1
|
Sukla S, Dhakshinamoorthy DR, Ramesh AV, Lew S, Su M, Seetharaman J. Crystal structure of human Cep57 C-terminal domain reveals the presence of leucine zipper and the potential microtubule binding region. Proteins 2024; 92:1137-1143. [PMID: 38699879 DOI: 10.1002/prot.26698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
Cep57, a vital centrosome-associated protein, recruits essential regulatory enzymes for centriole duplication. Its dysfunction leads to anomalies, including reduced centrioles and mosaic-variegated aneuploidy syndrome. Despite functional investigations, understanding structural aspects and their correlation with functions is partial till date. We present the structure of human Cep57 C-terminal microtubule binding (MT-BD) domain, revealing conserved motifs ensuring functional preservation across evolution. A leucine zipper, with an adjacent possible microtubule-binding region, potentially forms a stabilizing scaffold for microtubule nucleation-accommodating pulling and tension from growing microtubules. This study highlights conserved structural features of Cep57 protein, compares them with other analogous proteins, and explores how protein function is maintained across diverse organisms.
Collapse
Affiliation(s)
- Sanskrita Sukla
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | | | - Arvind V Ramesh
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Scott Lew
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Min Su
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Jayaraman Seetharaman
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
2
|
Yeh HW, Chen PP, Yeh TC, Lin SL, Chen YT, Lin WP, Chen T, Pang JM, Lin KT, Wang LHC, Lin YC, Shih O, Jeng US, Hsia KC, Cheng HC. Cep57 regulates human centrosomes through multivalent interactions. Proc Natl Acad Sci U S A 2024; 121:e2305260121. [PMID: 38857398 PMCID: PMC11194501 DOI: 10.1073/pnas.2305260121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/15/2024] [Indexed: 06/12/2024] Open
Abstract
Human Cep57 is a coiled-coil scaffold at the pericentriolar matrix (PCM), controlling centriole duplication and centrosome maturation for faithful cell division. Genetic truncation mutations of Cep57 are associated with the mosaic-variegated aneuploidy (MVA) syndrome. During interphase, Cep57 forms a complex with Cep63 and Cep152, serving as regulators for centrosome maturation. However, the molecular interplay of Cep57 with these essential scaffolding proteins remains unclear. Here, we demonstrate that Cep57 undergoes liquid-liquid phase separation (LLPS) driven by three critical domains (NTD, CTD, and polybasic LMN). In vitro Cep57 condensates catalyze microtubule nucleation via the LMN motif-mediated tubulin concentration. In cells, the LMN motif is required for centrosomal microtubule aster formation. Moreover, Cep63 restricts Cep57 assembly, expansion, and microtubule polymerization activity. Overexpression of competitive constructs for multivalent interactions, including an MVA mutation, leads to excessive centrosome duplication. In Cep57-depleted cells, self-assembly mutants failed to rescue centriole disengagement and PCM disorganization. Thus, Cep57's multivalent interactions are pivotal for maintaining the accurate structural and functional integrity of human centrosomes.
Collapse
Affiliation(s)
- Hung-Wei Yeh
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Po-Pang Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Tzu-Chen Yeh
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Shiou-Lan Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Yue-Ting Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Wan-Ping Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Ting Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Jia Meng Pang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Kai-Ti Lin
- Institute of Biotechnology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Orion Shih
- National Synchrotron Radiation Research Center, Hsinchu30076, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu30076, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Kuo-Chiang Hsia
- Institute of Molecular Biology, Academia Sinica, Taipei11529, Taiwan
| | - Hui-Chun Cheng
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| |
Collapse
|
3
|
Lu Z, Zhang M, Lee J, Sziraki A, Anderson S, Zhang Z, Xu Z, Jiang W, Ge S, Nelson PT, Zhou W, Cao J. Tracking cell-type-specific temporal dynamics in human and mouse brains. Cell 2023; 186:4345-4364.e24. [PMID: 37774676 PMCID: PMC10545416 DOI: 10.1016/j.cell.2023.08.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/28/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023]
Abstract
Progenitor cells are critical in preserving organismal homeostasis, yet their diversity and dynamics in the aged brain remain underexplored. We introduced TrackerSci, a single-cell genomic method that combines newborn cell labeling and combinatorial indexing to characterize the transcriptome and chromatin landscape of proliferating progenitor cells in vivo. Using TrackerSci, we investigated the dynamics of newborn cells in mouse brains across various ages and in a mouse model of Alzheimer's disease. Our dataset revealed diverse progenitor cell types in the brain and their epigenetic signatures. We further quantified aging-associated shifts in cell-type-specific proliferation and differentiation and deciphered the associated molecular programs. Extending our study to the progenitor cells in the aged human brain, we identified conserved genetic signatures across species and pinpointed region-specific cellular dynamics, such as the reduced oligodendrogenesis in the cerebellum. We anticipate that TrackerSci will be broadly applicable to unveil cell-type-specific temporal dynamics in diverse systems.
Collapse
Affiliation(s)
- Ziyu Lu
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA; The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Melissa Zhang
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Jasper Lee
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Andras Sziraki
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA; The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Sonya Anderson
- Department of Pathology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Zehao Zhang
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA; The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Zihan Xu
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA; The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Weirong Jiang
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Shaoyu Ge
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY, USA
| | - Peter T Nelson
- Department of Pathology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Wei Zhou
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA.
| | - Junyue Cao
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
4
|
Il Ahn J, Zhang L, Ravishankar H, Fan L, Kirsch K, Zeng Y, Meng L, Park JE, Yun HY, Ghirlando R, Ma B, Ball D, Ku B, Nussinov R, Schmit JD, Heinz WF, Kim SJ, Karpova T, Wang YX, Lee KS. Architectural basis for cylindrical self-assembly governing Plk4-mediated centriole duplication in human cells. Commun Biol 2023; 6:712. [PMID: 37433832 PMCID: PMC10336005 DOI: 10.1038/s42003-023-05067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/23/2023] [Indexed: 07/13/2023] Open
Abstract
Proper organization of intracellular assemblies is fundamental for efficient promotion of biochemical processes and optimal assembly functionality. Although advances in imaging technologies have shed light on how the centrosome is organized, how its constituent proteins are coherently architected to elicit downstream events remains poorly understood. Using multidisciplinary approaches, we showed that two long coiled-coil proteins, Cep63 and Cep152, form a heterotetrameric building block that undergoes a stepwise formation into higher molecular weight complexes, ultimately generating a cylindrical architecture around a centriole. Mutants defective in Cep63•Cep152 heterotetramer formation displayed crippled pericentriolar Cep152 organization, polo-like kinase 4 (Plk4) relocalization to the procentriole assembly site, and Plk4-mediated centriole duplication. Given that the organization of pericentriolar materials (PCM) is evolutionarily conserved, this work could serve as a model for investigating the structure and function of PCM in other species, while offering a new direction in probing the organizational defects of PCM-related human diseases.
Collapse
Affiliation(s)
- Jong Il Ahn
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Liang Zhang
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Harsha Ravishankar
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-ray Scattering Core Facility, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Klara Kirsch
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yan Zeng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lingjun Meng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jung-Eun Park
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hye-Yeoung Yun
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, 21702, USA
- School of Pharmacy, Shanghai Jiao Tong University, 200240, Shanghai, P R China
| | - David Ball
- Laboratory of Receptor Biology and Gene Expression, Optical Microscopy Core, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Jeremy D Schmit
- Department of Physics, Kansas State University, Manhattan, KS, 66506, USA
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Tatiana Karpova
- Laboratory of Receptor Biology and Gene Expression, Optical Microscopy Core, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Kyung S Lee
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Ito KK, Watanabe K, Ishida H, Matsuhashi K, Chinen T, Hata S, Kitagawa D. Cep57 and Cep57L1 maintain centriole engagement in interphase to ensure centriole duplication cycle. J Cell Biol 2021; 220:e202005153. [PMID: 33492359 PMCID: PMC7836272 DOI: 10.1083/jcb.202005153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/27/2020] [Accepted: 12/15/2020] [Indexed: 11/22/2022] Open
Abstract
Centrioles duplicate in interphase only once per cell cycle. Newly formed centrioles remain associated with their mother centrioles. The two centrioles disengage at the end of mitosis, which licenses centriole duplication in the next cell cycle. Therefore, timely centriole disengagement is critical for the proper centriole duplication cycle. However, the mechanisms underlying centriole engagement during interphase are poorly understood. Here, we show that Cep57 and Cep57L1 cooperatively maintain centriole engagement during interphase. Codepletion of Cep57 and Cep57L1 induces precocious centriole disengagement in interphase without compromising cell cycle progression. The disengaged daughter centrioles convert into centrosomes during interphase in a Plk1-dependent manner. Furthermore, the centrioles reduplicate and the centriole number increases, which results in chromosome segregation errors. Overall, these findings demonstrate that the maintenance of centriole engagement by Cep57 and Cep57L1 during interphase is crucial for the tight control of centriole copy number and thus for proper chromosome segregation.
Collapse
Affiliation(s)
- Kei K. Ito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Koki Watanabe
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Haruki Ishida
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kyohei Matsuhashi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Shoji Hata
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
6
|
Lee KS, Park JE, Ahn JI, Zeng Y. Constructing PCM with architecturally distinct higher-order assemblies. Curr Opin Struct Biol 2020; 66:66-73. [PMID: 33176265 DOI: 10.1016/j.sbi.2020.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 02/02/2023]
Abstract
Pericentriolar material (PCM) present around a pair of centrioles functions as a platform for various cellular processes, including microtubule (MT) assembly. While PCM is known to be an electron-dense proteinaceous matrix made of long coiled-coil proteins and their client molecules, the molecular mechanism underlying PCM organization remains largely elusive. A growing body of evidence suggests that PCM is constructed in part by an interphase cylindrical self-assembly and the mitotic mesh-like architectures surrounding it. In this review, we will discuss how these higher-order structures are constructed to achieve the functional proficiency of the centrosome.
Collapse
Affiliation(s)
- Kyung S Lee
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jung-Eun Park
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jong Il Ahn
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Zeng
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Lee KS, Park JE, Il Ahn J, Wei Z, Zhang L. A self-assembled cylindrical platform for Plk4-induced centriole biogenesis. Open Biol 2020; 10:200102. [PMID: 32810424 PMCID: PMC7479937 DOI: 10.1098/rsob.200102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
The centrosome, a unique membraneless multiprotein organelle, plays a pivotal role in various cellular processes that are critical for promoting cell proliferation. Faulty assembly or organization of the centrosome results in abnormal cell division, which leads to various human disorders including cancer, microcephaly and ciliopathy. Recent studies have provided new insights into the stepwise self-assembly of two pericentriolar scaffold proteins, Cep63 and Cep152, into a near-micrometre-scale higher-order structure whose architectural properties could be crucial for proper execution of its biological function. The construction of the scaffold architecture appears to be centrally required for tight control of a Ser/Thr kinase called Plk4, a key regulator of centriole duplication, which occurs precisely once per cell cycle. In this review, we will discuss a new paradigm for understanding how pericentrosomal scaffolds are self-organized into a new functional entity and how, on the resulting structural platform, Plk4 undergoes physico-chemical conversion to trigger centriole biogenesis.
Collapse
Affiliation(s)
- Kyung S. Lee
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
8
|
Zhao H, Yang S, Chen Q, Duan X, Li G, Huang Q, Zhu X, Yan X. Cep57 and Cep57l1 function redundantly to recruit the Cep63-Cep152 complex for centriole biogenesis. J Cell Sci 2020; 133:jcs241836. [PMID: 32503940 DOI: 10.1242/jcs.241836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/27/2020] [Indexed: 12/30/2022] Open
Abstract
The Cep63-Cep152 complex located at the mother centriole recruits Plk4 to initiate centriole biogenesis. How the complex is targeted to mother centrioles, however, is unclear. In this study, we show that Cep57 and its paralog, Cep57l1, colocalize with Cep63 and Cep152 at the proximal end of mother centrioles in both cycling cells and multiciliated cells undergoing centriole amplification. Both Cep57 and Cep57l1 bind to the centrosomal targeting region of Cep63. The depletion of both proteins, but not either one, blocks loading of the Cep63-Cep152 complex to mother centrioles and consequently prevents centriole duplication. We propose that Cep57 and Cep57l1 function redundantly to ensure recruitment of the Cep63-Cep152 complex to the mother centrioles for procentriole formation.
Collapse
Affiliation(s)
- Huijie Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sen Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingxia Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Xiaomeng Duan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guoqing Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiongping Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Xiumin Yan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
9
|
Requirement of the Cep57-Cep63 Interaction for Proper Cep152 Recruitment and Centriole Duplication. Mol Cell Biol 2020; 40:MCB.00535-19. [PMID: 32152252 DOI: 10.1128/mcb.00535-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/27/2020] [Indexed: 01/27/2023] Open
Abstract
Cep57 has been characterized as a component of a pericentriolar complex containing Cep63 and Cep152. Interestingly, Cep63 and Cep152 self-assemble into a pericentriolar cylindrical architecture, and this event is critical for the orderly recruitment of Plk4, a key regulator of centriole duplication. However, the way in which Cep57 interacts with the Cep63-Cep152 complex and contributes to the structure and function of Cep63-Cep152 self-assembly remains unknown. We demonstrate that Cep57 interacts with Cep63 through N-terminal motifs and associates with Cep152 via Cep63. Three-dimensional structured illumination microscopy (3D-SIM) analyses suggested that the Cep57-Cep63-Cep152 complex is concentrically arranged around a centriole in a Cep57-in and Cep152-out manner. Cep57 mutant cells defective in Cep63 binding exhibited improper Cep63 and Cep152 localization and impaired Sas6 recruitment for procentriole assembly, proving the significance of the Cep57-Cep63 interaction. Intriguingly, Cep63 fused to a microtubule (MT)-binding domain of Cep57 functioned in concert with Cep152 to assemble around stabilized MTs in vitro Thus, Cep57 plays a key role in architecting the Cep63-Cep152 assembly around centriolar MTs and promoting centriole biogenesis. This study may offer a platform to investigate how the organization and function of the pericentriolar architecture are altered by disease-associated mutations found in the Cep57-Cep63-Cep152 complex.
Collapse
|
10
|
Watanabe K, Takao D, Ito KK, Takahashi M, Kitagawa D. The Cep57-pericentrin module organizes PCM expansion and centriole engagement. Nat Commun 2019; 10:931. [PMID: 30804344 PMCID: PMC6389942 DOI: 10.1038/s41467-019-08862-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/31/2019] [Indexed: 02/07/2023] Open
Abstract
Centriole duplication occurs once per cell cycle to ensure robust formation of bipolar spindles and chromosome segregation. Each newly-formed daughter centriole remains connected to its mother centriole until late mitosis. The disengagement of the centriole pair is required for centriole duplication. However, the mechanisms underlying centriole engagement remain poorly understood. Here, we show that Cep57 is required for pericentriolar material (PCM) organization that regulates centriole engagement. Depletion of Cep57 causes PCM disorganization and precocious centriole disengagement during mitosis. The disengaged daughter centrioles acquire ectopic microtubule-organizing-center activity, which results in chromosome mis-segregation. Similar defects are observed in mosaic variegated aneuploidy syndrome patient cells with cep57 mutations. We also find that Cep57 binds to the well-conserved PACT domain of pericentrin. Microcephaly osteodysplastic primordial dwarfism disease pericentrin mutations impair the Cep57-pericentrin interaction and lead to PCM disorganization. Together, our work demonstrates that Cep57 provides a critical interface between the centriole core and PCM. Centriole disengagement occurs towards mitotic exit and involves cleavage of pericentrin, a component of the pericentriolar material. Here the authors show that depletion of the centrosomal protein Cep57 leads to precocious centriole disengagement, and that Cep57 binds pericentrin.
Collapse
Affiliation(s)
- Koki Watanabe
- Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, 240-0193, Japan.,Department of Physiological Chemistry, Graduate school of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Daisuke Takao
- Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.,Department of Physiological Chemistry, Graduate school of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Kei K Ito
- Department of Physiological Chemistry, Graduate school of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Mikiko Takahashi
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, 164-8530, Japan
| | - Daiju Kitagawa
- Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan. .,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, 240-0193, Japan. .,Department of Physiological Chemistry, Graduate school of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
11
|
Sieben C, Banterle N, Douglass KM, Gönczy P, Manley S. Multicolor single-particle reconstruction of protein complexes. Nat Methods 2018; 15:777-780. [PMID: 30275574 PMCID: PMC6173288 DOI: 10.1038/s41592-018-0140-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 08/01/2018] [Indexed: 11/24/2022]
Abstract
Single-particle reconstruction (SPR) from electron microscopy images is widely used in structural biology, but lacks direct information on protein identity. To address this limitation, we developed a computational and analytical framework that reconstructs and co-aligns multiple proteins from 2D superresolution fluorescence images. We demonstrate our method by generating multicolor 3D reconstructions of several proteins within the human centriole, revealing their relative locations, dimensions and orientations.
Collapse
Affiliation(s)
- Christian Sieben
- Laboratory for Experimental Biophysics, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. .,Swiss National Centre for Competence in Research (NCCR) in Chemical Biology, University of Geneva, Geneva, Switzerland.
| | - Niccolò Banterle
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Kyle M Douglass
- Laboratory for Experimental Biophysics, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss National Centre for Competence in Research (NCCR) in Chemical Biology, University of Geneva, Geneva, Switzerland.,Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Suliana Manley
- Laboratory for Experimental Biophysics, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. .,Swiss National Centre for Competence in Research (NCCR) in Chemical Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
12
|
Srivastava S, Panda D. A centrosomal protein STARD9 promotes microtubule stability and regulates spindle microtubule dynamics. Cell Cycle 2018; 17:2052-2068. [PMID: 30160609 DOI: 10.1080/15384101.2018.1513764] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Centrosomal proteins play important roles in the spindle assembly and the segregation of chromosomes in the eukaryotic cells. STARD9, a recently identified centrosomal protein, was reported to influence the spindle pole assembly. However, the role of STARD9 in maintaining the stability and organization of microtubules are not known. Here, we show that STARD9 regulates the assembly and dynamics of both interphase and mitotic microtubules. The knockdown of STARD9 in HeLa or HCT116 cells with siRNA or shRNA induced a strong depolymerization of the interphase microtubules. The over-expression of the motor domain of STARD9 stabilizes microtubules against cold and nocodazole suggesting that STARD9 stabilizes microtubules in HeLa cells. Using fluorescent recovery after photobleaching, we showed that the knockdown of STARD9 strongly reduced microtubule dynamics in the live spindles of HeLa cells. The reassembly of microtubules in the STARD9-depleted cells was strongly reduced as compared to the microtubules in the control cells implying the role of STARD9 in the nucleation of microtubules. Further, the depletion of STARD9 inhibited chromosome separation and the STARD9-depleted HeLa cells were blocked at mitosis. Interestingly, the frequency of multipolar spindle formation increased significantly in the STARD9-depleted HeLa cells in the presence of vinblastine and the STARD9-depleted cells showed much higher sensitivity towards vinblastine than the control cells indicating a new approach for cancer chemotherapy. The evidence suggests that STARD9 regulates the assembly and stability of both interphase and spindle microtubules and thereby, play important roles in the cell cycle progression.
Collapse
Affiliation(s)
- Shalini Srivastava
- a Department of Biosciences & Bioengineering , Indian Institute of Technology Bombay , Mumbai , India
| | - Dulal Panda
- a Department of Biosciences & Bioengineering , Indian Institute of Technology Bombay , Mumbai , India
| |
Collapse
|
13
|
Aziz K, Sieben CJ, Jeganathan KB, Hamada M, Davies BA, Velasco ROF, Rahman N, Katzmann DJ, van Deursen JM. Mosaic-variegated aneuploidy syndrome mutation or haploinsufficiency in Cep57 impairs tumor suppression. J Clin Invest 2018; 128:3517-3534. [PMID: 30035751 PMCID: PMC6063474 DOI: 10.1172/jci120316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/06/2018] [Indexed: 12/29/2022] Open
Abstract
A homozygous truncating frameshift mutation in CEP57 (CEP57T/T) has been identified in a subset of mosaic-variegated aneuploidy (MVA) patients; however, the physiological roles of the centrosome-associated protein CEP57 that contribute to disease are unknown. To investigate these, we have generated a mouse model mimicking this disease mutation. Cep57T/T mice died within 24 hours after birth with short, curly tails and severely impaired vertebral ossification. Osteoblasts in lumbosacral vertebrae of Cep57T/T mice were deficient for Fgf2, a Cep57 binding partner implicated in diverse biological processes, including bone formation. Furthermore, a broad spectrum of tissues of Cep57T/T mice had severe aneuploidy at birth, consistent with the MVA patient phenotype. Cep57T/T mouse embryonic fibroblasts and patient-derived skin fibroblasts failed to undergo centrosome maturation in G2 phase, causing premature centriole disjunction, centrosome amplification, aberrant spindle formation, and high rates of chromosome missegregation. Mice heterozygous for the truncating frameshift mutation or a Cep57-null allele were overtly indistinguishable from WT mice despite reduced Cep57 protein levels, yet prone to aneuploidization and cancer, with tumors lacking evidence for loss of heterozygosity. This study identifies Cep57 as a haploinsufficient tumor suppressor with biologically diverse roles in centrosome maturation and Fgf2-mediated bone formation.
Collapse
Affiliation(s)
- Khaled Aziz
- Department of Biochemistry and Molecular Biology and
| | | | - Karthik B. Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Masakazu Hamada
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Nazneen Rahman
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | | | - Jan M. van Deursen
- Department of Biochemistry and Molecular Biology and
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
14
|
A Conserved Leucine Zipper Motif in Gammaherpesvirus ORF52 Is Critical for Distinct Microtubule Rearrangements. J Virol 2017; 91:JVI.00304-17. [PMID: 28615210 PMCID: PMC5553167 DOI: 10.1128/jvi.00304-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/12/2017] [Indexed: 11/20/2022] Open
Abstract
Productive viral infection often depends on the manipulation of the cytoskeleton. Herpesviruses, including rhesus monkey rhadinovirus (RRV) and its close homolog, the oncogenic human gammaherpesvirus Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 (KSHV/HHV8), exploit microtubule (MT)-based retrograde transport to deliver their genomes to the nucleus. Subsequently, during the lytic phase of the life cycle, the maturing viral particles undergo orchestrated translocation to specialized regions within the cytoplasm, leading to tegumentation, secondary envelopment, and then egress. As a result, we hypothesized that RRV might induce changes in the cytoskeleton at both early and late stages of infection. Using confocal imaging, we found that RRV infection led to the thickening and acetylation of MTs emanating from the MT-organizing center (MTOC) shortly after viral entry and more pronounced and diffuse MT reorganization during peak stages of lytic gene expression and virion production. We subsequently identified open reading frame 52 (ORF52), a multifunctional and abundant tegument protein, as being the only virally encoded component responsible for these cytoskeletal changes. Mutational and modeling analyses indicated that an evolutionarily conserved, truncated leucine zipper motif near the N terminus as well as a strictly conserved arginine residue toward the C terminus of ORF52 play critical roles in its ability to rearrange the architecture of the MT cytoskeleton. Taken together, our findings combined with data from previous studies describing diverse roles for ORF52 suggest that it likely binds to different cellular components, thereby allowing context-dependent modulation of function. IMPORTANCE A thorough understanding of the processes governing viral infection includes knowledge of how viruses manipulate their intracellular milieu, including the cytoskeleton. Altering the dynamics of actin or MT polymerization, for example, is a common strategy employed by viruses to ensure efficient entry, maturation, and egress as well as the avoidance of antiviral defenses through the sequestration of key cellular factors. We found that infection with RRV, a homolog of the human pathogen KSHV, led to perinuclear wrapping by acetylated MT bundles and identified ORF52 as the viral protein underlying these changes. Remarkably, incoming virions were able to supply sufficient ORF52 to induce MT thickening and acetylation near the MTOC, potentially aiding in the delivery viral genomes to the nucleus. Although the function of MT alterations during late stages of infection requires further study, ORF52 shares functional and structural similarities with alphaherpesvirus VP22, underscoring the evolutionary importance of MT cytoskeletal manipulations for this virus family.
Collapse
|
15
|
de Wolf B, Kops GJPL. Kinetochore Malfunction in Human Pathologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:69-91. [DOI: 10.1007/978-3-319-57127-0_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Zhou H, Wang T, Zheng T, Teng J, Chen J. Cep57 is a Mis12-interacting kinetochore protein involved in kinetochore targeting of Mad1-Mad2. Nat Commun 2016; 7:10151. [PMID: 26743940 PMCID: PMC4729865 DOI: 10.1038/ncomms10151] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022] Open
Abstract
The spindle assembly checkpoint (SAC) arrests cells in mitosis by sensing unattached kinetochores, until all chromosomes are bi-oriented by spindle microtubules. Kinetochore accumulation of the SAC component Mad1–Mad2 is crucial for SAC activation. However, the mechanism by which Mad1–Mad2 accumulation at kinetochores is regulated is not clear. Here we find that Cep57 is localized to kinetochores in human cells, and binds to Mis12, a KMN (KNL1/Mis12 complex/Ndc80 complex) network component. Cep57 also interacts with Mad1, and depletion of Cep57 results in decreased kinetochore localization of Mad1–Mad2, reduced SAC signalling and increased chromosome segregation errors. We also show that the microtubule-binding activity of Cep57 is involved in the timely removal of Mad1 from kinetochores. Thus, these findings reveal that the KMN network-binding protein Cep57 is a mitotic kinetochore component, and demonstrate the functional connection between the KMN network and the SAC. The spindle assembly checkpoint relies on the accumulation of Mad1-Mad2 at kinetochores, but the mechanism of regulation is not known. Here Zhou et al. show that the centrosomal protein Cep57 interacts with the kinetochore proteins Mis12 and Mad1, and regulates the recruitment of Mad1/Mad2 to kinetochores.
Collapse
Affiliation(s)
- Haining Zhou
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Tianning Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Tao Zheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Mang J, Korzeniewski N, Dietrich D, Sailer V, Tolstov Y, Searcy S, von Hardenberg J, Perner S, Kristiansen G, Marx A, Roth W, Herpel E, Grüllich C, Popeneciu V, Pahernik S, Hadaschik B, Hohenfellner M, Duensing S. Prognostic Significance and Functional Role of CEP57 in Prostate Cancer. Transl Oncol 2015; 8:487-96. [PMID: 26692530 PMCID: PMC4700294 DOI: 10.1016/j.tranon.2015.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/10/2015] [Indexed: 01/24/2023] Open
Abstract
We have recently shown that centrosomal protein 57 (CEP57) is overexpressed in a subset of human prostate cancers. CEP57 is involved in intracellular transport processes, and its overexpression causes mitotic defects as well as abnormal microtubule nucleation and bundling. In the present study, we further characterized the prognostic and functional role of CEP57 in prostate cancer. Unexpectedly, we found that high CEP57 expression is an independent prognostic factor for a more favorable biochemical recurrence-free survival in two large patient cohorts. To reconcile this finding with the ability of CEP57 to cause cell division errors and thus potentially promote malignant progression, we hypothesized that alterations of microtubule-associated transport processes, in particular nuclear translocation of the androgen receptor (AR), may play a role in our finding. However, CEP57 overexpression and microtubule bundling had, surprisingly, no effect on the nuclear translocation of the AR. Instead, we found a significant increase of cells with disarranged microtubules and a cellular morphology suggestive of a cytokinesis defect. Because mitotic dysfunction leads to a reduced daughter cell formation, it can explain the survival benefit of patients with increased CEP57 expression. In contrast, we show that a reduced expression of CEP57 is associated with malignant growth and metastasis. Taken together, our findings underscore that high CEP57 expression is associated with mitotic impairment and less aggressive tumor behavior. Because the CEP57-induced microtubule stabilization had no detectable effect on AR nuclear translocation, our results furthermore suggest that microtubule-targeting therapeutics used in advanced prostate cancer such as docetaxel may have modes of action that are at least in part independent of AR transport inhibition.
Collapse
Affiliation(s)
- Josef Mang
- Molecular Urooncology, Department of Urology, Medical Faculty Heidelberg, University of Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany
| | - Nina Korzeniewski
- Molecular Urooncology, Department of Urology, Medical Faculty Heidelberg, University of Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany
| | - Dimo Dietrich
- Institute of Pathology, University of Bonn School of Medicine, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Verena Sailer
- Institute of Pathology, University of Bonn School of Medicine, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Yanis Tolstov
- Molecular Urooncology, Department of Urology, Medical Faculty Heidelberg, University of Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany
| | - Sam Searcy
- Molecular Urooncology, Department of Urology, Medical Faculty Heidelberg, University of Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany
| | - Jost von Hardenberg
- Department of Urology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Sven Perner
- Pathology Network of the University Hospital of Lübeck and Leibniz Research Center Borstel, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Glen Kristiansen
- Institute of Pathology, University of Bonn School of Medicine, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Alexander Marx
- Institute of Pathology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Wilfried Roth
- Institute of Pathology, University of Heidelberg School of Medicine, Im Neuenheimer Feld 224, D-69120 Heidelberg, Germany
| | - Esther Herpel
- Institute of Pathology, University of Heidelberg School of Medicine, Im Neuenheimer Feld 224, D-69120 Heidelberg, Germany; Tissue Bank of the National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 220/221, D-69120 Heidelberg, Germany
| | - Carsten Grüllich
- National Center for Tumor Diseases (NCT), Department of Medical Oncology, Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany
| | - Valentin Popeneciu
- Department of Urology, University of Heidelberg School of Medicine, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany
| | - Sascha Pahernik
- Department of Urology, University of Heidelberg School of Medicine, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany
| | - Boris Hadaschik
- Department of Urology, University of Heidelberg School of Medicine, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany
| | - Markus Hohenfellner
- Department of Urology, University of Heidelberg School of Medicine, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, Medical Faculty Heidelberg, University of Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany; Department of Urology, University of Heidelberg School of Medicine, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany.
| |
Collapse
|
18
|
Liu Y, Li Y, March ME, Nguyen K, Kenny N, Xu K, Wang F, Guo Y, Keating B, Glessner J, Li J, Ganley TJ, Zhang J, Deardorff MA, Xu X, Hakonarson H. Copy number variation in CEP57L1 predisposes to congenital absence of bilateral ACL and PCL ligaments. Hum Genomics 2015; 9:31. [PMID: 26561035 PMCID: PMC4642759 DOI: 10.1186/s40246-015-0053-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/31/2015] [Indexed: 11/23/2022] Open
Abstract
Background Absence of the anterior (ACL) or posterior cruciate ligament (PCL) are rare congenital malformations that result in knee joint instability, with a prevalence of 1.7 per 100,000 live births and can be associated with other lower-limb abnormalities such as ACL agnesia and absence of the menisci of the knee. While a few cases of absence of ACL/PCL are reported in the literature, a number of large familial case series of related conditions such as ACL agnesia suggest a potential underlying monogenic etiology. We performed whole exome sequencing of a family with two individuals affected by ACL/PCL. Results We identified copy number variation (CNV) deletion impacting the exon sequences of CEP57L1, present in the affected mother and her affected daughter based on the exome sequencing data. The deletion was validated using quantitative PCR (qPCR), and the gene was confirmed to be expressed in ACL ligament tissue. Interestingly, we detected reduced expression of CEP57L1 in Epstein–Barr virus (EBV) cells from the two patients in comparison with healthy controls. Evaluation of 3D protein structure showed that the helix-binding sites of the protein remain intact with the deletion, but other functional binding sites related to microtubule attachment are missing. The specificity of the CNV deletion was confirmed by showing that it was absent in ~700 exome sequencing samples as well as in the database of genomic variations (DGV), a database containing large numbers of annotated CNVs from previous scientific reports. Conclusions We identified a novel CNV deletion that was inherited through an autosomal dominant transmission from an affected mother to her affected daughter, both of whom suffered from the absence of the anterior and posterior cruciate ligaments of the knees. Electronic supplementary material The online version of this article (doi:10.1186/s40246-015-0053-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yichuan Liu
- Center for Applied Genomics, The Children's Hospital of Philadelphia, 1014H, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA.
| | - Yun Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, 1014H, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA.
| | - Michael E March
- Center for Applied Genomics, The Children's Hospital of Philadelphia, 1014H, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA.
| | | | - Nguyen Kenny
- Center for Applied Genomics, The Children's Hospital of Philadelphia, 1014H, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA.
| | - Kexiang Xu
- Center for Applied Genomics, The Children's Hospital of Philadelphia, 1014H, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA.
| | - Fengxiang Wang
- Center for Applied Genomics, The Children's Hospital of Philadelphia, 1014H, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA.
| | - Yiran Guo
- Center for Applied Genomics, The Children's Hospital of Philadelphia, 1014H, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA.
| | - Brendan Keating
- Center for Applied Genomics, The Children's Hospital of Philadelphia, 1014H, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA.
| | - Joseph Glessner
- Center for Applied Genomics, The Children's Hospital of Philadelphia, 1014H, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA.
| | - Jiankang Li
- Beijing Genomics Institute, Shenzhen, China.
| | - Theodore J Ganley
- Center for Sports Medicine and Performance, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | | | - Matthew A Deardorff
- Individualized Medical Genetics Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Xun Xu
- Beijing Genomics Institute, Shenzhen, China.
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, 1014H, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Artamonov MV, Jin L, Franke AS, Momotani K, Ho R, Dong XR, Majesky MW, Somlyo AV. Signaling pathways that control rho kinase activity maintain the embryonic epicardial progenitor state. J Biol Chem 2015; 290:10353-67. [PMID: 25733666 DOI: 10.1074/jbc.m114.613190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Indexed: 12/25/2022] Open
Abstract
This study identifies signaling pathways that play key roles in the formation and maintenance of epicardial cells, a source of progenitors for coronary smooth muscle cells (SMCs). After epithelial to mesenchymal transition (EMT), mesenchymal cells invade the myocardium to form coronary SMCs. RhoA/Rho kinase activity is required for EMT and for differentiation into coronary SMCs, whereas cAMP activity is known to inhibit EMT in epithelial cells by an unknown mechanism. We use outgrowth of epicardial cells from E9.5 isolated mouse proepicardium (PE) explants, wild type and Epac1 null E12.5 mouse heart explants, adult rat epicardial cells, and immortalized mouse embryonic epicardial cells as model systems to identify signaling pathways that regulate RhoA activity to maintain the epicardial progenitor state. We demonstrate that RhoA activity is suppressed in the epicardial progenitor state, that the cAMP-dependent Rap1 GTP exchange factor (GEF), Epac, known to down-regulate RhoA activity through activation of Rap1 GTPase activity increased, that Rap1 activity increased, and that expression of the RhoA antagonistic Rnd proteins known to activate p190RhoGAP increased and associated with p190RhoGAP. Finally, EMT is associated with increased p63RhoGEF and RhoGEF-H1 protein expression, increased GEF-H1 activity, with a trend in increased p63RhoGEF activity. EMT is suppressed by partial silencing of p63RhoGEF and GEF-H1. In conclusion, we have identified new signaling molecules that act together to control RhoA activity and play critical roles in the maintenance of coronary smooth muscle progenitor cells in the embryonic epicardium. We suggest that their eventual manipulation could promote revascularization after myocardial injury.
Collapse
Affiliation(s)
- Mykhaylo V Artamonov
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| | - Li Jin
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| | - Aaron S Franke
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| | - Ko Momotani
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| | - Ruoya Ho
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| | - Xiu Rong Dong
- Seattle Children's Research Institute, Seattle, Washington 98101
| | - Mark W Majesky
- Seattle Children's Research Institute, Seattle, Washington 98101
| | - Avril V Somlyo
- From the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908 and
| |
Collapse
|
20
|
Poirier JG, Brennan P, McKay JD, Spitz MR, Bickeböller H, Risch A, Liu G, Le Marchand L, Tworoger S, McLaughlin J, Rosenberger A, Heinrich J, Brüske I, Muley T, Henderson BE, Wilkens LR, Zong X, Li Y, Hao K, Timens W, Bossé Y, Sin DD, Obeidat M, Amos CI, Hung RJ. Informed genome-wide association analysis with family history as a secondary phenotype identifies novel loci of lung cancer. Genet Epidemiol 2015; 39:197-206. [PMID: 25644374 PMCID: PMC4554719 DOI: 10.1002/gepi.21882] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/02/2014] [Accepted: 12/02/2014] [Indexed: 01/05/2023]
Abstract
Lung cancer is the leading cause of cancer death worldwide. Although several genetic variants associated with lung cancer have been identified in the past, stringent selection criteria of genome-wide association studies (GWAS) can lead to missed variants. The objective of this study was to uncover missed variants by using the known association between lung cancer and first-degree family history of lung cancer to enrich the variant prioritization for lung cancer susceptibility regions. In this two-stage GWAS study, we first selected a list of variants associated with both lung cancer and family history of lung cancer in four GWAS (3,953 cases, 4,730 controls), then replicated our findings for 30 variants in a meta-analysis of four additional studies (7,510 cases, 7,476 controls). The top ranked genetic variant rs12415204 in chr10q23.33 encoding FFAR4 in the Discovery set was validated in the Replication set with an overall OR of 1.09 (95% CI=1.04, 1.14, P=1.63×10(-4)). When combining the two stages of the study, the strongest association was found in rs1158970 at Ch4p15.2 encoding KCNIP4 with an OR of 0.89 (95% CI=0.85, 0.94, P=9.64×10(-6)). We performed a stratified analysis of rs12415204 and rs1158970 across all eight studies by age, gender, smoking status, and histology, and found consistent results across strata. Four of the 30 replicated variants act as expression quantitative trait loci (eQTL) sites in 1,111 nontumor lung tissues and meet the genome-wide 10% FDR threshold.
Collapse
Affiliation(s)
- Julia G. Poirier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - James D. McKay
- International Agency for Research on Cancer, Lyon, France
| | | | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Angela Risch
- Division of Epigenomics and Cancer Risk Factors, DKFZ, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Geoffrey Liu
- Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Loic Le Marchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Shelley Tworoger
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Joachim Heinrich
- Helmholtz Centre Munich, German Research Centre for Environmental Health, Institute of Epidemiology I, Neuherberg, Germany
| | - Irene Brüske
- Helmholtz Centre Munich, German Research Centre for Environmental Health, Institute of Epidemiology I, Neuherberg, Germany
| | - Thomas Muley
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Translational Research Unit, Thoraxklinik at the University of Heidelberg, Heidelberg, Germany
| | - Brian E. Henderson
- Department of Preventive Medicine, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - Lynne R. Wilkens
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Xuchen Zong
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Yafang Li
- Dartmouth Medical College, Hanover, New Hampshire, United States of America
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Wim Timens
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Québec, Canada
| | - Don D. Sin
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ma’en Obeidat
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Rayjean J. Hung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Kawamura E, Fielding AB, Kannan N, Balgi A, Eaves CJ, Roberge M, Dedhar S. Identification of novel small molecule inhibitors of centrosome clustering in cancer cells. Oncotarget 2014; 4:1763-76. [PMID: 24091544 PMCID: PMC3858562 DOI: 10.18632/oncotarget.1198] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Most normal cells have two centrosomes that form bipolar spindles during mitosis, while cancer cells often contain more than two, or "supernumerary" centrosomes. Such cancer cells achieve bipolar division by clustering their centrosomes into two functional poles, and inhibiting this process then leads to cancer-specific cell death. A major problem with clinically used anti-mitotic drugs, such as paclitaxel, is their toxicity in normal cells. To discover new compounds with greater specificity for cancer cells, we established a high-content screen for agents that block centrosome clustering in BT-549 cells, a breast cancer cell line that harbors supernumerary centrosomes. Using this screen, we identified 14 compounds that inhibit centrosome clustering and induce mitotic arrest. Some of these compounds were structurally similar, suggesting a common structural motif important for preventing centrosome clustering. We next compared the effects of these compounds on the growth of several breast and other cancer cell lines, an immortalized normal human mammary epithelial cell line, and progenitor-enriched primary normal human mammary epithelial cells. From these comparisons, we found some compounds that kill breast cancer cells, but not their normal epithelial counterparts, suggesting their potential for targeted therapy. One of these compounds, N2-(3-pyridylmethyl)-5-nitro-2-furamide (Centrosome Clustering Chemical Inhibitor-01, CCCI-01), that showed the greatest differential response in this screen was confirmed to have selective effects on cancer as compared to normal breast progenitors using more precise apoptosis induction and clonogenic growth endpoints. The concentration of CCCI-01 that killed cancer cells in the clonogenic assay spared normal human bone marrow hematopoietic progenitors in the colony-forming cell assay, indicating a potential therapeutic window for CCCI-01, whose selectivity might be further improved by optimizing the compound. Immunofluorescence analysis showed that treatment with CCCI-01 lead to multipolar spindles in BT-549, while maintaining bipolar spindles in the normal primary human mammary epithelial cells. Since centrosome clustering is a complex process involving multiple pathways, the 14 compounds identified in this study provide a potentially novel means to developing non-cross-resistant anti-cancer drugs that block centrosome clustering.
Collapse
Affiliation(s)
- Eiko Kawamura
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
He R, Wu Q, Zhou H, Huang N, Chen J, Teng J. Cep57 protein is required for cytokinesis by facilitating central spindle microtubule organization. J Biol Chem 2013; 288:14384-14390. [PMID: 23569207 DOI: 10.1074/jbc.m112.441501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cytokinesis is the final stage of cell division in which the cytoplasm of a cell is divided into two daughter cells after the segregation of genetic material, and the central spindle and midbody are considered to be the essential structures required for the initiation and completion of cytokinesis. Here, we determined that the centrosome protein Cep57, which is localized to the central spindle and midbody, acts as a spindle organizer and is required for cytokinesis. Depletion of Cep57 disrupted microtubule assembly of the central spindle and further led to abnormal midbody localization of MKLP1, Plk1, and Aurora B, which resulted in cytokinesis failure and the formation of binuclear cells. Furthermore, we found that Cep57 directly recruited Tektin 1 to the midbody matrix to regulate microtubule organization. Thus, our data reveal that Cep57 is essential for cytokinesis via regulation of central spindle assembly and formation of the midbody.
Collapse
Affiliation(s)
- Runsheng He
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Biomembrane and Membrane Bioengineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qixi Wu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Biomembrane and Membrane Bioengineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Haining Zhou
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Biomembrane and Membrane Bioengineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ning Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Biomembrane and Membrane Bioengineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Biomembrane and Membrane Bioengineering, College of Life Sciences, Peking University, Beijing 100871, China; Center for Quantitative Biology, Peking University, Beijing 100871, China.
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Biomembrane and Membrane Bioengineering, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
23
|
Dormoy V, Tormanen K, Sütterlin C. Par6γ is at the mother centriole and controls centrosomal protein composition through a Par6α-dependent pathway. J Cell Sci 2012; 126:860-70. [PMID: 23264737 DOI: 10.1242/jcs.121186] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The centrosome contains two centrioles that differ in age, protein composition and function. This non-membrane bound organelle is known to regulate microtubule organization in dividing cells and ciliogenesis in quiescent cells. These specific roles depend on protein appendages at the older, or mother, centriole. In this study, we identified the polarity protein partitioning defective 6 homolog gamma (Par6γ) as a novel component of the mother centriole. This specific localization required the Par6γ C-terminus, but was independent of intact microtubules, the dynein/dynactin complex and the components of the PAR polarity complex. Par6γ depletion resulted in altered centrosomal protein composition, with the loss of a large number of proteins, including Par6α and p150(Glued), from the centrosome. As a consequence, there were defects in ciliogenesis, microtubule organization and centrosome reorientation during migration. Par6γ interacted with Par3 and aPKC, but these proteins were not required for the regulation of centrosomal protein composition. Par6γ also associated with Par6α, which controls protein recruitment to the centrosome through p150(Glued). Our study is the first to identify Par6γ as a component of the mother centriole and to report a role of a mother centriole protein in the regulation of centrosomal protein composition.
Collapse
Affiliation(s)
- Valérian Dormoy
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| | | | | |
Collapse
|
24
|
Cuevas R, Korzeniewski N, Tolstov Y, Hohenfellner M, Duensing S. FGF-2 Disrupts Mitotic Stability in Prostate Cancer through the Intracellular Trafficking Protein CEP57. Cancer Res 2012; 73:1400-10. [DOI: 10.1158/0008-5472.can-12-1857] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Wu Q, He R, Zhou H, Yu ACH, Zhang B, Teng J, Chen J. Cep57, a NEDD1-binding pericentriolar material component, is essential for spindle pole integrity. Cell Res 2012; 22:1390-401. [PMID: 22508265 DOI: 10.1038/cr.2012.61] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Formation of a bipolar spindle is indispensable for faithful chromosome segregation and cell division. Spindle integrity is largely dependent on the centrosome and the microtubule network. Centrosome protein Cep57 can bundle microtubules in mammalian cells. Its related protein (Cep57R) in Xenopus was characterized as a stabilization factor for microtubule-kinetochore attachment. Here we show that Cep57 is a pericentriolar material (PCM) component. Its interaction with NEDD1 is necessary for the centrosome localization of Cep57. Depletion of Cep57 leads to unaligned chromosomes and a multipolar spindle, which is induced by PCM fragmentation. In the absence of Cep57, centrosome microtubule array assembly activity is weakened, and the spindle length and microtubule density decrease. As a spindle microtubule-binding protein, Cep57 is also responsible for the proper organization of the spindle microtubule and localization of spindle pole focusing proteins. Collectively, these results suggest that Cep57, as a NEDD1-binding centrosome component, could function as a spindle pole- and microtubule-stabilizing factor for establishing robust spindle architecture.
Collapse
Affiliation(s)
- Qixi Wu
- The State Key Laboratory of Biomembrane and Membrane Bioengineering and The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Nakata K, Shiba D, Kobayashi D, Yokoyama T. Targeting of Nphp3 to the primary cilia is controlled by an N-terminal myristoylation site and coiled-coil domains. Cytoskeleton (Hoboken) 2012; 69:221-34. [PMID: 22328406 DOI: 10.1002/cm.21014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/26/2012] [Accepted: 01/29/2012] [Indexed: 11/08/2022]
Abstract
Primary cilia are organelles that extend from the cell surface. More than 600 proteins have been identified in cilia, but ciliary targeting mechanisms are poorly understood. Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease with 11 responsible genes (NPHP1-11) thus far being identified. The mouse Nphp3 gene product is localized in the cilia and contains coiled-coil (CC) domains and tetratricopeptide repeats, but the ciliary targeting sequences (CTSs) are unknown. In the present study, we generated a series of GFP-tagged deletion constructs of Nphp3 and tried to find the CTSs of Nphp3. We found that the N-terminal 201 amino acid fragment (Nphp3 [1-201]), which contains two CC domains, is necessary and sufficient for cilia localization. Further analysis revealed that an N-terminal glycine (G2), which is a conserved myristoylation site among vertebrates, is also essential for trafficking of Nphp3 to the ciliary shaft. Interestingly, the N-terminal fragments, Nphp3 (8-201), Nphp3 (52-201), and Nphp3 (96-201), that contain the CC domains, targeted the basal body, but could not enter into the ciliary shaft. Our results showed the importance of myristoylation in ciliary trafficking, and suggest that Nphp3 trafficking to the ciliary shaft occurs in a two-step process.
Collapse
Affiliation(s)
- Kana Nakata
- Department of Anatomy and Developmental Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | |
Collapse
|
27
|
Bakhoum SF, Compton DA. Kinetochores and disease: keeping microtubule dynamics in check! Curr Opin Cell Biol 2011; 24:64-70. [PMID: 22196931 DOI: 10.1016/j.ceb.2011.11.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/21/2011] [Accepted: 11/28/2011] [Indexed: 12/12/2022]
Abstract
The essential role of microtubules in cell division has long been known. Yet the mechanism by which microtubule attachment to chromosomes at kinetochores is regulated has only been recently revealed. Here, we review the role of kinetochore-microtubule (kMT) attachment dynamics in the cell cycle as well as emerging evidence linking deregulation of kMT attachments to diseases where chromosome mis-segregation and aneuploidy play a central role. Evidence indicates that the dynamic behavior of kMTs must fall within narrow permissible boundaries, which simultaneously allow a level of stability sufficient to establish and maintain chromosome-microtubule attachments and a degree of instability that permits error correction required for accurate chromosome segregation.
Collapse
Affiliation(s)
- Samuel F Bakhoum
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|
28
|
Snape K, Hanks S, Ruark E, Barros-Núñez P, Elliott A, Murray A, Lane AH, Shannon N, Callier P, Chitayat D, Clayton-Smith J, Fitzpatrick DR, Gisselsson D, Jacquemont S, Asakura-Hay K, Micale MA, Tolmie J, Turnpenny PD, Wright M, Douglas J, Rahman N. Mutations in CEP57 cause mosaic variegated aneuploidy syndrome. Nat Genet 2011; 43:527-9. [PMID: 21552266 PMCID: PMC3508359 DOI: 10.1038/ng.822] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 04/06/2011] [Indexed: 12/18/2022]
Abstract
Using exome sequencing and a variant prioritization strategy that focuses on loss-of-function variants, we identified biallelic, loss-of-function CEP57 mutations as a cause of constitutional mosaic aneuploidies. CEP57 is a centrosomal protein and is involved in nucleating and stabilizing microtubules. Our findings indicate that these and/or additional functions of CEP57 are crucial for maintaining correct chromosomal number during cell division.
Collapse
Affiliation(s)
- Katie Snape
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ruiz-Miró M, Colomina N, Fernández RMH, Garí E, Gallego C, Aldea M. Translokin (Cep57) interacts with cyclin D1 and prevents its nuclear accumulation in quiescent fibroblasts. Traffic 2011; 12:549-62. [PMID: 21306487 DOI: 10.1111/j.1600-0854.2011.01176.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nuclear accumulation of cyclin D1 because of altered trafficking or degradation is thought to contribute directly to neoplastic transformation and growth. Mechanisms of cyclin D1 localization in S phase have been studied in detail, but its control during exit from the cell cycle and quiescence is poorly understood. Here we report that translokin (Tlk), a microtubule-associated protein also termed Cep57, interacts with cyclin D1 and controls its nucleocytoplasmic distribution in quiescent cells. Tlk binds to regions of cyclin D1 also involved in binding to cyclin-dependent kinase 4 (Cdk4), and a fraction of cyclin D1 associates to the juxtanuclear Tlk network in the cell. Downregulation of Tlk levels results in undue nuclear accumulation of cyclin D1 and increased Cdk4-dependent phosphorylation of pRB under quiescence conditions. In turn, overexpression of Tlk prevents proper cyclin D1 accumulation in the nucleus of proliferating cells in an interaction-dependent manner, inhibits Cdk4-dependent phosphorylation of pRB and hinders cell cycle progression to S phase. We propose that the Tlk acts as a key negative regulator in the pathway that drives nuclear import of cyclin D1, thus contributing to prevent pRB inactivation and to maintain cellular quiescence.
Collapse
Affiliation(s)
- Maria Ruiz-Miró
- Departament de Ciències Mèdiques Bàsiques, IRBLLEIDA, Universitat de Lleida, Montserrat Roig 2, 25008 Lleida, Catalonia, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 3: developmental changes in spermatid flagellum and cytoplasmic droplet and interaction of sperm with the zona pellucida and egg plasma membrane. Microsc Res Tech 2010; 73:320-63. [PMID: 19941287 DOI: 10.1002/jemt.20784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spermiogenesis constitutes the steps involved in the metamorphosis of spermatids into spermatozoa. It involves modification of several organelles in addition to the formation of several structures including the flagellum and cytoplasmic droplet. The flagellum is composed of a neck region and middle, principal, and end pieces. The axoneme composed of nine outer microtubular doublets circularly arranged to form a cylinder around a central pair of microtubules is present throughout the flagellum. The middle and principal pieces each contain specific components such as the mitochondrial sheath and fibrous sheath, respectively, while outer dense fibers are common to both. A plethora of proteins are constituents of each of these structures, with each playing key roles in functions related to the fertility of spermatozoa. At the end of spermiogenesis, a portion of spermatid cytoplasm remains associated with the released spermatozoa, referred to as the cytoplasmic droplet. The latter has as its main feature Golgi saccules, which appear to modify the plasma membrane of spermatozoa as they move down the epididymal duct and hence may be partly involved in male gamete maturation. The end product of spermatogenesis is highly streamlined and motile spermatozoa having a condensed nucleus equipped with an acrosome. Spermatozoa move through the female reproductive tract and eventually penetrate the zona pellucida and bind to the egg plasma membrane. Many proteins have been implicated in the process of fertilization as well as a plethora of proteins involved in the development of spermatids and sperm, and these are high lighted in this review.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
31
|
Kops GJPL, Saurin AT, Meraldi P. Finding the middle ground: how kinetochores power chromosome congression. Cell Mol Life Sci 2010; 67:2145-61. [PMID: 20232224 PMCID: PMC2883098 DOI: 10.1007/s00018-010-0321-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 12/17/2022]
Abstract
Genomic stability requires error-free chromosome segregation during mitosis. Chromosome congression to the spindle equator precedes chromosome segregation in anaphase and is a hallmark of metazoan mitosis. Here we review the current knowledge and concepts on the processes that underlie chromosome congression, including initial attachment to spindle microtubules, biorientation, and movements, from the perspective of the kinetochore.
Collapse
Affiliation(s)
- Geert J P L Kops
- Department of Physiological Chemistry and Cancer Genomics Centre, University Medical Center Utrecht, Stratenum 3.217, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| | | | | |
Collapse
|
32
|
Meunier S, Navarro MGJ, Bossard C, Laurell H, Touriol C, Lacazette E, Prats H. Pivotal role of translokin/CEP57 in the unconventional secretion versus nuclear translocation of FGF2. Traffic 2009; 10:1765-72. [PMID: 19804566 DOI: 10.1111/j.1600-0854.2009.00985.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intracellular trafficking of fibroblast growth factor 2 (FGF2) exhibits two unusual features: (i) it is secreted despite the lack of signal peptide and (ii) it can translocate to the nucleus after interaction with high- and low-affinity receptors on the cell surface, although it does not possess any classical nuclear localization signal. This nuclear translocation constitutes an important part of the response to the growth factor. Previously, we identified Translokin/CEP57, an FGF2 binding partner, as an intracellular mediator of FGF2 trafficking, which is essential for the nuclear translocation of the growth factor. Here, we report the identification of four Translokin partners: sorting nexin 6, Ran-binding protein M and the kinesins KIF3A and KIF3B. These proteins, through their interaction with Translokin, are involved in two exclusive complexes allowing the bidirectional trafficking of FGF2. Thus, Translokin plays a pivotal role in this original mechanism. In addition, we show that FGF2 secretion is regulated by a negative loop, retro-controlled by FGF receptor and involving FGF2 itself.
Collapse
|
33
|
Localization of TEIF in the centrosome and its functional association with centrosome amplification in DNA damage, telomere dysfunction and human cancers. Oncogene 2009; 28:1549-60. [PMID: 19198626 DOI: 10.1038/onc.2008.503] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Centrosome amplification and telomere shortening, which are commonly detected in human cancers, have been implicated in the induction of chromosome instability in tumorigenesis. The functions of these two structures are closely related to DNA damage repair machinery, and some factors that operate in the maintenance of telomeres also take part in the regulation of centrosome status, suggesting they are functionally linked. We report that TEIF (telomerase transcriptional elements-interacting factor), a transactivator of the hTERT (human telomerase reverse transcriptase subunit) gene, is distributed in the centrosome throughout the cell cycle, but its transport into the centrosome is increased under some conditions, and its distribution is dependent on its C-terminal domain. Experimental modulation of TEIF expression through overexpression, polypeptide expression or depletion affected centrosome status and increased abnormalities of cell mitosis. Localization of TEIF to the centrosome was also stimulated by treatment with genotoxic agents and experimental telomere dysfunction, accompanying centrosome amplification. Moreover, we demonstrated that the expression level of TEIF is not only closely correlated with centrosome amplification in soft tissue sarcomas but it is also significantly related to tumor histologic grade. Our data confirmed TEIF functions as a centrosome regulator. Its participation in DNA damage response, including telomere dysfunction and tumorigenesis, indicates TEIF is likely to be a factor involved in linking centrosome amplification and telomere dysfunction in cancer development.
Collapse
|
34
|
Xu B, Hao Z, Jha KN, Zhang Z, Urekar C, Digilio L, Pulido S, Strauss JF, Flickinger CJ, Herr JC. TSKS concentrates in spermatid centrioles during flagellogenesis. Dev Biol 2008; 319:201-10. [PMID: 18495105 PMCID: PMC2670488 DOI: 10.1016/j.ydbio.2008.03.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 03/27/2008] [Accepted: 03/31/2008] [Indexed: 12/14/2022]
Abstract
Centrosomal coiled-coil proteins paired with kinases play critical roles in centrosomal functions within somatic cells, however knowledge regarding gamete centriolar proteins is limited. In this study, the substrate of TSSK1 and 2, TSKS, was localized during spermiogenesis to the centrioles of post-meiotic spermatids, where it reached its greatest concentration during the period of flagellogenesis. This centriolar localization persisted in ejaculated human spermatozoa, while centriolar TSKS diminished in mouse sperm, where centrioles are known to undergo complete degeneration. In addition to the centriolar localization during flagellogenesis, mouse TSKS and the TSSK2 kinase localized in the tail and acrosomal regions of mouse epididymal sperm, while TSSK2 was found in the equatorial segment, neck and the midpiece of human spermatozoa. TSSK2/TSKS is the first kinase/substrate pair localized to the centrioles of spermatids and spermatozoa. Coupled with the infertility due to haploinsufficiency noted in chimeric mice with deletion of Tssk1 and 2 (companion paper) this centriolar kinase/substrate pair is predicted to play an indispensable role during spermiogenesis.
Collapse
Affiliation(s)
- Bingfang Xu
- Department of Cell Biology, Center for Research in Contraceptive and Reproductive Health, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Vader G, Maia AF, Lens SM. The chromosomal passenger complex and the spindle assembly checkpoint: kinetochore-microtubule error correction and beyond. Cell Div 2008; 3:10. [PMID: 18507820 PMCID: PMC2430558 DOI: 10.1186/1747-1028-3-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Accepted: 05/28/2008] [Indexed: 01/16/2023] Open
Abstract
During mitosis, correct bipolar chromosome attachment to the mitotic spindle is an essential prerequisite for the equal segregation of chromosomes. The spindle assembly checkpoint can prevent chromosome segregation as long as not all chromosome pairs have obtained bipolar attachment to the spindle. The chromosomal passenger complex plays a crucial role during chromosome alignment by correcting faulty chromosome-spindle interactions (e.g. attachments that do not generate tension). In the process of doing so, the chromosomal passenger complex generates unattached chromosomes, a specific situation that is known to promote checkpoint activity. However, several studies have implicated an additional, more direct role for the chromosomal passenger complex in enforcing the mitotic arrest imposed by the spindle assembly checkpoint. In this review, we discuss the different roles played by the chromosomal passenger complex in ensuring proper mitotic checkpoint function. Additionally, we discuss the possibility that besides monitoring the presence of unattached kinetochores, the spindle assembly checkpoint may also be capable of responding to chromosome-microtubule interactions that do not generate tension and we propose experimental set-ups to study this.
Collapse
Affiliation(s)
- Gerben Vader
- Laboratory of Experimental Oncology, Department of Medical Oncology, University Medical Center Utrecht, The Netherlands.
| | | | | |
Collapse
|