1
|
The role of propeptide-mediated autoinhibition and intermolecular chaperone in the maturation of cognate catalytic domain in leucine aminopeptidase. J Struct Biol 2021; 213:107741. [PMID: 33989771 DOI: 10.1016/j.jsb.2021.107741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 11/24/2022]
Abstract
Leucyl aminopeptidase A from Aspergillus oryzae RIB40 (AO-LapA) is an exo-acting peptidase, widely utilised in food debittering applications. AO-LapA is secreted as a zymogen by the host and requires enzymatic cleavage of the autoinhibitory propeptide to reveal its full activity. Scarcity of structural data of zymogen aminopeptidases hampers a better understanding of the details of their molecular action of autoinhibition and how this might be utilised to improve the properties of such enzymes by recombinant methods for more effective bioprocessing. To address this gap in the literature, herein we report high-resolution crystal structures of recombinantly expressed AO-LapA precursor (AO-proLapA), mature LapA (AO-mLapA) and AO-mLapA complexed with reaction product l-leucine (AO-mLapA-Leu), all purified from Pichia pastoris culture supernatant. Our structures reveal a plausible molecular mechanism of LapA catalytic domain autoinhibition by propeptide and highlights the role of intramolecular chaperone (IMC). Our data suggest an absolute requirement for IMC in the maturation of cognate catalytic domain of AO-LapA. This observation is reinforced by our expression and refolding data of catalytic domain only (AO-refLapA) from Escherichia coli inclusion bodies, revealing a limited active conformation. Our work supports the notion that known synthetic aminopeptidase inhibitors and substrates mimic key polar contacts between propeptide and corresponding catalytic domain, demonstrated in our AO-proLapA zymogen crystal structure. Furthermore, understanding the atomic details of the autoinhibitory mechanism of cognate catalytic domains by native propeptides has wider reaching implications toward synthetic production of more effective inhibitors of bimetallic aminopeptidases and other dizinc enzymes that share an analogous reaction mechanism.
Collapse
|
2
|
Gamage DG, Gunaratne A, Periyannan GR, Russell TG. Applicability of Instability Index for In vitro Protein Stability Prediction. Protein Pept Lett 2019; 26:339-347. [DOI: 10.2174/0929866526666190228144219] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/22/2019] [Accepted: 02/06/2019] [Indexed: 11/22/2022]
Abstract
Background:
The dipeptide composition-based Instability Index (II) is one of the protein
primary structure-dependent methods available for in vivo protein stability predictions. As per this
method, proteins with II value below 40 are stable proteins. Intracellular protein stability principles
guided the original development of the II method. However, the use of the II method for in vitro
protein stability predictions raises questions about the validity of applying the II method under
experimental conditions that are different from the in vivo setting.
Objective:
The aim of this study is to experimentally test the validity of the use of II as an in vitro
protein stability predictor.
Methods:
A representative protein CCM (CCM - Caulobacter crescentus metalloprotein) that
rapidly degrades under in vitro conditions was used to probe the dipeptide sequence-dependent
degradation properties of CCM by generating CCM mutants to represent stable and unstable II
values. A comparative degradation analysis was carried out under in vitro conditions using wildtype
CCM, CCM mutants and two other candidate proteins: metallo-β-lactamase L1 and α -S1-
casein representing stable, borderline stable/unstable, and unstable proteins as per the II predictions.
The effect of temperature and a protein stabilizing agent on CCM degradation was also tested.
Results:
Data support the dipeptide composition-dependent protein stability/instability in wt-CCM
and mutants as predicted by the II method under in vitro conditions. However, the II failed to
accurately represent the stability of other tested proteins. Data indicate the influence of protein
environmental factors on the autoproteolysis of proteins.
Conclusion:
Broader application of the II method for the prediction of protein stability under in
vitro conditions is questionable as the stability of the protein may be dependent not only on the
intrinsic nature of the protein but also on the conditions of the protein milieu.
Collapse
Affiliation(s)
- Dilani G. Gamage
- Department of Chemistry and Biochemistry, Eastern Illinois University, Charleston, IL, United States
| | - Ajith Gunaratne
- Department of Mathematics, Florida Agricultural and Mechanical University, Tallahassee, FL, United States
| | - Gopal R. Periyannan
- Department of Chemistry and Biochemistry, Eastern Illinois University, Charleston, IL, United States
| | - Timothy G. Russell
- Department of Chemistry and Biochemistry, Eastern Illinois University, Charleston, IL, United States
| |
Collapse
|
3
|
Derrick JS, Lee J, Lee SJC, Kim Y, Nam E, Tak H, Kang J, Lee M, Kim SH, Park K, Cho J, Lim MH. Mechanistic Insights into Tunable Metal-Mediated Hydrolysis of Amyloid-β Peptides. J Am Chem Soc 2017; 139:2234-2244. [PMID: 28098992 DOI: 10.1021/jacs.6b09681] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An amyloidogenic peptide, amyloid-β (Aβ), has been implicated as a contributor to the neurotoxicity of Alzheimer's disease (AD) that continues to present a major socioeconomic burden for our society. Recently, the use of metal complexes capable of cleaving peptides has arisen as an efficient tactic for amyloid management; unfortunately, little has been reported to pursue this strategy. Herein, we report a novel approach to validate the hydrolytic cleavage of divalent metal complexes toward two major isoforms of Aβ (Aβ40 and Aβ42) and tune their proteolytic activity based on the choice of metal centers (M = Co, Ni, Cu, and Zn) which could be correlated to their anti-amyloidogenic properties. Such metal-dependent tunability was facilitated employing a tetra-N-methylated cyclam (TMC) ligand that imparts unique geometric and stereochemical control, which has not been available in previous systems. Co(II)(TMC) was identified to noticeably cleave Aβ peptides and control their aggregation, reporting the first Co(II) complex for such reactivities to the best of our knowledge. Through detailed mechanistic investigations by biochemical, spectroscopic, mass spectrometric, and computational studies, the critical importance of the coordination environment and acidity of the aqua-bound complexes in promoting amide hydrolysis was verified. The biological applicability of Co(II)(TMC) was also illustrated via its potential blood-brain barrier permeability, relatively low cytotoxicity, regulatory capability against toxicity induced by both Aβ40 and Aβ42 in living cells, proteolytic activity with Aβ peptides under biologically relevant conditions, and inertness toward cleavage of structured proteins. Overall, our approaches and findings on reactivities of divalent metal complexes toward Aβ, along with the mechanistic insights, demonstrate the feasibility of utilizing such metal complexes for amyloid control.
Collapse
Affiliation(s)
- Jeffrey S Derrick
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| | - Jiwan Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Shin Jung C Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| | - Yujeong Kim
- Western Seoul Center, Korea Basic Science Institute (KBSI) , Seoul 03759, Republic of Korea.,Department of Chemistry and Nano Science, Ewha Womans University , Seoul 03760, Republic of Korea
| | - Eunju Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| | - Hyeonwoo Tak
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST) , Daegu 42988, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| | - Sun Hee Kim
- Western Seoul Center, Korea Basic Science Institute (KBSI) , Seoul 03759, Republic of Korea.,Department of Chemistry and Nano Science, Ewha Womans University , Seoul 03760, Republic of Korea
| | - Kiyoung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Jaeheung Cho
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST) , Daegu 42988, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| |
Collapse
|
4
|
Massard A, Braunstein P, Danopoulos AA, Choua S, Rabu P. Studies on Three-Coordinate [Co{N(SiMe3)2}2L] Complexes, L = N-Heterocyclic Carbene. Organometallics 2015. [DOI: 10.1021/om501178p] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Alexandre Massard
- Laboratoire
de Chimie de Coordination, Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal, F-67081 Strasbourg Cedex, France
| | - Pierre Braunstein
- Laboratoire
de Chimie de Coordination, Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal, F-67081 Strasbourg Cedex, France
| | - Andreas A. Danopoulos
- Laboratoire
de Chimie de Coordination, Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal, F-67081 Strasbourg Cedex, France
- Université de Strasbourg Institute for Advanced Study (USIAS), F-67083 Strasbourg, France
| | - Sylvie Choua
- Institut
de Chimie, Université de Strasbourg, 1 rue Blaise Pascal, BP 296 R8, F-67008 Strasbourg Cedex, France
| | - Pierre Rabu
- Institut
de Physique et Chimie des Matériaux de Strasbourg (IPCMS) (UMR7504 CNRS - Université de Strasbourg), 23 rue du Loess, F-67034 Strasbourg, France
| |
Collapse
|
5
|
Nogueira-Machado JA, Volpe CMDO, Veloso CA, Chaves MM. HMGB1, TLR and RAGE: a functional tripod that leads to diabetic inflammation. Expert Opin Ther Targets 2011; 15:1023-35. [DOI: 10.1517/14728222.2011.575360] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
|
7
|
Tioni MF, Llarrull LI, Poeylaut-Palena AA, Martí MA, Saggu M, Periyannan GR, Mata EG, Bennett B, Murgida DH, Vila AJ. Trapping and characterization of a reaction intermediate in carbapenem hydrolysis by B. cereus metallo-beta-lactamase. J Am Chem Soc 2009; 130:15852-63. [PMID: 18980308 DOI: 10.1021/ja801169j] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metallo-beta-lactamases hydrolyze most beta-lactam antibiotics. The lack of a successful inhibitor for them is related to the previous failure to characterize a reaction intermediate with a clinically useful substrate. Stopped-flow experiments together with rapid freeze-quench EPR and Raman spectroscopies were used to characterize the reaction of Co(II)-BcII with imipenem. These studies show that Co(II)-BcII is able to hydrolyze imipenem in both the mono- and dinuclear forms. In contrast to the situation met for penicillin, the species that accumulates during turnover is an enzyme-intermediate adduct in which the beta-lactam bond has already been cleaved. This intermediate is a metal-bound anionic species with a novel resonant structure that is stabilized by the metal ion at the DCH or Zn2 site. This species has been characterized based on its spectroscopic features. This represents a novel, previously unforeseen intermediate that is related to the chemical nature of carbapenems, as confirmed by the finding of a similar intermediate for meropenem. Since carbapenems are the only substrates cleaved by B1, B2, and B3 lactamases, identification of this intermediate could be exploited as a first step toward the design of transition-state-based inhibitors for all three classes of metallo-beta-lactamases.
Collapse
Affiliation(s)
- Mariana F Tioni
- Instituto de Biologia Molecular y Celular de Rosario and Biophysics Section, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hartley M, Yong W, Bennett B. Heterologous expression and purification of Vibrio proteolyticus (Aeromonas proteolytica) aminopeptidase: a rapid protocol. Protein Expr Purif 2009; 66:91-101. [PMID: 19233285 DOI: 10.1016/j.pep.2009.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 02/11/2009] [Accepted: 02/11/2009] [Indexed: 11/27/2022]
Abstract
Metalloaminopeptidases (mAPs) are enzymes that are involved in HIV infectivity, tumor growth and metastasis, angiogenesis, and bacterial infection. Investigation of structure-function relationships in mAPs is a prerequisite to rational design of anti-mAP chemotherapeutics. The most intensively studied member of the biomedically important dinuclear mAPs is the prototypical secreted Vibrio proteolyticus di-zinc aminopeptidase (VpAP). The wild-type enzyme is readily purified from the supernatant of cultures of V. proteolyticus, but recombinant variants require expression in Escherichia coli. A greatly improved system for the purification of recombinant VpAP is described. A VpAP-(His)(6) polypeptide, containing an N-terminal propeptide, and a C-terminal (His)(6) adduct, was purified by metal ion affinity chromatography from the supernatant of cultures of E. coli. This single step replaced the sequence of (NH(4))(2)SO(4) fractionation, and anion-exchange and hydrophobic interaction chromatographic separations of earlier methods. Traditionally, recombinant VpAP proenzyme has been treated with proteinase K and with heat (70 degrees C), to remove the N- and C-terminal regions, and yield the mature active enzyme. This method is unsuitable for VpAP variants that are unstable towards these treatments. In the new method, the hitherto noted, but not fully appreciated, ability of VpAP to autocatalyze the hydrolysis of the N-terminal propeptide and C-terminal regions was exploited; extensive dialysis of the highly purified VpAP-(His)(6) full-length polypeptide yielded the mature active protein without recourse to proteinase K or heat treatment. Purification of variants that have previously defied isolation as mature forms of the protein was thus carried out.
Collapse
Affiliation(s)
- Mariam Hartley
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226-0509, USA
| | | | | |
Collapse
|
9
|
Analyzing the binding of Co(II)-specific inhibitors to the methionyl aminopeptidases from Escherichia coli and Pyrococcus furiosus. J Biol Inorg Chem 2009; 14:573-85. [PMID: 19198897 DOI: 10.1007/s00775-009-0471-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 12/31/2008] [Indexed: 10/21/2022]
Abstract
Methionine aminopeptidases (MetAPs) represent a unique class of protease that is capable of the hydrolytic removal of an N-terminal methionine residue from nascent polypeptide chains. MetAPs are physiologically important enzymes; hence, there is considerable interest in developing inhibitors that can be used as antiangiogenic and antimicrobial agents. A detailed kinetic and spectroscopic study has been performed to probe the binding of a triazole-based inhibitor and a bestatin-based inhibitor to both Mn(II)- and Co(II)-loaded type-I (Escherichia coli) and type-II (Pyrococcus furiosus) MetAPs. Both inhibitors were found to be moderate competitive inhibitors. The triazole-type inhibitor was found to interact with both active-site metal ions, while the bestatin-type inhibitor was capable of switching its mode of binding depending on the metal in the active site and the type of MetAP enzyme.
Collapse
|
10
|
trans-Dienelactone hydrolase from Pseudomonas reinekei MT1, a novel zinc-dependent hydrolase. Biochem Biophys Res Commun 2008; 376:423-8. [DOI: 10.1016/j.bbrc.2008.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Accepted: 09/03/2008] [Indexed: 11/24/2022]
|
11
|
Chen YH, Comeaux LM, Herbst RW, Saban E, Kennedy DC, Maroney MJ, Knapp MJ. Coordination changes and auto-hydroxylation of FIH-1: uncoupled O2-activation in a human hypoxia sensor. J Inorg Biochem 2008; 102:2120-9. [PMID: 18805587 DOI: 10.1016/j.jinorgbio.2008.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 07/29/2008] [Accepted: 07/31/2008] [Indexed: 01/09/2023]
Abstract
Hypoxia sensing is the generic term for pO2-sensing in humans and other higher organisms. These cellular responses to pO2 are largely controlled by enzymes that belong to the Fe(II) alpha-ketoglutarate (alphaKG) dependent dioxygenase superfamily, including the human enzyme called the factor inhibiting HIF (FIH-1), which couples O2-activation to the hydroxylation of the hypoxia inducible factor alpha (HIFalpha). Uncoupled O2-activation by human FIH-1 was studied by exposing the resting form of FIH-1 (alphaKG + Fe)FIH-1, to air in the absence of HIFalpha. Uncoupling lead to two distinct enzyme oxidations, one a purple chromophore (lambda(max) = 583 nm) arising from enzyme auto-hydroxylation of Trp296, forming an Fe(III)-O-Trp296 chromophore [Y.-H. Chen, L.M. Comeaux, S.J. Eyles, M.J. Knapp, Chem. Commun. (2008), doi:10.1039/B809099H]; the other a yellow chromophore due to Fe(III) in the active site, which under some conditions also contained variable levels of an oxygenated surface residue (oxo)Met275. The kinetics of purple FIH-1 formation were independent of Fe(II) and alphaKG concentrations, however, product yield was saturable with increasing [alphaKG] and required excess Fe(II). Yellow FIH-1 was formed from (succinate+Fe)FIH-1, or by glycerol addition to (alphaKG+Fe)FIH-1, suggesting that glycerol could intercept the active oxidant from the FIH-1 active site and prevent hydroxylation. Both purple and yellow FIH-1 contained high-spin, rhombic Fe(III) centers, as shown by low temperature EPR. XAS indicated distorted octahedral Fe(III) geometries, with subtle differences in inner-shell ligands for yellow and purple FIH-1. EPR of Co(II)-substituted FIH-1 (alphaKG + Co)FIH-1, indicated a mixture of 5-coordinate and 6-coordinate enzyme forms, suggesting that resting FIH-1 can readily undergo uncoupled O2-activation by loss of an H2O ligand from the metal center.
Collapse
Affiliation(s)
- Yuan-Han Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Sharma N, Hu Z, Crowder MW, Bennett B. Conformational changes in the metallo-beta-lactamase ImiS during the catalytic reaction: an EPR spectrokinetic study of Co(II)-spin label interactions. J Am Chem Soc 2008; 130:8215-22. [PMID: 18528987 DOI: 10.1021/ja0774562] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metallo-beta-lactamases are responsible for conferring antibiotic resistance on certain pathogenic bacteria. In consequence, the search for inhibitors that may be useful in combating antibiotic resistance has fueled much study of the active sites of these enzymes. There exists circumstantial evidence that the binding of substrates and inhibitors to metallo-beta-lactamases may involve binding to the organic part of the molecule, in addition to or prior to binding to one or more active site metal ions. It has also been postulated that a conformational change may accompany this putative binding. In the present study, electron paramagnetic resonance spectrokinetic study of a spin-labeled variant of the class B2 metallo-beta-lactamase ImiS identified movement of a component residue on a conserved alpha-helix in a catalytically competent time upon formation of a transient reaction intermediate with the substrate imipenem. In a significant subpopulation of ImiS, this conformational change was not associated with substrate binding to the active site metal ion but, rather, represents a distinct step in the reaction with ImiS. This observation has implications regarding the determinants of substrate specificity in metallo-beta-lactamases and the design of potentially clinically useful inhibitors.
Collapse
Affiliation(s)
- Narayan Sharma
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, USA
| | | | | | | |
Collapse
|