriptomic and proteomic response data, this study provides a comprehensive picture of the cellular HSR components in the studied amphipods.
Collapse
Affiliation(s)
- Polina Lipaeva
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Daria Bedulina
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Till Luckenbach
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| |
Collapse
|
7
|
Cordeiro RL, Santos CR, Domingues MN, Lima TB, Pirolla RAS, Morais MAB, Colombari FM, Miyamoto RY, Persinoti GF, Borges AC, de Farias MA, Stoffel F, Li C, Gozzo FC, van Heel M, Guerin ME, Sundberg EJ, Wang LX, Portugal RV, Giuseppe PO, Murakami MT. Mechanism of high-mannose N-glycan breakdown and metabolism by Bifidobacterium longum. Nat Chem Biol 2023; 19:218-229. [PMID: 36443572 PMCID: PMC10367113 DOI: 10.1038/s41589-022-01202-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022]
Abstract
Bifidobacteria are early colonizers of the human gut and play central roles in human health and metabolism. To thrive in this competitive niche, these bacteria evolved the capacity to use complex carbohydrates, including mammalian N-glycans. Herein, we elucidated pivotal biochemical steps involved in high-mannose N-glycan utilization by Bifidobacterium longum. After N-glycan release by an endo-β-N-acetylglucosaminidase, the mannosyl arms are trimmed by the cooperative action of three functionally distinct glycoside hydrolase 38 (GH38) α-mannosidases and a specific GH125 α-1,6-mannosidase. High-resolution cryo-electron microscopy structures revealed that bifidobacterial GH38 α-mannosidases form homotetramers, with the N-terminal jelly roll domain contributing to substrate selectivity. Additionally, an α-glucosidase enables the processing of monoglucosylated N-glycans. Notably, the main degradation product, mannose, is isomerized into fructose before phosphorylation, an unconventional metabolic route connecting it to the bifid shunt pathway. These findings shed light on key molecular mechanisms used by bifidobacteria to use high-mannose N-glycans, a perennial carbon and energy source in the intestinal lumen.
Collapse
Affiliation(s)
- Rosa L Cordeiro
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Camila R Santos
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Mariane N Domingues
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Tatiani B Lima
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Renan A S Pirolla
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Mariana A B Morais
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Felippe M Colombari
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Renan Y Miyamoto
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Gabriela F Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Antonio C Borges
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Marcelo A de Farias
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Fabiane Stoffel
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Chemistry, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Fabio C Gozzo
- Institute of Chemistry, University of Campinas, Campinas, Brazil
| | - Marin van Heel
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Rodrigo V Portugal
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
| | - Priscila O Giuseppe
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
| | - Mario T Murakami
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
| |
Collapse
|
8
|
Morikawa C, Sugiura K, Kondo K, Yamamoto Y, Kojima Y, Ozawa Y, Yoshioka H, Miura N, Piao J, Okada K, Hanamatsu H, Tsuda M, Tanaka S, Furukawa JI, Shinohara Y. Evaluation of the context of downstream N- and free N-glycomic alterations induced by swainsonine in HepG2 cells. Biochim Biophys Acta Gen Subj 2022; 1866:130168. [PMID: 35594965 DOI: 10.1016/j.bbagen.2022.130168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 11/27/2022]
Abstract
Swainsonine (SWA), a potent inhibitor of class II α-mannosidases, is present in a number of plant species worldwide and causes severe toxicosis in livestock grazing these plants. The mechanisms underlying SWA-induced animal poisoning are not fully understood. In this study, we analyzed the alterations that occur in N- and free N-glycomic upon addition of SWA to HepG2 cells to understand better SWA-induced glycomic alterations. After SWA addition, we observed the appearance of SWA-specific glycomic alterations, such as unique fucosylated hybrid-type and fucosylated M5 (M5F) N-glycans, and a remarkable increase in all classes of Gn1 FNGs. Further analysis of the context of these glycomic alterations showed that (fucosylated) hybrid type N-glycans were not the precursors of these Gn1 FNGs and vice versa. Time course analysis revealed the dynamic nature of glycomic alterations upon exposure of SWA and suggested that accumulation of free N-glycans occurred earlier than that of hybrid-type N-glycans. Hybrid-type N-glycans, of which most were uniquely core fucosylated, tended to increase slowly over time, as was observed for M5F N-glycans. Inhibition of swainsonine-induced unique fucosylation of hybrid N-glycans and M5 by coaddition of 2-fluorofucose caused significant increases in paucimannose- and fucosylated paucimannose-type N-glycans, as well as paucimannose-type free N-glycans. The results not only revealed the gross glycomic alterations in HepG2 cells induced by swainsonine, but also provide information on the global interrelationships between glycomic alterations.
Collapse
Affiliation(s)
- Chie Morikawa
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Kanako Sugiura
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Keina Kondo
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Yurie Yamamoto
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Yuma Kojima
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Yurika Ozawa
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Hiroki Yoshioka
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Nobuaki Miura
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Jinhua Piao
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita21, Nishi11, Kita-ku, Sapporo 001-0021, Japan
| | - Kazue Okada
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita21, Nishi11, Kita-ku, Sapporo 001-0021, Japan
| | - Hisatoshi Hanamatsu
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita21, Nishi11, Kita-ku, Sapporo 001-0021, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Jun-Ichi Furukawa
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita21, Nishi11, Kita-ku, Sapporo 001-0021, Japan
| | - Yasuro Shinohara
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan.
| |
Collapse
|
9
|
Maia N, Potelle S, Yildirim H, Duvet S, Akula SK, Schulz C, Wiame E, Gheldof A, O'Kane K, Lai A, Sermon K, Proisy M, Loget P, Attié-Bitach T, Quelin C, Fortuna AM, Soares AR, de Brouwer APM, Van Schaftingen E, Nassogne MC, Walsh CA, Stouffs K, Jorge P, Jansen AC, Foulquier F. Impaired catabolism of free oligosaccharides due to MAN2C1 variants causes a neurodevelopmental disorder. Am J Hum Genet 2022; 109:345-360. [PMID: 35045343 PMCID: PMC8874227 DOI: 10.1016/j.ajhg.2021.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/10/2021] [Indexed: 01/16/2023] Open
Abstract
Free oligosaccharides (fOSs) are soluble oligosaccharide species generated during N-glycosylation of proteins. Although little is known about fOS metabolism, the recent identification of NGLY1 deficiency, a congenital disorder of deglycosylation (CDDG) caused by loss of function of an enzyme involved in fOS metabolism, has elicited increased interest in fOS processing. The catabolism of fOSs has been linked to the activity of a specific cytosolic mannosidase, MAN2C1, which cleaves α1,2-, α1,3-, and α1,6-mannose residues. In this study, we report the clinical, biochemical, and molecular features of six individuals, including two fetuses, with bi-allelic pathogenic variants in MAN2C1; the individuals are from four different families. These individuals exhibit dysmorphic facial features, congenital anomalies such as tongue hamartoma, variable degrees of intellectual disability, and brain anomalies including polymicrogyria, interhemispheric cysts, hypothalamic hamartoma, callosal anomalies, and hypoplasia of brainstem and cerebellar vermis. Complementation experiments with isogenic MAN2C1-KO HAP1 cells confirm the pathogenicity of three of the identified MAN2C1 variants. We further demonstrate that MAN2C1 variants lead to accumulation and delay in the processing of fOSs in proband-derived cells. These results emphasize the involvement of MAN2C1 in human neurodevelopmental disease and the importance of fOS catabolism.
Collapse
Affiliation(s)
- Nuno Maia
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, 4050-466 Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine and Laboratory for Integrative and Translational Research in Population Health, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Sven Potelle
- Laboratory of Physiological Chemistry, de Duve Institute, 1200 Brussels, Belgium; WELBIO, 1200 Brussels, Belgium
| | - Hamide Yildirim
- Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Cluster, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Sandrine Duvet
- Univ. Lille, CNRS, UMR 8576-UGSF-Unit. de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Shyam K Akula
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Celine Schulz
- Univ. Lille, CNRS, UMR 8576-UGSF-Unit. de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Elsa Wiame
- Laboratory of Physiological Chemistry, de Duve Institute, 1200 Brussels, Belgium; WELBIO, 1200 Brussels, Belgium
| | - Alexander Gheldof
- Centre for Medical Genetics, UZ Brussel, 1090 Brussels, Belgium; Reproduction and Genetics Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Katherine O'Kane
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Abbe Lai
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Karen Sermon
- Reproduction and Genetics Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Maïa Proisy
- CHU Brest, Radiology Department, Brest University, 29609 Brest Cedex, France
| | - Philippe Loget
- Department of Pathology, Rennes University Hospital, 35000 Rennes, France
| | - Tania Attié-Bitach
- APHP, Embryofœtopathologie, Service d'Histologie-Embryologie-Cytogénétique, Hôpital Universitaire Necker-Enfants Malades, 75015 Paris, France; Université de Paris, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Chloé Quelin
- Clinical Genetics Department, Rennes University Hospital, 35000 Rennes, France
| | - Ana Maria Fortuna
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, 4050-466 Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine and Laboratory for Integrative and Translational Research in Population Health, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Ana Rita Soares
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, 4050-466 Porto, Portugal
| | - Arjan P M de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 Nijmegen, the Netherlands
| | - Emile Van Schaftingen
- Laboratory of Physiological Chemistry, de Duve Institute, 1200 Brussels, Belgium; WELBIO, 1200 Brussels, Belgium
| | - Marie-Cécile Nassogne
- Department of Pediatric Neurology, Cliniques Universitaires Saint-Luc, UCLouvain, 1200 Brussels, Belgium; Institute Of NeuroScience, Clinical Neuroscience, UCLouvain, 1200 Brussels, Belgium
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Katrien Stouffs
- Centre for Medical Genetics, UZ Brussel, 1090 Brussels, Belgium; Reproduction and Genetics Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Paula Jorge
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, 4050-466 Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine and Laboratory for Integrative and Translational Research in Population Health, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Anna C Jansen
- Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Cluster, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Pediatric Neurology Unit, Department of Pediatrics, UZ Brussel, 1090 Brussels, Belgium.
| | - François Foulquier
- Univ. Lille, CNRS, UMR 8576-UGSF-Unit. de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France.
| |
Collapse
|
10
|
Huang C, Seino J, Fujihira H, Sato K, Fujinawa R, Sumer-Bayraktar Z, Ishii N, Matsuo I, Nakaya S, Suzuki T. Occurrence of free N-glycans with a single GlcNAc at the reducing termini in animal sera. Glycobiology 2021; 32:314-332. [PMID: 34939097 DOI: 10.1093/glycob/cwab124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Recent studies demonstrated the occurrence of sialyl free N-glycans (FNGs) in sera from a variety of animals. Unlike the intracellular FNGs that mainly carry a single N-acetylglucosamine at their reducing termini (Gn1-type), these extra-cellular FNGs have an N,N'-diacetylchitobiose at their reducing termini (Gn2-type). The detailed mechanism for how they are formed, however, remains unclarified. In this study, we report on an improved method for isolating FNGs from sera and found that, not only sialyl FNGs, but also neutral FNGs are present in animal sera. Most of the neutral oligomannose-type FNGs were found to be Gn1-type. We also found that a small portion of sialyl FNGs were Gn1-type. The ratio of Gn1-type sialyl FNGs varies between species, and appears to be partially correlated with the distribution of lysosomal chitobiase activity. We also identified small sialylated glycans similar to milk oligosaccharides, such as sialyl lactose or sialyl N-acetyllactosamine in sera. Our results indicate that there are variety of free oligosaccharides in sera and the mechanism responsible for their formation is more complicated than currently envisaged.
Collapse
Affiliation(s)
- Chengcheng Huang
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Junichi Seino
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Haruhiko Fujihira
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan.,Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 133-8421, Japan
| | - Keiko Sato
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Reiko Fujinawa
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Zeynep Sumer-Bayraktar
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Nozomi Ishii
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Ichiro Matsuo
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Shuichi Nakaya
- Global Application Development Center, Shimadzu Corporation, Kyoto 604-8511, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
11
|
Katsube M, Ebara N, Maeda M, Kimura Y. Cytosolic Free N-Glycans Are Retro-Transported Into the Endoplasmic Reticulum in Plant Cells. FRONTIERS IN PLANT SCIENCE 2021; 11:610124. [PMID: 33537045 PMCID: PMC7847903 DOI: 10.3389/fpls.2020.610124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
During endoplasmic reticulum (ER)-associated degradation, free N-glycans (FNGs) are produced from misfolded nascent glycoproteins via the combination of the cytosolic peptide N-glycanase (cPNGase) and endo-β-N-acetylglucosaminidase (ENGase) in the plant cytosol. The resulting high-mannose type (HMT)-FNGs, which carry one GlcNAc residue at the reducing end (GN1-FNGs), are ubiquitously found in developing plant cells. In a previous study, we found that HMT-FNGs assisted in protein folding and inhibited β-amyloid fibril formation, suggesting a possible biofunction of FNGs involved in the protein folding system. However, whether these HMT-FNGs occur in the ER, an organelle involved in protein folding, remained unclear. On the contrary, we also reported the presence of plant complex type (PCT)-GN1-FNGs, which carry the Lewisa epitope at the non-reducing end, indicating that these FNGs had been fully processed in the Golgi apparatus. Since plant ENGase was active toward HMT-N-glycans but not PCT-N-glycans that carry β1-2xylosyl and/or α1-3 fucosyl residue(s), these PCT-GN1-FNGs did not appear to be produced from fully processed glycoproteins that harbored PCT-N-glycans via ENGase activity. Interestingly, PCT-GN1-FNGs were found in the extracellular space, suggesting that HMT-GN1-FNGs formed in the cytosol might be transported back to the ER and processed in the Golgi apparatus through the protein secretion pathway. As the first step in elucidating the production mechanism of PCT-GN1-FNGs, we analyzed the structures of free oligosaccharides in plant microsomes and proved that HMT-FNGs (Man9-7GlcNAc1 and Man9-8GlcNAc2) could be found in microsomes, which almost consist of the ER compartments.
Collapse
|
12
|
Abstract
Folding of proteins is essential so that they can exert their functions. For proteins that transit the secretory pathway, folding occurs in the endoplasmic reticulum (ER) and various chaperone systems assist in acquiring their correct folding/subunit formation. N-glycosylation is one of the most conserved posttranslational modification for proteins, and in eukaryotes it occurs in the ER. Consequently, eukaryotic cells have developed various systems that utilize N-glycans to dictate and assist protein folding, or if they consistently fail to fold properly, to destroy proteins for quality control and the maintenance of homeostasis of proteins in the ER.
Collapse
|
13
|
Abstract
N-glycosylation is a highly conserved glycan modification, and more than 7000 proteins are N-glycosylated in humans. N-glycosylation has many biological functions such as protein folding, trafficking, and signal transduction. Thus, glycan modification to proteins is profoundly involved in numerous physiological and pathological processes. The N-glycan precursor is biosynthesized in the endoplasmic reticulum (ER) from dolichol phosphate by sequential enzymatic reactions to generate the dolichol-linked oligosaccharide composed of 14 sugar residues, Glc3Man9GlcNAc2. The oligosaccharide is then en bloc transferred to the consensus sequence N-X-S/T (X represents any amino acid except proline) of nascent proteins. Subsequently, the N-glycosylated nascent proteins enter the folding step, in which N-glycans contribute largely to attaining the correct protein fold by recruiting the lectin-like chaperones, calnexin, and calreticulin. Despite the N-glycan-dependent folding process, some glycoproteins do not fold correctly, and these misfolded glycoproteins are destined to degradation by proteasomes in the cytosol. Properly folded proteins are transported to the Golgi, and N-glycans undergo maturation by the sequential reactions of glycosidases and glycosyltransferases, generating complex-type N-glycans. N-Acetylglucosaminyltransferases (GnT-III, GnT-IV, and GnT-V) produce branched N-glycan structures, affording a higher complexity to N-glycans. In this chapter, we provide an overview of the biosynthetic pathway of N-glycans in the ER and Golgi.
Collapse
|
14
|
Fujita K, Kamiya M, Yoshioka T, Ogasawara A, Hino R, Kojima R, Ueo H, Urano Y. Rapid and Accurate Visualization of Breast Tumors with a Fluorescent Probe Targeting α-Mannosidase 2C1. ACS CENTRAL SCIENCE 2020; 6:2217-2227. [PMID: 33376783 PMCID: PMC7760471 DOI: 10.1021/acscentsci.0c01189] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Indexed: 05/21/2023]
Abstract
Accurate detection of breast tumors and discrimination of tumor from normal tissues during breast-conserving surgery are essential to reduce the risk of misdiagnosis or recurrence. However, existing probes show substantial background signals in normal breast tissues. In this study, we focus on glycosidase activities in breast tumors. We synthesized a series of 12 fluorescent probes and performed imaging-based evaluation on surgically resected human breast specimens. Among them, the α-mannosidase-reactive fluorescent probe HMRef-αMan detected breast cancer with 90% sensitivity and 100% specificity. We identified α-mannosidase 2C1 as the target enzyme and confirmed its overexpression in various breast tumors. We found that fibroadenoma, the most common benign breast lesion in young woman, tends to have higher α-mannosidase 2C1 activity than malignant cancer. Combined application of green-emitting HMRef-αMan and a red-emitting γ-glutamyltranspeptidase probe enabled efficient dual-color, dual-target optical discrimination of malignant and benign tumors.
Collapse
Affiliation(s)
- Kyohhei Fujita
- Graduate School of Medicine and Graduate School
of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Mako Kamiya
- Graduate School of Medicine and Graduate School
of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- PRESTO,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takafusa Yoshioka
- Graduate School of Medicine and Graduate School
of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Akira Ogasawara
- Graduate School of Medicine and Graduate School
of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Rumi Hino
- Daito
Bunka University, Department of Sports and
Health Science, 560 Iwadono, Higashimatsuyama, Saitama 355-8501, Japan
| | - Ryosuke Kojima
- Graduate School of Medicine and Graduate School
of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- PRESTO,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiroaki Ueo
- Ueo
Breast Cancer Hospital, 1-3-5 Futamatacho, Oita, Oita 870-0887, Japan
| | - Yasuteru Urano
- Graduate School of Medicine and Graduate School
of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- CREST,
Japan
Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda,
Tokyo 100-0004, Japan
- E-mail
| |
Collapse
|
15
|
Ninagawa S, George G, Mori K. Mechanisms of productive folding and endoplasmic reticulum-associated degradation of glycoproteins and non-glycoproteins. Biochim Biophys Acta Gen Subj 2020; 1865:129812. [PMID: 33316349 DOI: 10.1016/j.bbagen.2020.129812] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The quality of proteins destined for the secretory pathway is ensured by two distinct mechanisms in the endoplasmic reticulum (ER): productive folding of newly synthesized proteins, which is assisted by ER-localized molecular chaperones and in most cases also by disulfide bond formation and transfer of an oligosaccharide unit; and ER-associated degradation (ERAD), in which proteins unfolded or misfolded in the ER are recognized and processed for delivery to the ER membrane complex, retrotranslocated through the complex with simultaneous ubiquitination, extracted by AAA-ATPase to the cytosol, and finally degraded by the proteasome. SCOPE OF REVIEW We describe the mechanisms of productive folding and ERAD, with particular attention to glycoproteins versus non-glycoproteins, and to yeast versus mammalian systems. MAJOR CONCLUSION Molecular mechanisms of the productive folding of glycoproteins and non-glycoproteins mediated by molecular chaperones and protein disulfide isomerases are well conserved from yeast to mammals. Additionally, mammals have gained an oligosaccharide structure-dependent folding cycle for glycoproteins. The molecular mechanisms of ERAD are also well conserved from yeast to mammals, but redundant expression of yeast orthologues in mammals has been encountered, particularly for components involved in recognition and processing of glycoproteins and components of the ER membrane complex involved in retrotranslocation and simultaneous ubiquitination of glycoproteins and non-glycoproteins. This may reflect an evolutionary consequence of increasing quantity or quality needs toward mammals. GENERAL SIGNIFICANCE The introduction of innovative genome editing technology into analysis of the mechanisms of mammalian ERAD, as exemplified here, will provide new insights into the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Ginto George
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
16
|
Zhang J, Wang YY, Du LL, Ye K. Cryo-EM structure of fission yeast tetrameric α-mannosidase Ams1. FEBS Open Bio 2020; 10:2437-2451. [PMID: 32981237 PMCID: PMC7609781 DOI: 10.1002/2211-5463.12988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/20/2020] [Accepted: 09/22/2020] [Indexed: 12/29/2022] Open
Abstract
Fungal α‐mannosidase Ams1 and its mammalian homolog MAN2C1 hydrolyze terminal α‐linked mannoses in free oligosaccharides released from misfolded glycoproteins or lipid‐linked oligosaccharide donors. Ams1 is transported by selective autophagy into vacuoles. Here, we determine the tetrameric structure of Ams1 from the fission yeast Schizosaccharomyces pombe at 3.2 Å resolution by cryo‐electron microscopy. Distinct from a low resolution structure of S. cerevisiae Ams1, S. pombe Ams1 has a prominent N‐terminal tail that mediates tetramerization and an extra β‐sheet domain. Ams1 shares a conserved active site with other enzymes in glycoside hydrolase family 38, to which Ams1 belongs, but contains extra N‐terminal domains involved in tetramerization. The atomic structure of Ams1 reported here will aid understanding of its enzymatic activity and transport mechanism.
Collapse
Affiliation(s)
- Jianxiu Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Ying Wang
- National Institute of Biological Sciences, Beijing, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Armstrong Z, Kuo CL, Lahav D, Liu B, Johnson R, Beenakker TJM, de Boer C, Wong CS, van Rijssel ER, Debets MF, Florea BI, Hissink C, Boot RG, Geurink PP, Ovaa H, van der Stelt M, van der Marel GM, Codée JDC, Aerts JMFG, Wu L, Overkleeft HS, Davies GJ. Manno-epi-cyclophellitols Enable Activity-Based Protein Profiling of Human α-Mannosidases and Discovery of New Golgi Mannosidase II Inhibitors. J Am Chem Soc 2020; 142:13021-13029. [DOI: 10.1021/jacs.0c03880] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zachary Armstrong
- Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom
| | - Chi-Lin Kuo
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Daniël Lahav
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Bing Liu
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Rachel Johnson
- Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom
| | - Thomas J. M. Beenakker
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Casper de Boer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Chung-Sing Wong
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Erwin R. van Rijssel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Marjoke F. Debets
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Bogdan I. Florea
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Colin Hissink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Rolf G. Boot
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Paul P. Geurink
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Huib Ovaa
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Mario van der Stelt
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | | - Jeroen D. C. Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Johannes M. F. G. Aerts
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Liang Wu
- Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gideon J. Davies
- Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
18
|
Foulquier F, Legrand D. Biometals and glycosylation in humans: Congenital disorders of glycosylation shed lights into the crucial role of Golgi manganese homeostasis. Biochim Biophys Acta Gen Subj 2020; 1864:129674. [PMID: 32599014 DOI: 10.1016/j.bbagen.2020.129674] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022]
Abstract
About half of the eukaryotic proteins bind biometals that participate in their structure and functions in virtually all physiological processes, including glycosylation. After reviewing the biological roles and transport mechanisms of calcium, magnesium, manganese, zinc and cobalt acting as cofactors of the metalloproteins involved in sugar metabolism and/or glycosylation, the paper will outline the pathologies resulting from a dysregulation of these metals homeostasis and more particularly Congenital Disorders of Glycosylation (CDGs) caused by ion transporter defects. Highlighting of CDGs due to defects in SLC39A8 (ZIP8) and TMEM165, two proteins transporting manganese from the extracellular space to cytosol and from cytosol to the Golgi lumen, respectively, has emphasized the importance of manganese homeostasis for glycosylation. Based on our current knowledge of TMEM165 structure and functions, this review will draw a picture of known and putative mechanisms regulating manganese homeostasis in the secretory pathway.
Collapse
Affiliation(s)
- François Foulquier
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille F-59000, France
| | - Dominique Legrand
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille F-59000, France.
| |
Collapse
|
19
|
Hirayama H, Matsuda T, Tsuchiya Y, Oka R, Seino J, Huang C, Nakajima K, Noda Y, Shichino Y, Iwasaki S, Suzuki T. Free glycans derived from O-mannosylated glycoproteins suggest the presence of an O-glycoprotein degradation pathway in yeast. J Biol Chem 2019; 294:15900-15911. [PMID: 31311856 DOI: 10.1074/jbc.ra119.009491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/04/2019] [Indexed: 11/06/2022] Open
Abstract
In eukaryotic cells, unconjugated oligosaccharides that are structurally related to N-glycans (i.e. free N-glycans) are generated either from misfolded N-glycoproteins destined for the endoplasmic reticulum-associated degradation or from lipid-linked oligosaccharides, donor substrates for N-glycosylation of proteins. The mechanism responsible for the generation of free N-glycans is now well-understood, but the issue of whether other types of free glycans are present remains unclear. Here, we report on the accumulation of free, O-mannosylated glycans in budding yeast that were cultured in medium containing mannose as the carbon source. A structural analysis of these glycans revealed that their structures are identical to those of O-mannosyl glycans that are attached to glycoproteins. Deletion of the cyc8 gene, which encodes for a general transcription repressor, resulted in the accumulation of excessive amounts of free O-glycans, concomitant with a severe growth defect, a reduction in the level of an O-mannosylated protein, and compromised cell wall integrity. Our findings provide evidence in support of a regulated pathway for the degradation of O-glycoproteins in yeast and offer critical insights into the catabolic mechanisms that control the fate of O-glycosylated proteins.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Tsugiyo Matsuda
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Yae Tsuchiya
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Ritsuko Oka
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Junichi Seino
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Chengcheng Huang
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Kazuki Nakajima
- Department of Academic Research Support Promotion Facility, Center for Research Promotion and Support, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yoichi Noda
- Collaborative Research Institute for Innovative Microbiology, Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
20
|
Iminosugar antivirals: the therapeutic sweet spot. Biochem Soc Trans 2017; 45:571-582. [PMID: 28408497 PMCID: PMC5390498 DOI: 10.1042/bst20160182] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/16/2017] [Accepted: 02/27/2017] [Indexed: 01/03/2023]
Abstract
Many viruses require the host endoplasmic reticulum protein-folding machinery in order to correctly fold one or more of their glycoproteins. Iminosugars with glucose stereochemistry target the glucosidases which are key for entry into the glycoprotein folding cycle. Viral glycoproteins are thus prevented from interacting with the protein-folding machinery leading to misfolding and an antiviral effect against a wide range of different viral families. As iminosugars target host enzymes, they should be refractory to mutations in the virus. Iminosugars therefore have great potential for development as broad-spectrum antiviral therapeutics. We outline the mechanism giving rise to the antiviral activity of iminosugars, the current progress in the development of iminosugar antivirals and future prospects for this field.
Collapse
|
21
|
Occurrence of complex type free N-glycans with a single GlcNAc residue at the reducing termini in the fresh-water plant, Egeria densa. Glycoconj J 2017; 34:229-240. [DOI: 10.1007/s10719-016-9758-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/26/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
|
22
|
Catabolism of N-glycoproteins in mammalian cells: Molecular mechanisms and genetic disorders related to the processes. Mol Aspects Med 2016; 51:89-103. [DOI: 10.1016/j.mam.2016.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/11/2016] [Accepted: 05/24/2016] [Indexed: 11/17/2022]
|
23
|
Seino J, Fujihira H, Nakakita SI, Masahara-Negishi Y, Miyoshi E, Hirabayashi J, Suzuki T. Occurrence of free sialyl oligosaccharides related to N-glycans (sialyl free N-glycans) in animal sera. Glycobiology 2016; 26:1072-1085. [PMID: 27102284 DOI: 10.1093/glycob/cww048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 04/01/2016] [Accepted: 04/13/2016] [Indexed: 12/23/2022] Open
Abstract
Free oligosaccharides that are structurally related to N-glycans [free N-glycans (FNGs)] are widely distributed in the cytosol of animal cells. The diverse molecular mechanisms responsible for the formation of these FNGs have been well clarified. In this study we demonstrate the wide occurrence of sialylated FNGs in sera of various animals. The features of these extracellular FNGs are quite distinct from the cytosolic FNGs, as they are Gn2-type glycans, bearing an N,N'-diacetylchitobiose unit at their reducing termini, while the cytosolic FNGs are predominantly Gn1-type, with a single GlcNAc at their reducing termini. The major structures observed varied from species to species, and the structures of the FNGs appear to be correlated with the major sialyl N-glycans on serum glycoproteins, suggesting that the serum FNGs are produced by hepatocytes. Interestingly, glycan-profiles of the FNGs indicated that they are altered in a developmental stage-dependent manner. Sialyl FNGs in the sera may not only be of biological relevance, in that they might reflect the functionality of the liver, but also can be attractive sources for obtaining uniform sialyl FNGs in the chemoenzymatic synthesis of glycoproteins.
Collapse
Affiliation(s)
- Junichi Seino
- Glycometabolome Team, RIKEN-Max Planck Institute Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Haruhiko Fujihira
- Glycometabolome Team, RIKEN-Max Planck Institute Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shin-Ichi Nakakita
- Division of Functional Glycomics, Life Science Research Center, Institute of Research Promotion, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Yuki Masahara-Negishi
- Glycometabolome Team, RIKEN-Max Planck Institute Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University School of Medicine, 1-7 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Jun Hirabayashi
- Division of Functional Glycomics, Life Science Research Center, Institute of Research Promotion, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Tadashi Suzuki
- Glycometabolome Team, RIKEN-Max Planck Institute Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
24
|
Harada Y, Huang C, Yamaki S, Dohmae N, Suzuki T. Non-lysosomal Degradation of Singly Phosphorylated Oligosaccharides Initiated by the Action of a Cytosolic Endo-β-N-acetylglucosaminidase. J Biol Chem 2016; 291:8048-58. [PMID: 26858256 DOI: 10.1074/jbc.m115.685313] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Indexed: 01/29/2023] Open
Abstract
Phosphorylated oligosaccharides (POSs) are produced by the degradation of dolichol-linked oligosaccharides (DLOs) by an unclarified mechanism in mammalian cells. Although POSs are exclusively found in the cytosol, their intracellular fates remain unclear. Our findings indicate that POSs are catabolized via a non-lysosomal glycan degradation pathway that involves a cytosolic endo-β-N-acetylglucosaminidase (ENGase). Quantitative and structural analyses of POSs revealed that ablation of the ENGase results in the significant accumulation of POSs with a hexasaccharide structure composed of Manα1,2Manα1,3(Manα1,6)Manβ1,4GlcNAcβ1,4GlcNAc.In vitroENGase assays revealed that the presence of an α1,2-linked mannose residue facilitates the hydrolysis of POSs by the ENGase. Liquid chromatography-mass spectrometric analyses and fluorescent labeling experiments show that such POSs contain one phosphate group at the reducing end. These results indicate that ENGase efficiently hydrolyzes POSs that are larger than Man4GlcNAc2-P, generating GlcNAc-1-P and neutral Gn1-type free oligosaccharides. These results provide insight into important aspects of the generation and degradation of POSs.
Collapse
Affiliation(s)
- Yoichiro Harada
- From the Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198
| | - Chengcheng Huang
- From the Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198
| | - Satoshi Yamaki
- the Global Application Development Center, Analytical and Measuring Instruments Division, Shimadzu Corp., Hadano, Kanagawa 259-1304, and
| | - Naoshi Dohmae
- the Collaboration Promotion Unit, RIKEN Global Research Cluster, Wako, Saitama 351-0198, Japan
| | - Tadashi Suzuki
- From the Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198,
| |
Collapse
|
25
|
Harada Y, Masahara-Negishi Y, Suzuki T. Cytosolic-free oligosaccharides are predominantly generated by the degradation of dolichol-linked oligosaccharides in mammalian cells. Glycobiology 2015. [DOI: 10.1093/glycob/cwv055] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Co-Expression of NEU2 and GBA3 Causes a Drastic Reduction in Cytosolic Sialyl Free N-glycans in Human MKN45 Stomach Cancer Cells-Evidence for the Physical Interaction of NEU2 and GBA3. Biomolecules 2015; 5:1499-514. [PMID: 26193330 PMCID: PMC4598761 DOI: 10.3390/biom5031499] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 11/16/2022] Open
Abstract
It is well known that the "free" form of glycans that are structurally related to asparagine (N)-linked glycans ("free N-glycans") are found in a wide variety of organisms. The mechanisms responsible for the formation/degradation of high mannose-type free N-glycans have been extensively studied in mammalian cells. Recent evidence, however, also suggests that sialylated, complex-type free N-glycans are also present in the cytosol of various mammalian-derived cultured cells/tissues. We report herein on an investigation of the mechanism responsible for the degradation of such sialyl free N-glycans. The findings show that the amount of glycans is dramatically reduced upon the co-expression of cytosolic sialidase NEU2 with cytosolic β-glycosidase GBA3 in human stomach cancer-derived MKN45 cells. The physical interaction between NEU2 and GBA3 was confirmed by co-precipitation analyses as well as gel filtration assays. The NEU2 protein was found to be stabilized in the presence of GBA3 both in cellulo and in vitro. Our results thus indicate that cytosolic GBA3 is likely involved in the catabolism of cytosolic sialyl free N-glycans, possibly by stabilizing the activity of the NEU2 protein.
Collapse
|
27
|
Harada Y, Hirayama H, Suzuki T. Generation and degradation of free asparagine-linked glycans. Cell Mol Life Sci 2015; 72:2509-33. [PMID: 25772500 PMCID: PMC11113800 DOI: 10.1007/s00018-015-1881-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/19/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
Abstract
Asparagine (N)-linked protein glycosylation, which takes place in the eukaryotic endoplasmic reticulum (ER), is important for protein folding, quality control and the intracellular trafficking of secretory and membrane proteins. It is known that, during N-glycosylation, considerable amounts of lipid-linked oligosaccharides (LLOs), the glycan donor substrates for N-glycosylation, are hydrolyzed to form free N-glycans (FNGs) by unidentified mechanisms. FNGs are also generated in the cytosol by the enzymatic deglycosylation of misfolded glycoproteins during ER-associated degradation. FNGs derived from LLOs and misfolded glycoproteins are eventually merged into one pool in the cytosol and the various glycan structures are processed to a near homogenous glycoform. This article summarizes the current state of our knowledge concerning the formation and catabolism of FNGs.
Collapse
Affiliation(s)
- Yoichiro Harada
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| | - Hiroto Hirayama
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| | - Tadashi Suzuki
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| |
Collapse
|
28
|
Suzuki T. The cytoplasmic peptide:N-glycanase (Ngly1)--basic science encounters a human genetic disorder. J Biochem 2014; 157:23-34. [DOI: 10.1093/jb/mvu068] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Kitazume S, Imamaki R, Kurimoto A, Ogawa K, Kato M, Yamaguchi Y, Tanaka K, Ishida H, Ando H, Kiso M, Hashii N, Kawasaki N, Taniguchi N. Interaction of platelet endothelial cell adhesion molecule (PECAM) with α2,6-sialylated glycan regulates its cell surface residency and anti-apoptotic role. J Biol Chem 2014; 289:27604-13. [PMID: 25135639 DOI: 10.1074/jbc.m114.563585] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The luminal sides of vascular endothelial cells are heavily covered with a so-called glycocalyx, but the precise role of the endothelial glycocalyx remains unclear. Our previous study showed that N-glycan α2,6-sialylation regulates the cell surface residency of an anti-apoptotic molecule, platelet endothelial cell adhesion molecule (PECAM), as well as the sensitivity of endothelial cells toward apoptotic stimuli. As PECAM itself was shown to be modified with biantennary N-glycans having α2,6-sialic acid, we expected that PECAM would possess lectin-like activity toward α2,6-sialic acid to ensure its homophilic interaction. To verify this, a series of oligosaccharides were initially added to observe their inhibitory effects on the homophilic PECAM interaction in vitro. We found that a longer α2,6-sialylated oligosaccharide exhibited strong inhibitory activity. Furthermore, we found that a cluster-type α2,6-sialyl N-glycan probe specifically bound to PECAM-immobilized beads. Moreover, the addition of the α2,6-sialylated oligosaccharide to endothelial cells enhanced the internalization of PECAM as well as the sensitivity to apoptotic stimuli. Collectively, these findings suggest that PECAM is a sialic acid binding lectin and that this binding property supports endothelial cell survival. Notably, our findings that α2,6-sialylated glycans influenced the susceptibility to endothelial cell apoptosis shed light on the possibility of using a glycan-based method to modulate angiogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Masaki Kato
- Structural Glycobiology Team, RIKEN-Max Planck Joint Research Center, Global Research Cluster, and
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, RIKEN-Max Planck Joint Research Center, Global Research Cluster, and
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, Saitama 351-0198, Japan
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry, Gifu University, Gifu 501-1193, Japan
| | - Hiromune Ando
- Department of Applied Bioorganic Chemistry, Gifu University, Gifu 501-1193, Japan, Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan, and
| | - Makoto Kiso
- Department of Applied Bioorganic Chemistry, Gifu University, Gifu 501-1193, Japan, Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan, and
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Nana Kawasaki
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | | |
Collapse
|
30
|
Suzuki T, Harada Y. Non-lysosomal degradation pathway for N-linked glycans and dolichol-linked oligosaccharides. Biochem Biophys Res Commun 2014; 453:213-9. [PMID: 24866240 DOI: 10.1016/j.bbrc.2014.05.075] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/16/2014] [Indexed: 01/11/2023]
Abstract
There is growing evidence that asparagine (N)-linked glycans play pivotal roles in protein folding and intra- or intercellular trafficking of N-glycosylated proteins. During the N-glycosylation of proteins, significant amounts of free oligosaccharides (fOSs) and phosphorylated oligosaccharides (POSs) are generated at the endoplasmic reticulum (ER) membrane by unclarified mechanisms. fOSs are also formed in the cytosol by the enzymatic deglycosylation of misfolded glycoproteins destined for proteasomal degradation. This article summarizes the current knowledge of the molecular and regulatory mechanisms underlying the formation of fOSs and POSs in mammalian cells and Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Tadashi Suzuki
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Japan.
| | - Yoichiro Harada
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Japan
| |
Collapse
|
31
|
Paciotti S, Persichetti E, Klein K, Tasegian A, Duvet S, Hartmann D, Gieselmann V, Beccari T. Accumulation of free oligosaccharides and tissue damage in cytosolic α-mannosidase (Man2c1)-deficient mice. J Biol Chem 2014; 289:9611-22. [PMID: 24550399 DOI: 10.1074/jbc.m114.550509] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Free Man(7-9)GlcNAc2 is released during the biosynthesis pathway of N-linked glycans or from misfolded glycoproteins during the endoplasmic reticulum-associated degradation process and are reduced to Man5GlcNAc in the cytosol. In this form, free oligosaccharides can be transferred into the lysosomes to be degraded completely. α-Mannosidase (MAN2C1) is the enzyme responsible for the partial demannosylation occurring in the cytosol. It has been demonstrated that the inhibition of MAN2C1 expression induces accumulation of Man(8-9)GlcNAc oligosaccharides and apoptosis in vitro. We investigated the consequences caused by the lack of cytosolic α-mannosidase activity in vivo by the generation of Man2c1-deficient mice. Increased amounts of Man(8-9)GlcNAc oligosaccharides were recognized in all analyzed KO tissues. Histological analysis of the CNS revealed neuronal and glial degeneration with formation of multiple vacuoles in deep neocortical layers and major telencephalic white matter tracts. Enterocytes of the small intestine accumulate mannose-containing saccharides and glycogen particles in their apical cytoplasm as well as large clear vacuoles in retronuclear position. Liver tissue is characterized by groups of hepatocytes with increased content of mannosyl compounds and glycogen, some of them undergoing degeneration by hydropic swelling. In addition, lectin screening showed the presence of mannose-containing saccharides in the epithelium of proximal kidney tubules, whereas scattered glomeruli appeared collapsed or featured signs of fibrosis along Bowman's capsule. Except for a moderate enrichment of mannosyl compounds and glycogen, heterozygous mice were normal, arguing against possible toxic effects of truncated Man2c1. These findings confirm the key role played by Man2c1 in the catabolism of free oligosaccharides.
Collapse
Affiliation(s)
- Silvia Paciotti
- From the Dipartimento di Scienze Farmaceutiche, University of Perugia, Perugia 06126, Italy
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Characterisation of class I and II α-mannosidases from Drosophila melanogaster. Glycoconj J 2013; 30:899-909. [DOI: 10.1007/s10719-013-9495-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/02/2013] [Accepted: 08/07/2013] [Indexed: 12/31/2022]
|
33
|
Seino J, Wang L, Harada Y, Huang C, Ishii K, Mizushima N, Suzuki T. Basal autophagy is required for the efficient catabolism of sialyloligosaccharides. J Biol Chem 2013; 288:26898-907. [PMID: 23880766 DOI: 10.1074/jbc.m113.464503] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Macroautophagy is an essential, homeostatic process involving degradation of a cell's own components; it plays a role in catabolizing cellular components, such as protein or lipids, and damaged or excess organelles. Here, we show that in Atg5(-/-) cells, sialyloligosaccharides specifically accumulated in the cytosol. Accumulation of these glycans was observed under non-starved conditions, suggesting that non-induced, basal autophagy is essential for their catabolism. Interestingly, once accumulated in the cytosol, sialylglycans cannot be efficiently catabolized by resumption of the autophagic process, suggesting that functional autophagy is important for preventing sialyloligosaccharides from accumulating in the cytosol. Moreover, knockdown of sialin, a lysosomal transporter of sialic acids, resulted in a significant reduction of sialyloligosaccharides, implying that autophagy affects the substrate specificity of this transporter. This study thus provides a surprising link between basal autophagy and catabolism of N-linked glycans.
Collapse
Affiliation(s)
- Junichi Seino
- From the Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Max Planck Joint Research Center, RIKEN Global Research Cluster, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Katoh T, Takase J, Tani Y, Amamoto R, Aoshima N, Tiemeyer M, Yamamoto K, Ashida H. Deficiency of α-glucosidase I alters glycoprotein glycosylation and lifespan in Caenorhabditis elegans. Glycobiology 2013; 23:1142-51. [PMID: 23836288 DOI: 10.1093/glycob/cwt051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Endoplasmic reticulum (ER) α-glucosidase I is an enzyme that trims the distal α1,2-linked glucose (Glc) residue from the Glc3Man9GlcNAc2 oligosaccharide following its addition to nascent glycoproteins in the initial step of processing. This reaction is critical to the subsequent processing of N-glycans and thus defects in α-glucosidase I gene in human cause congenital disorder of glycosylation (CDG) type IIb. We identified the Caenorhabditis elegans α-glucosidase I gene (F13H10.4, designated agl-1) that encodes a polypeptide with 36% identity to human α-glucosidase I. The agl-1 cDNA restored the expression of complex-type N-glycans on the cell surface of α-glucosidase I-defective Chinese hamster ovary Lec23 cells. RNAi knockdown of agl-1 [agl-1(RNAi)] produced worms that were visibly similar to wild-type, but lifespan was reduced to about half of the control. Analyses of N-glycosylation in agl-1(RNAi) animals by western blotting and mass spectrometry showed reduction of paucimannose and complex-type glycans and dramatic increase of glucosylated oligomannose glycans. In addition, a significant amount of unusual terminally fucosylated N-glycans were found in agl-1(RNAi) animals. ER stress response was also provoked, leading to the accumulation of large amounts of triglucosylated free oligosaccharides (FOSs) (Glc3Man4-5GlcNAc1-2) in agl-1(RNAi) animals. Acceleration of ER-associated degradation in response to the accumulation of unfolded glycoproteins and insufficient interaction with calnexin/calreticulin in the ER lumen likely accounts for the increase of FOSs. Taken together, these studies in C. elegans demonstrate that decreased ER α-glucosidase I affects the entire N-glycan profile and induces chronic ER stress, which may contribute to the pathophysiology of CDG-IIb in humans.
Collapse
Affiliation(s)
- Toshihiko Katoh
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602-4712, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang L, Suzuki T. Dual functions for cytosolic α-mannosidase (Man2C1): its down-regulation causes mitochondria-dependent apoptosis independently of its α-mannosidase activity. J Biol Chem 2013; 288:11887-96. [PMID: 23486476 DOI: 10.1074/jbc.m112.425702] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cytosolic α-mannosidase (Man2C1) trims free oligosaccharides in mammalian cells, and its down-regulation reportedly delays cancer growth by inducing mitotic arrest or apoptosis. However, the mechanism by which Man2C1 down-regulation induces apoptosis is unknown. Here, we demonstrated that silencing of Man2C1 via small hairpin RNAs induced mitochondria-dependent apoptosis in HeLa cells. Expression of CHOP (C/EBP homologous protein), a transcription factor critical to endoplasmic reticulum stress-induced apoptosis, was significantly up-regulated in Man2C1 knockdown cells. However, this enhanced CHOP expression was not caused by endoplasmic reticulum stress. Interestingly, Man2C1 catalytic activity was not required for this regulation of apoptosis; introduction of mutant, enzymatically inactive Man2C1 rescued apoptotic phenotypes of Man2C1 knockdown cells. These results show that Man2C1 has dual functions: one in glycan catabolism and another in apoptotic signaling.
Collapse
Affiliation(s)
- Li Wang
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
36
|
Wilson IBH. The class I α1,2-mannosidases of Caenorhabditis elegans. Glycoconj J 2012; 29:173-9. [PMID: 22535467 DOI: 10.1007/s10719-012-9378-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/07/2012] [Accepted: 04/10/2012] [Indexed: 11/26/2022]
Abstract
During the biosynthesis of N-glycans in multicellular eukaryotes, glycans with the compositions Man(5)GlcNAc(2-3) are key intermediates. However, to reach this 'decision point', these N-glycans are first processed from Glc(3)Man(9)GlcNAc(2) through to Man(5)GlcNAc(2) by a number of glycosidases, whereby up to four α1-2-linked mannose residues are removed by class I mannosidases (glycohydrolase family 47). Whereas in the yeast Saccharomyces cerevisiae there are maximally three members of this protein family, in higher organisms there are multiple class I mannosidases residing in the endoplasmic reticulum and Golgi apparatus. The genome of the model nematode Caenorhabditis elegans encodes seven members of this protein family, whereby four are predicted to be classical processing mannosidases and three are related proteins with roles in quality control. In this study, cDNAs encoding the four predicted mannosidases were cloned and expressed in Pichia pastoris and the activity of these enzymes, designated MANS-1, MANS-2, MANS-3 and MANS-4, was verified. The first two can, dependent on the incubation time, remove three to four residues from Man(9)GlcNAc(2), whereas the action of the other two results in the appearance of the B isomer of Man(8)GlcNAc(2); together the complementary activities of these enzymes result in processing to Man(5)GlcNAc(2). With these data, another gap is closed in our understanding of the N-glycan biosynthesis pathway of the nematode worm.
Collapse
Affiliation(s)
- Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, 1190, Wien, Austria.
| |
Collapse
|
37
|
Mehdy A, Morelle W, Rosnoblet C, Legrand D, Lefebvre T, Duvet S, Foulquier F. PUGNAc treatment leads to an unusual accumulation of free oligosaccharides in CHO cells. J Biochem 2012; 151:439-46. [PMID: 22337894 DOI: 10.1093/jb/mvs012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Free oligosaccharides (fOS) are generated as the result of N-glycoproteins catabolism that occurs in two distinct principal pathways: the endoplasmic reticulum-associated degradation (ERAD) of misfolded newly synthesized N-glycoproteins and the mature N-glycoproteins turnover pathway. The O-(2-acetamidO-2-deoxy-D-glucopyranosylidene) amino-N-phenylcarbamate (PUGNAc) is a potent inhibitor of the O-GlcNAcase (OGA) catalysing the cleavage of β-O-linked 2-acetamido-2-deoxy-β-D-glucopyranoside (O-GlcNAc) from serine and threonine residues of post-translationaly O-GlcNAc modified proteins. In order to estimate the impact of O-GlcNAc modification on N-glycoproteins catabolism, fOS were analysed by mass spectrometry (MS). MS analysis revealed the appearance of an unusual population of fOS after PUGNAc treatment. The structures representing this population have been identified as containing non-reducing end GlcNAc residues resulting from incomplete lysosomal fOS degradation. Only observed after PUGNAc treatment, the NButGt, another OGA inhibitor, did not lead to the appearance of this population. These abnormal fOS structures have clearly been shown to accumulate in membrane fractions as the consequence of lysosomal β-hexosaminidases inhibition by PUGNAc. As lysosomal storage disorders (LSD) are characterized by the accumulation of storage material as fOS in lysosomes, our study evokes that the use of PUGNAc could mimic a LSD. This study clearly points out another off target effects of PUGNAc that need to be taken into account in the use of this drug.
Collapse
Affiliation(s)
- Ali Mehdy
- IFR147, UMR8576 CNRS Laboratoire de Glycobiologie Structurale et Fonctionnelle, USTL, Villeneuve D'Ascq, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Protein Glycosylation in Aspergillus fumigatus Is Essential for Cell Wall Synthesis and Serves as a Promising Model of Multicellular Eukaryotic Development. Int J Microbiol 2011; 2012:654251. [PMID: 21977037 PMCID: PMC3184424 DOI: 10.1155/2012/654251] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 07/19/2011] [Indexed: 02/05/2023] Open
Abstract
Glycosylation is a conserved posttranslational modification that is found in all eukaryotes, which helps generate proteins with multiple functions. Our knowledge of glycosylation mainly comes from the investigation of the yeast Saccharomyces cerevisiae and mammalian cells. However, during the last decade, glycosylation in the human pathogenic mold Aspergillus fumigatus has drawn significant attention. It has been revealed that glycosylation in A. fumigatus is crucial for its growth, cell wall synthesis, and development and that the process is more complicated than that found in the budding yeast S. cerevisiae. The present paper implies that the investigation of glycosylation in A. fumigatus is not only vital for elucidating the mechanism of fungal cell wall synthesis, which will benefit the design of new antifungal therapies, but also helps to understand the role of protein glycosylation in the development of multicellular eukaryotes. This paper describes the advances in functional analysis of protein glycosylation in A. fumigatus.
Collapse
|
39
|
Hirayama H, Suzuki T. Metabolism of free oligosaccharides is facilitated in the och1Δ mutant of Saccharomyces cerevisiae. Glycobiology 2011; 21:1341-8. [PMID: 21622726 DOI: 10.1093/glycob/cwr073] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In eukaryotic cells, it is known that N-glycans play a pivotal role in quality control of carrier proteins. Although "free" forms of oligosaccharides (fOSs) are known to be accumulated in the cytosol, the precise mechanism of their formation, degradation and biological relevance remains poorly understood. It has been shown that, in budding yeast, almost all fOSs are formed from misfolded glycoproteins. Precise structural analysis of fOSs revealed that several yeast fOSs bear a yeast-specific modification by Golgi-resident α-1,6-mannosyltransferase, Och1. In this study, structural diversity of fOSs in och1Δ cells was analyzed. To our surprise, several fOSs in och1Δ cells have unusual α-1,3-linked mannose residues at their non-reducing termini. These mannose residues were not observed in wild-type cells, suggesting that the addition of these unique mannoses occurred as a compensation of Och1 defect. A significant increase in the amount of fOSs modified by Golgi-localized mannosyltransferases was also observed in och1Δ cells. Moreover, the amount of processed fOSs and intracellular α-mannosidase (Ams1) both increased in this mutant. Up-regulation of Ams1 activity was also apparent for cells treated with cell wall perturbation reagent. These results provide an insight into a possible link between catabolism of fOSs and cell wall stress.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako Saitama 351-0198, Japan
| | | |
Collapse
|
40
|
Kato A, Wang L, Ishii K, Seino J, Asano N, Suzuki T. Calystegine B3 as a specific inhibitor for cytoplasmic alpha-mannosidase, Man2C1. J Biochem 2011; 149:415-22. [PMID: 21217149 DOI: 10.1093/jb/mvq153] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cytoplasmic α-mannosidase (Man2C1) has been implicated in non-lysosomal catabolism of free oligosaccharides derived from N-linked glycans accumulated in the cytosol. Suppression of Man2C1 expression reportedly induces apoptosis in various cell lines, but its molecular mechanism remains unclear. Development of a specific inhibitor for Man2C1 is critical to understanding its biological significance. In this study, we identified a plant-derived alkaloid, calystegine B(3), as a potent specific inhibitor for Man2C1 activity. Biochemical enzyme assay revealed that calystegine B(3) was a highly specific inhibitor for Man2C1 among various α-mannosidases prepared from rat liver. Consistent with this in vitro result, an in vivo experiment also showed that treatment of mammalian-derived cultured cells with this compound resulted in drastic change in both structure and quantity of free oligosaccharides in the cytosol, whereas no apparent change was seen in cell-surface oligosaccharides. Calystegine B(3) could thus serve as a potent tool for the development of a highly specific in vivo inhibitor for Man2C1.
Collapse
Affiliation(s)
- Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for the period 2005-2006. MASS SPECTROMETRY REVIEWS 2011; 30:1-100. [PMID: 20222147 DOI: 10.1002/mas.20265] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review is the fourth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2006. The review covers fundamental studies, fragmentation of carbohydrate ions, method developments, and applications of the technique to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, glycated proteins, glycolipids from bacteria, glycosides, and various other natural products. There is a short section on the use of MALDI-TOF mass spectrometry for the study of enzymes involved in glycan processing, a section on industrial processes, particularly the development of biopharmaceuticals and a section on the use of MALDI-MS to monitor products of chemical synthesis of carbohydrates. Large carbohydrate-protein complexes and glycodendrimers are highlighted in this final section.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
42
|
Novel Concepts About the Role of Lectins in the Plant Cell. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:271-94. [DOI: 10.1007/978-1-4419-7877-6_13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
43
|
Bernon C, Carré Y, Kuokkanen E, Slomianny MC, Mir AM, Krzewinski F, Cacan R, Heikinheimo P, Morelle W, Michalski JC, Foulquier F, Duvet S. Overexpression of Man2C1 leads to protein underglycosylation and upregulation of endoplasmic reticulum-associated degradation pathway. Glycobiology 2010; 21:363-75. [PMID: 20978011 DOI: 10.1093/glycob/cwq169] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Unfolded glycoproteins retained in the endoplasmic reticulum (ER) are degraded via the ER-associated degradation (ERAD) pathway. These proteins are subsequently transported to the cytosol and degraded by the proteasomal complex. Although the sequential events of ERAD are well described, its regulation remains poorly understood. The cytosolic mannosidase, Man2C1, plays an essential role in the catabolism of cytosolic free oligomannosides, which are released from the degraded proteins. We have investigated the impact of Man2C1 overexpression on protein glycosylation and the ERAD process. We demonstrated that overexpression of Man2C1 led to modifications of the cytosolic pool of free oligomannosides and resulted in accumulation of small Man(2-4)GlcNAc(1) glycans in the cytosol. We further correlated this accumulation with incomplete protein glycosylation and truncated lipid-linked glycosylation precursors, which yields an increase in N-glycoprotein en route to the ERAD. We propose a model in which high mannose levels in the cytosol interfere with glucose metabolism and compromise N-glycan synthesis in the ER. Our results show a clear link between the intracellular mannose-6-phosphate level and synthesis of the lipid-linked precursors for protein glycosylation. Disturbance in these pathways interferes with protein glycosylation and upregulated ERAD. Our findings support a new concept that regulation of Man2C1 expression is essential for maintaining efficient protein N-glycosylation.
Collapse
Affiliation(s)
- Coralie Bernon
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, IFR 147, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chantret I, Fasseu M, Zaoui K, Le Bizec C, Sadou Yayé H, Dupré T, Moore SEH. Identification of roles for peptide: N-glycanase and endo-beta-N-acetylglucosaminidase (Engase1p) during protein N-glycosylation in human HepG2 cells. PLoS One 2010; 5:e11734. [PMID: 20668520 PMCID: PMC2909182 DOI: 10.1371/journal.pone.0011734] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 06/04/2010] [Indexed: 11/29/2022] Open
Abstract
Background During mammalian protein N-glycosylation, 20% of all dolichol-linked oligosaccharides (LLO) appear as free oligosaccharides (fOS) bearing the di-N-acetylchitobiose (fOSGN2), or a single N-acetylglucosamine (fOSGN), moiety at their reducing termini. After sequential trimming by cytosolic endo β-N-acetylglucosaminidase (ENGase) and Man2c1 mannosidase, cytosolic fOS are transported into lysosomes. Why mammalian cells generate such large quantities of fOS remains unexplored, but fOSGN2 could be liberated from LLO by oligosaccharyltransferase, or from glycoproteins by NGLY1-encoded Peptide-N-Glycanase (PNGase). Also, in addition to converting fOSGN2 to fOSGN, the ENGASE-encoded cytosolic ENGase of poorly defined function could potentially deglycosylate glycoproteins. Here, the roles of Ngly1p and Engase1p during fOS metabolism were investigated in HepG2 cells. Methods/Principal Findings During metabolic radiolabeling and chase incubations, RNAi-mediated Engase1p down regulation delays fOSGN2-to-fOSGN conversion, and it is shown that Engase1p and Man2c1p are necessary for efficient clearance of cytosolic fOS into lysosomes. Saccharomyces cerevisiae does not possess ENGase activity and expression of human Engase1p in the png1Δ deletion mutant, in which fOS are reduced by over 98%, partially restored fOS generation. In metabolically radiolabeled HepG2 cells evidence was obtained for a small but significant Engase1p-mediated generation of fOS in 1 h chase but not 30 min pulse incubations. Ngly1p down regulation revealed an Ngly1p-independent fOSGN2 pool comprising mainly Man8GlcNAc2, corresponding to ∼70% of total fOS, and an Ngly1p-dependent fOSGN2 pool enriched in Glc1Man9GlcNAc2 and Man9GlcNAc2 that corresponds to ∼30% of total fOS. Conclusions/Significance As the generation of the bulk of fOS is unaffected by co-down regulation of Ngly1p and Engase1p, alternative quantitatively important mechanisms must underlie the liberation of these fOS from either LLO or glycoproteins during protein N-glycosylation. The fully mannosylated structures that occur in the Ngly1p-dependent fOSGN2 pool indicate an ERAD process that does not require N-glycan trimming.
Collapse
Affiliation(s)
- Isabelle Chantret
- INSERM, U773, Centre de Recherche Bichat Beaujon, Paris, France; Université Paris 7 Denis Diderot, site Bichat, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
45
|
Funakoshi Y, Negishi Y, Gergen JP, Seino J, Ishii K, Lennarz WJ, Matsuo I, Ito Y, Taniguchi N, Suzuki T. Evidence for an essential deglycosylation-independent activity of PNGase in Drosophila melanogaster. PLoS One 2010; 5:e10545. [PMID: 20479940 PMCID: PMC2866665 DOI: 10.1371/journal.pone.0010545] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Accepted: 04/12/2010] [Indexed: 12/03/2022] Open
Abstract
Background Peptide:N-glycanase (PNGase) is an enzyme which releases N-linked glycans from glycopeptides/glycoproteins. This enzyme plays a role in the ER-associated degradation (ERAD) pathway in yeast and mice, but the biological importance of this activity remains unknown. Principal Findings In this study, we characterized the ortholog of cytoplasmic PNGases, PNGase-like (Pngl), in Drosophila melanogaster. Pngl was found to have a molecular weight of ∼74K and was mainly localized in the cytosol. Pngl lacks a CXXC motif that is critical for enzymatic activity in other species and accordingly did not appear to possess PNGase activity, though it still retains carbohydrate-binding activity. We generated microdeletions in the Pngl locus in order to investigate the functional importance of this protein in vivo. Elimination of Pngl led to a serious developmental delay or arrest during the larval and pupal stages, and surviving mutant adult males and females were frequently sterile. Most importantly, these phenotypes were rescued by ubiquitous expression of Pngl, clearly indicating that those phenotypic consequences were indeed due to the lack of functional Pngl. Interestingly, a putative “catalytic-inactive” mutant could not rescue the growth-delay phenotype, indicating that a biochemical activity of this protein is important for its biological function. Conclusion Pngl was shown to be inevitable for the proper developmental transition and the biochemical properties other than deglycosylation activity is important for its biological function.
Collapse
Affiliation(s)
- Yoko Funakoshi
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, Wako, Saitama, Japan
- * E-mail: (YF); (TS)
| | - Yuki Negishi
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, Wako, Saitama, Japan
| | - J. Peter Gergen
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, New York, United States of America
| | - Junichi Seino
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, Wako, Saitama, Japan
| | - Kumiko Ishii
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, Wako, Saitama, Japan
| | - William J. Lennarz
- Department of Biochemistry and Cell Biology and Institute for Cell and Developmental Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Ichiro Matsuo
- Department of Chemistry and Chemical Biology, Gunma University, Kiryu, Gunma, Japan
| | - Yukishige Ito
- Synthetic Cellular Chemistry Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, Japan
- Glycotrilogy Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Naoyuki Taniguchi
- Department of Disease Glycomics, The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, Japan
- Disease Glycomics Team, RIKEN Advanced Science Institute, Wako, Saitama, Japan
| | - Tadashi Suzuki
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, Wako, Saitama, Japan
- Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
- * E-mail: (YF); (TS)
| |
Collapse
|
46
|
Hirayama H, Seino J, Kitajima T, Jigami Y, Suzuki T. Free oligosaccharides to monitor glycoprotein endoplasmic reticulum-associated degradation in Saccharomyces cerevisiae. J Biol Chem 2010; 285:12390-404. [PMID: 20150426 DOI: 10.1074/jbc.m109.082081] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In eukaryotic cells, N-glycosylation has been recognized as one of the most common and functionally important co- or post-translational modifications of proteins. "Free" forms of N-glycans accumulate in the cytosol of mammalian cells, but the precise mechanism for their formation and degradation remains unknown. Here, we report a method for the isolation of yeast free oligosaccharides (fOSs) using endo-beta-1,6-glucanase digestion. fOSs were undetectable in cells lacking PNG1, coding the cytoplasmic peptide:N-glycanase gene, suggesting that almost all fOSs were formed from misfolded glycoproteins by Png1p. Structural studies revealed that the most abundant fOS was M8B, which is not recognized well by the endoplasmic reticulum-associated degradation (ERAD)-related lectin, Yos9p. In addition, we provide evidence that some of the ERAD substrates reached the Golgi apparatus prior to retrotranslocation to the cytosol. N-Glycan structures on misfolded glycoproteins in cells lacking the cytosol/vacuole alpha-mannosidase, Ams1p, was still quite diverse, indicating that processing of N-glycans on misfolded glycoproteins was more complex than currently envisaged. Under ER stress, an increase in fOSs was observed, whereas levels of M7C, a key glycan structure recognized by Yos9p, were unchanged. Our method can thus provide valuable information on the molecular mechanism of glycoprotein ERAD in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
47
|
Totani K, Ihara Y, Tsujimoto T, Matsuo I, Ito Y. The recognition motif of the glycoprotein-folding sensor enzyme UDP-Glc:glycoprotein glucosyltransferase. Biochemistry 2009; 48:2933-40. [PMID: 19222173 DOI: 10.1021/bi8020586] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The folding of glycoproteins is primarily mediated by a quality control system in the ER, in which UDP-Glc:glycoprotein glucosyltransferase (UGGT) serves as a "folding sensor". In this system, client glycoproteins are delivered to UGGT after the trimming of their innermost glucose residue by glucosidase II, which releases them from the lectin chaperones calnexin (CNX) and calreticulin (CRT). UGGT is inactive against folded proteins, allowing them to proceed to the Golgi apparatus for further processing to complex- or hybrid-type glycoforms. On the other hand, this enzyme efficiently glucosylates incompletely folded glycoproteins to monoglucosylated structures, providing them with an opportunity to interact with CNX/CRT. In order to clarify the mode of this enzyme's substrate recognition, we conducted a structure-activity relationship study using a series of synthetic probes. The inhibitory activities of various glycans suggest that UGGT has a strong affinity for the core pentasaccharide (Man3GlcNAc2) of high-mannose-type glycans. Our comparison of the reactivity of acceptors that have been modified by various aglycons supports the hypothesis that UGGT recognizes the hydrophobic region of client glycoproteins. Moreover, we discovered fluorescently labeled substrates that will be valuable for highly sensitive detection of UGGT activity.
Collapse
Affiliation(s)
- Kiichiro Totani
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
48
|
Zhou YQ, Chen SL, Ju JY, Shen L, Liu Y, Zhen S, Lv N, He ZG, Zhu LP. Tumor suppressor function of BCSC-1 in nasopharyngeal carcinoma. Cancer Sci 2009; 100:1817-22. [PMID: 19656157 PMCID: PMC11159686 DOI: 10.1111/j.1349-7006.2009.01261.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BCSC-1 is dramatically upregulated in CNE-2L2 human nasopharyngeal carcinoma cells with reduced malignancy (AS cells) and is proposed to be a candidate tumor suppressor gene. We therefore examined the effect of BCSC-1 expression on malignant behaviors of CNE-2L2 cells. Growth in vitro and tumorigenesis in nude mice of wild-type CNE-2L2 cells (W cells) were inhibited by ectopic BCSC-1, and those of AS cells were promoted by BCSC-1 suppression. The tumor suppressor function of BCSC-1 was further confirmed by a study showing that intratumor BCSC-1 injection caused growth suppression of the tumor from W cells inoculated in nude mice. Immunohistochemistry exhibited marked reduction of BCSC-1 expression in 11 of 39 human nasopharyngeal carcinoma specimens. Because BCSC-1 expression was as rich as that in normal cells in the rest of the carcinoma specimens and was poor in CNE-2L2 cells, HNE-1 human nasopharyngeal carcinoma cells with rich BCSC-1 expression were used as a control in the study. No effect of BCSC-1 transfection on growth of the cells was observed. The data suggest that BCSC-1 suppression might play roles in tumorigenesis of some nasopharyngeal carcinomas and that BCSC-1 might be a potential gene therapy target in nasopharyngeal carcinomas with poor BCSC-1 expression. Enhanced aggregation of cells together with increased E-cadherin and alpha-catenin expression and reduced Wnt signaling might be involved in the mechanisms of tumor suppressor function of BCSC-1.
Collapse
Affiliation(s)
- Y Q Zhou
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lannoo N, Van Damme EJM. Nucleocytoplasmic plant lectins. Biochim Biophys Acta Gen Subj 2009; 1800:190-201. [PMID: 19647040 DOI: 10.1016/j.bbagen.2009.07.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 07/13/2009] [Accepted: 07/18/2009] [Indexed: 11/28/2022]
Abstract
During the last decade it was unambiguously shown that plants synthesize minute amounts of carbohydrate-binding proteins upon exposure to stress situations like drought, high salt, hormone treatment, pathogen attack or insect herbivory. In contrast to the 'classical' plant lectins, which are typically found in storage vacuoles or in the extracellular compartment this new class of lectins is located in the cytoplasm and the nucleus. Based on these observations the concept was developed that lectin-mediated protein-carbohydrate interactions in the cytoplasm and the nucleus play an important role in the stress physiology of the plant cell. Hitherto, six families of nucleocytoplasmic lectins have been identified. This review gives an overview of our current knowledge on the occurrence of nucleocytoplasmic plant lectins. The carbohydrate-binding properties of these lectins and potential ligands in the nucleocytoplasmic compartment are discussed in view of the physiological role of the lectins in the plant cell.
Collapse
Affiliation(s)
- Nausicaä Lannoo
- Department of Molecular Biotechnology, Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | | |
Collapse
|
50
|
Xiang ZG, Jiang DD, Liu Y, Zhang LF, Zhu LP. hMan2c1 transgene promotes tumor progress in mice. Transgenic Res 2009; 19:67-75. [PMID: 19572206 DOI: 10.1007/s11248-009-9299-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 06/10/2009] [Indexed: 11/30/2022]
Abstract
In order to study the biological significance of alpha-mannosidase Man2c1, hMan2c1 transgenic mice were developed. In 113 F0 mice, eight were found to be genomic PCR positive for hMan2c1; 9/20 (45%) F1 mice, 16/21 (76.2%) F2 mice, and 12/14 (85.7%) F3 mice were genomic PCR positive for hMan2c1. RT-PCR demonstrated hMan2c1 mRNA transcription in four of eight transgenic lines. Enzymatic activity on p-nitrophenyl-alpha-D: -mannopyranoside was enhanced in 35# and 54# transgenic mice and real-time RT-PCR showed hMan2c1 mRNA expression in these mice. Reduced Con A binding to splenocytes implied N-glycosylation modification of host proteins by hMan2c1 transgene. hMan2c1 transgene promoted growth, invasion, and metastasis to lung of implanted hepatoma H22 and sarcoma S180. The average weights of H22 and S180 tumors were 3.98 +/- 1.62, 3.29 +/- 0.76, 1.69 +/- 1.09, and 3.19 +/- 0.44, 2.72 +/- 1.38, 0.97 +/- 0.41 g for 35#, 54# transgenic mice and wild type mice (W), respectively, (35# or 54# versus W, paired t-test, P < 0.05). In 35# and 54# mice 5/10 and 3/10 showed lung metastasis of H22 tumor in contrast with 1/10 in W mice. In 35# and 54# mice 1/6 and 2/6 showed lung metastasis of S180 tumor in contrast with 0/6 in W mice. The possible mechanism of the promotion was explored on both humoral and cellular immunity. Reduced antibody response to BSA was observed in transgenic mice, suggesting that specific antibody response to tumor antigens might be suppressed by hMan2c1 transgene. However, NK cytotoxicity in splenocytes was not affected by the transgene.
Collapse
Affiliation(s)
- Z G Xiang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | | | | | | | | |
Collapse
|